

Ročník 2017 Číslo II

Error rate of USART in NRWW Section
L. Novák 1,2, P. Šteffan1

1 Brno University of Technology, Department of FEEC,

Technická 3058/10, Brno
2 Central European Institute of Technology

Purkyňova 123, Brno

E-mail : xnovak0b@vutbr.cz, steffan@vutbr.cz

Anotace:

Článek popisuje Universální Asynchronní a Synchronní sériovou linku a základy jejího nastavení. Dále je ve

článku popsáno rozdělení Flash paměti u mikrokontrolérů ATmega a částečná implementace Bootloaderu a

uložení v konkrétní sekci. Později je ve článku popsána problematika přenosu dat po sériové komunikaci, při běhu

programu v sekci „Not Read While Write Section“. V poslední části článku je popsáno řešení k dané problematice

přenosu dat.

Abstract:

This paper describes a Universal Synchronous and Asynchronous serial Receiver and Transmitter and its basic

setting. Further it describes a divided Flash memory at ATmega chip. The function of the Bootloader and the

storage in Flash memory is described too. Than it describes the transfer data problematic in Not Read While

Write Section by the serial communication device. At the end of the paper is proposed the solution of received

data problematic in the application section.

INTRODUCTION

Universal Synchronous and Asynchronous serial

Receiver and Transmitter (in short USART) is serial

communication device implement in ATmega

microcontroller. This serial communication device is

used in industrial application. The basic serial frame of

USART (see in Fig.1) is defined with 1 start bit, 5 to 9

bits of data, no, even or odd parity and 1 or 2 stop bits.

The most used data frame is with 1 start bit, 8 bits data,

without parity and 1 stop bit. When a frame is

transmitted, the next frame can be sent immediately.

In case all data are sent, the communication line is set

an idle state. The idle state is represented by logical

high level.

Fig. 1: Serial frame of USART.

Before any serial communication is started, the

USART must be initialized. The initialization contains

settings of baud rate, setting frame format and enable

receiver or transmitter of the device or interrupt. The

Baud Rate is depended on the connected crystal. The

crystals can be used internal, external clock signal or

full swing crystal oscillator. In the microcontroller

ATmega is two internal crystals: 8 MHz crystal and

128 KHz low power crystal. Usage of the internal

crystal is problematical, because of their inaccuracy.

The better option is used the external clock. It can

reach greater accurate, but it still depends on the

connected clock. The better usages are used to full

swing crystal. The full swing crystal does not reach

considerable accuracy than the external clock, but the

implementation is very simple with minimum

components. In this work were used two full swing

crystal. Size of crystals in the paper was used 14.7456

MHz and 16 MHz. After the crystals were selected, the

value is recalculated for the specific baud rate of

USART (see in Eq. 1).

𝑈𝐵𝑅𝑅 = (
𝑓𝑂𝑆𝐶

16∗𝐵𝑎𝑢𝑑𝑟𝑎𝑡𝑒
− 1) (1)

The calculated value is set in the register UBRR. By

this equation, the calculated value for 38.4k Baud Rate

with 16 MHz is 25. By back calculation to the Baud

Rate, the value is 38.461k. As can be seen, the actual

Baud Rate value is little different than the set value.

This difference value is called Error Rate, and the

formula for calculate percentage Error Rate values are

calculated using the following equation:

𝐸𝑟𝑟𝑜𝑟 𝑟𝑎𝑡𝑒[%] =

(
𝐵𝑎𝑢𝑑𝑟𝑎𝑡𝑒𝐶𝑙𝑜𝑠𝑒𝑑𝑀𝑎𝑡𝑐ℎ

𝐵𝑎𝑢𝑑𝑟𝑎𝑡𝑒
− 1) ∗ 100 % (2)

Nominally percentage of Error Rate is tolerated around

10 %. The smaller this value is, the more likely it is the

Transmit/Receive data will not be lost. Table of value

uses speeds in the paper is in Tab.1. By setting register

UBRR to the specific value is used Baud Rate for

asynchronous operation.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace at University of West Bohemia

https://core.ac.uk/display/295589092?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Tab. 1: Table of values for settings register UBRR.

