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ABSTRACT
Real time ray tracing has been given a lot of attention in recent years in the academic and research community.
Several novel algorithms have appeared that parallelize different aspects of the ray tracing algorithm through
the use of a GPU. Among these, the creation of Bounding Volume Hierarchies (BVHs). We believe that recent
approaches have failed to consider the performance impact of memory accesses in GPU and how their cost affects
the overall performance of the application. In this work we show that by reducing memory bandwidth and footprint
we are able to achieve significant improvements in BVH traversal times. We do this by compressing the BVH and
the triangle mesh in a parallel manner after its creation, in each frame, and then decompressing it as needed while
traversing the BVH.
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1 INTRODUCTION

Real-time rendering typically concerns itself with the
generation of synthetic images at a rate fast enough that
the viewer can interact with a virtual environment. As
an image appears on screen, the viewer acts or reacts,
and this feedback affects what is generated next. Two
of the most popular approaches to synthetic image gen-
eration are Rasterisation and Ray-Tracing. Both have
been used in computer graphics for the past decades.
Each method allow us to generate 2D images from 3D
scenes composed of virtual objects.

Real-time ray-tracing received little attention outside
the academic world mainly due to its high computa-
tion costs which made it a much more expensive and
slow approach compared to rasterisation. Ray tracing
offers a fairly long list of advantages over rasterisation.
Ray-tracing can easily simulate non-local effects such
as shadows, reflections and refractions. In Rasterisa-
tion reflections and shadows are hard to compute; re-
fractions are very hard.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

Due to its mathematical correctness, ray tracing can
make generated images look more realistic. The issue
is being able to generate them at a rate fast enough as
required by these real-time applications.

1.1 Problem
At its core, the ray tracing algorithm follows the fol-
lowing logic: for each pixel of the display, we cast rays
that propagate in a straight line until they intersect an
element of the scene being rendered. The color of the
pixel is computed as a function of the material at the in-
tersected element’s surface, the incident light (radiance)
function at the intersection point, and of the viewing di-
rection (observer’s position). For a simple scene with
no secondary rays (i.e. reflections, shadows, refrac-
tions, etc) this means having at least NxM intersection
tests (N being the number of rays and M the number of
polygons in the scene). For its nature, ray tracing in-
herently leads to a high number of expensive floating
point operations. This, together with an irregular and
high bandwidth memory access pattern, means perfor-
mance will be an issue when trying to achieve real time
rendering.

One way to optimize the standard ray tracing algorithm
is through the use of acceleration structures. Accelera-
tion structures allow us to lower the number of intersec-
tions tests needed to render an image. Currently Bound-
ing Volume Hierarchies (BVHs) are the most popular
solution. The state of the art in this kind of structure
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has been targeted towards generating the structure at a
rate fast enough to be usable in a real time application,
typically creating a new BVH or refitting an existing
one at each frame.
Most modern algorithms use a GPU to achieve the per-
formance they need. Despite their capability of per-
forming a high number of floating point operations per
second, GPUs suffer from slow memory access. Yet
most algorithms that focus on constructing a BVH in
parallel manner tend to overlook this and are careless
with both memory accesses and bandwidth, resulting in
poorer overall performance than otherwise possible.

1.2 Contributions
We believe that by optimizing GPU memory footprint
and bandwidth efficiency we will be able to improve
render performance. In this work we show how to de-
velop a ray tracing application based on a state of the
art algorithm in parallel BVH construction and then
improve it further through memory compression tech-
niques.
Our contribution is a novel algorithm, based on existing
techniques for real time BVH construction, with focus
on improvements in BVH and triangle mesh compres-
sion. We are able to reduce the total size of memory
used to store both the BVH and the triangle mesh as
well as reduce the memory bandwidth of the applica-
tion. We saw improvements of up to 40% in occupied
memory, and reductions of up to 20% in memory band-
width, with our techniques.

2 BACKGROUND
First introduced by Whitted [Whi80], ray tracing is an
algorithm for image synthesis where direct illumination
(including shadows), and perfect reflections/refractions
are simulated. It employs the use of ray casting to in-
tersect eye rays with objects in a computer simulated
scene. Eye rays which intersect objects lead to the cre-
ation of extra secondary rays: e.g. shadow, reflection
and refraction rays.