Baud Rate

[bit per

second]

fosc = 14.7456

MHz

fosc = 16.0000

MHz

UBRR

[-]

Error

[%]

UBRR

[-]

Error

[%]

38.4k 23 0.0 % 25 0.2 %

57.6k 15 0.0 % 16 2.1 %

115.2k 7 0.0 % 8 -3.5 %

230.4k 3 0.0 % 3 8.5 %

250k 3 -7.8 % 3 0.0 %

0.5M 1 -7.8 % 1 0.0 %

1M 0 -7.8 % 0 0.0 %

The USART serial communication can be used only

for transfer data between two devices. In industry,

USART is used in combination with the RS485

standard. By this usage, it can microcontrollers

communicate more than two devices. By adding

RS485 chip must be communication device data frame

used with addressing packet.

The microcontroller ATmega has divided Flash

memory into two sections. The first section is RWW

(Read-While-Write). When the program is running in

this section, it cannot be read itself. But the same

section can read data from NRWW section. The

second section is NRWW (Not-Read-While-Write)

(see in Fig. 2). When the program is running in this

section, we can read or write into the RWW section. In

situation the program running in NRWW section and

we want to read the same memory, we cannot. If we

try it, CPU is halted during the entire operation. RWW

is named Application part, and NRWW is named

Bootloader part.

Fig. 2: Read-While-Write vs. No-Read-While-Write [1].

So basically we can rewrite Application part by

Bootloader part without an external programmer.

This property is helpful for update firmware when we

find a bug, and we do not have physical access to the

device. In the Bootloader part, we can use all

peripheral like we were in the application part. One of

the problems is the interrupt. When we were in the

bootloader part, and we want to use interrupts in the

bootloader section, we must set specifics register.

When we set this register, the interrupt vector is moved

to the start of bootloader section. By this operation, we

can use all attributes of the interruption.

The most typical usage of interrupt is for Universal

Asynchronous Receiver Transceiver. It is not

necessaries uses interrupt for the USART, but

meanwhile, data is not received by USART, we cannot

use another function of MCU. If the interrupt is used,

the microcontroller can perform another instruction

meanwhile. By the particular register, we can set the

speed of the USART.

PROBLEM OF NRWW SECTION

The initial testing board was assembled with

14.7456 MHz crystal. The microcontroller used in the

initial board has two USART device. First USART

device is used for transfer data between MCU and

computer by FTDI chip. This chip is used as the

converter from USB to USART. On the second is the

connected converter from USART to RS485 bus. It is

used to connect more testing board on the bus then one.

The microcontroller is set Baud Rate by UBRR as

mentioned before. At the computer, the Baud Rate is

set in program Real Term. This program is used to

communicate and debugging firmware inside of

microcontroller.

Initial test communication on the testing board device

was done in several steps:

 Test number 1: Transfer data between computer

and microcontroller in the Application section.

 Test number 2: Transfer data between computer

and microcontroller in the Bootloader section.

 Test number 3: Transfer data between master

microcontroller and slave microcontroller. The

Master microcontroller is set in the application

section. The slave is set in the bootloader section.

Each step of the test was performed with 14.7456 MHz

and 16 MHz crystal. The first and second test was

performed with the size of 256 B data transfer. The last

test was performed with reduced size packet of 9 Byte.

Each packet is contained randomly generated data. The

newly generated data is provided that the previous

measurement has not affected on the next one.

On the testing board was connected logical analyzer

for spying bus. The usage logic analyzer was used

Saleae Logic 8 channel. In the program for Saleae can

be the measured speed of the serial connection.

Example of the measured value for the size of crystal

16 MHz is shown in the following table. In the same

table is calculated the Error Rate of every usage Baud

Rate.

Tab. 2: Předpokládaná čísla časopisu
T

a
rg

et
ed

B
a

u
d

 R
a

te
 [

b
p

s]

M
ea

su
re

d
 B

a
u

d

R
a

te
 o

f
re

ce
iv

e

li
n

e
[b

p
s]

M
ea

su
re

d
 B

a
u

d

R
a

te
 o

f
tr

a
n

sm
it

li
n

e
[b

p
s]

E
rr

o
r

R
a

te
 o

f

re
ce

iv
e

li
n

e
[%

]

E
rr

o
r

R
a

te
 o

f

tr
a

n
sm

it
 l

in
e
 [

%
]

R
ea

l

E
rr

o
r

R
a

te
 [

%
]

38.4k 38400.