The main difference between rasterisation and raytrac-
ing is the ability to simulate complex light effects such
as shadows, reflections and refractions. Whereas raster-
isation engines often simulate these effects through the
use of texturing, ray tracing takes a more accurate an-
alytical approach. Since these effects are highly geom-
etry dependent, simulated methods can look unrealistic
when changing object position or viewer position. The
difference in ability to simulate secondary visual effects
between rasterisation and ray tracing can be seen in Fig-
ure 1.

2.1 Bounding Volume Hierarchies
One of the major problems of ray tracing is the sheer
number of intersection tests one must perform in or-
der to check if a certain ray intersects an object of the

Figure 1: Rasterisation vs ray tracing (source: Intel)

scene. Acceleration structures help us reduce the num-
ber of intersections to test by organizing the geometry
of the scene into a data structure that can easily be ex-
plored. The organization of an acceleration structure is
typically hierarchical, loosely meaning that the topmost
level encloses the levels below it, and so on.

Bounding Volume Hierarchies (BVHs) are a tree-like
structure that subdivides a scene into smaller portions.
A BVH partitions a scene’s objects. Each geometric
primitive object is wrapped with an individual bounding
volume. These form the leaf nodes of the tree. Bound-
ing volumes are then recursively merged together until
we are left with a single bounding volume wrapping the
entire scene.

In a typical object hierarchy data structure it is easy to
update the data structure as an object moves, because
an object lives in just one node, thus the bounds for
that node can be updated with relatively simple and lo-
calized update operations. For deformable scenes, just
refitting a BVH - i.e., recomputing the hierarchy node’s
bounding volumes, but not changing the hierarchy it-
self - is sufficient to produce a valid BVH for the new
frame. BVHs also allow for incremental changes to the
hierarchy [WMG+09].

In BVHs, primitives are referenced exactly once, allow-
ing us to save GPU memory and bandwidth. Empty
cells, that frequently occur in spatial subdivision, do not
exist in object hierarchies either. The effectiveness of a
Bounding Volume Hierarchy for a particular scene de-
pends on the characteristics of the hierarchy the build
algorithm produces.

2.2 GPU Computing
Modern GPUs are SIMD (Single Instruction Multiple
Data) devices [GPKB12], meaning that they can per-
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form the same operation on multiple data points simul-
taneously. Even though a modern CPU core can dis-
patch more operations per second than a GPU core, the
GPU as a whole can vastly outperform a CPU by hav-
ing thousands of cores running the same operations ver-
sus the 4-8 cores present in a CPU. The massive par-
allelism of programmable GPUs lends itself to inher-
ently parallel problems such as ray tracing. A given
compute kernel executes a single program across many
parallel threads. Typically, each kernel completes ex-
ecution before the next kernel begins, with an implicit
barrier synchronization between kernels. GPUs have
support for multiple, independent kernels to execute si-
multaneously, but many kernels are large enough to fill
the entire device. Threads are decomposed into thread
blocks; threads within a given block may efficiently
synchronize with each other and have shared access to
per-block on-chip memory.

3 RELATED WORK
Generating an acceleration structure is a necessary step
when trying to achieve real-time performances. One
can take two approaches: To construct a new structure
every frame or to reuse the same structure and adjust
it at each frame. The latter option has been explored
[KA13] but lacks performance when processing large
trees or large modifications to the data structure are re-
quired.

Approaches that explore a construction of new hierar-
chy at each frame tended to rely on serial algorithms
running on the CPU to construct the necessary hierar-
chical acceleration structures [GPM11]. While this was
once necessary due to architectural limitations, modern
GPUs provide all the facilities necessary to implement
hierarchy construction directly. Doing so should pro-
vide a strong benefit, as building structures directly on
the GPU avoids the need for the relatively expensive
latency introduced by copying data structures between
CPU and GPU memory spaces.