10

38461.

54

0.0003 0.1603 0.1606

57.6k 57692.

42

58823.

53

0.1604 2.1242 2.2846

115.2k 11538

5.50

11111

1.11

0.1610 -

3.5494

-

3.3884

230.4k 23077

1.01

25000

0

0.1610 8.5069 8.6680

250k 25000

0

25000

0

0 0 0

0.5M 50000

0

50000

0

0 0 0

1M 10000

00

50000

0

0 0 0

In the table is bold Error Rate at Baud Rate of 230.4k.

On this speed, the error rate was too high, so a problem

has occurred with serial communication. Some data

were lost from the packet. At other speed was not the

problem in received data. Similar data were measured

in test number 2. The problem with received data

happened not only at 38.4k Baud Rate but at other

speed expect of speed with Error Rate 0%. The Test

number 3 was performed the same as previous, but the

size of the packet was only 9 Byte. This is normally

standard for flow-bus with

As an example of the Test number 2, the 256 Bytes of

the packet from PC to MCU was sent, but

microcontroller was received something about 240

Bytes. During each test, the different number of data

was received. Sometimes the MCU is received a 250

Bytes, other times it is received fewer data. The

biggest problem was in case the MCU received all 256

Bytes, but some data was not the same, as sent from

the computer. There were found three solutions to this

problem. The first solution includes dual control of

data. The firmware features control of data by

checksum. The second control of data could involve

sending the data second time. In this case, it will be

speed line slow down to the half. In some cases,

slowing down the communication speed may not be

desirable. The second method deals with change of the

communication speed at a value where the error rate is

zero. The last solution was the combination of the

previous two solutions.

The first solution has created the table of 256 Bytes

randomly scattered on the table. Each packet of data is

sent from the computer, and it was calculated

checksum by bits negate. After the 256 Bytes of data

are sent, the computer sends one byte of the checksum.

The same table and calculation was done on the MCU

site and compare with received checksum byte. If the

checksum was not the same as received, then the MCU

sends not-acknowledge byte as a request for resending

of data. The last solution was made with the

combination of the previous solution for the double

check of transfer data. Because none of the testing

boards were bought, the problem was solved by the

change to the communication speed where the Error

Rate is zero percent for next work. But it is not the

problem include part of the code for checksum in

future.

CONCLUSIONS

In summary, in the work is described serial

communication device USART implemented at Atmel

microcontroller. Then is described the Flash memory

inside of chip and differences between Application and

Bootloader section. Further, the calculation of Error

Rate is described and the table of filled the values.

After the basic description of the microcontroller and

serial communication device USART is mentioned the

testing board and steps of testing. Three steps are

selected and the resulting 16 MHz crystal included into

the table. Calculation of Error Rate is recapitulated in

the table and in the descriptions. During testing has

been found the troubles in data transfer for Application

section. Also there are described three methods of

improving of this issue. For this issue was chosen the

second solution, with the option of inserting checksum

code by the time.

ACKNOWLEDGMENT

The article was supported by project no. FEKT-S-17-

3934, utilization of novel findings in micro and

nanotechnologies for complex electronic circuits and

sensor applications.

REFERENCE

[1] “Datasheet: ATmega644P/V”, 8-bit AVR

Microcontrollers, 2016. [Online]. Available:

http://www.atmel.com/Images/Atmel-42744-

ATmega644P_Datasheet.pdf. [Accessed: 20-

Oct.-2016].

[2] L. Novák, “Bootloader for Sci-Trace”, Brno:

Vysoké učení technické v Brně, Fakulta

elektrotechniky a komunikačních technologií,

2016.

[3] “AVR106: C Functions for Reading and Writing

to Flash Memory”, Atmel Corporation, 2017.

[Online]. Available:

http://www.atmel.com/Images/Atmel-2575-C-

Functions-for-Reading-and-Writing-to-Flash-

Memory_ApplicationNote_AVR106.pdf.

[Accessed: 08-Nov.-2017].