The first to explore such a method were Lauterbach et
al. [LGS+09]. Lauterbach et al. introduced a novel al-
gorithm using spatial Morton codes [Mor66] to reduce
the construction of BVHs to a sorting problem. Morton
codes are used to determine a primitive’s order along a
space filling curve. They can be computed directly from
a primitive’s geometric coordinates. The algorithm en-
closes each input primitive with an Axis-Aligned min-
imum Bounding Box (AABB) and determines the en-
closing AABB of the entire input geometry. By taking
the barycenter of each primitive’s AABB as its repre-
sentative point, and by quantizing each of the 3 coor-
dinates of the representative points into k-bit integers,
a 3k-bit Morton code is constructed by interleaving the
successive bits of these quantized coordinates. Figure 2

shows a 2D representation of this. Sorting the Mor-
ton codes will automatically lay the associated points
in order along a Morton spatial curve. It will also or-
der the corresponding primitives in a spatially coherent
way. Because of this, sorting geometric primitives ac-
cording to their Morton code is used to improve cache
coherence since a ray that hits a certain primitive will
likely also hit the primitive adjacent to it.
The main problem of this family of algorithms
[LGS+09, PL10, GPM11] is that, in order to build
the resulting BVH, a series of sequential steps must
be taken. Lauterbach et al. create their BVH by
sequentially observing each bit of each Morton code
and grouping the primitives according to the value of
the bit. At each level if said bit has value 0 then the
primitive is placed in a group, if the bit has value 1 then
it is placed in the opposite group. Garanzha et al. take
a different approach by generating one level of nodes
at a time, starting from the root. They then process
the nodes of the BVH on a given level in parallel. For
this they use binary search to partition the primitives
contained within each node. The resulting child nodes
are then enumerated using an atomic counter, and
subsequently processed on the next round.

Karras et al. [Kar12] further developed this line of
thought by describing an algorithm to build a BVH in
a totally parallel manner. Karras et al. introduce an
in-place algorithm for constructing a binary radix tree
(also called a Patricia tree) which can directly be con-
verted into a BVH.
Their approach is based on the fact that for a scene with
N primitives we know we can make a Patricia tree with
N−1 internal nodes to represent it. The similarities
between each Morton code and its neighbours are ana-
lyzed to determine the position of each internal node in
the Patricia Tree. The child-parent association is then
calculated based on the range of same-value-bits with
the rest of the Morton codes.
BVHs have a large memory footprint due to the need
to store the bounding boxes. Hence several approaches
have been used, over the CPU, to allow the visualiza-
tion of large models without paging data from disk.
Mahovsky et al. [MW06] and Bauszat et al. [BEM10]
quantize the bounding box data, with significant mem-
ory and bandwidth savings, at the expense of extra com-
putations. These approaches degrade rendering perfor-
mance for models that fit uncompressed within main
memory, even with a ray-bundle scheme, due to limited
available CPU math performance. However a GPU is
more bandwidth than math constrained so this conclu-
sion needs to be revisited in that case.

4 APPROACH AND ARCHITECTURE
In order to achieve a high frame rate one must reduce
the time it takes to generate an image at each frame.
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Figure 2: Example 2-D Morton code ordering of trian-
gles with the first two levels of the hierarchy. Blue and
red bits indicate x and y axes, respectively. (source:
NVIDIA)

For this we make use of a GPU to help us accelerate
all the floating point operations required to compute
the intersections in a ray-tracer. We aim to reduce the
memory bandwidth and memory footprint of our ap-
plication. We make use of research, made in the area
of parallel BVH construction in GPUs, to reduce the
number of intersection tests performed (thus reducing
memory bandwidth as well). We then explore BVH
and triangle meshes compression techniques. With a
compressed BVH and triangle mesh we expect our ren-
dering kernels to achieve better rendering times since
the data transferred between the GPU’s global memory
and the kernel’s local memory will be smaller.
This is described in further detail in the following sec-
tions.

4.1 Binary Radix Tree Properties
Before we describe our algorithm there are a few Bi-
nary Radix Tree properties we should cover as these
are important to understand our work.
A radix tree is a space-optimized tree often used for in-
dexing string data, although it can also be used to index
any data divisible in smaller comparable chunks such as
characters, binary numbers, etc. For simplicity, assume
that from now on our radix tree only contains binary
values and that they are in a lexicographical order as
in our application each key will correspond to a sorted
Morton code.
Given a set of keys k0, ....,kn−1 represented as bits, a
radix tree can be seen as a hierarchical representation
of the common bits of each key. The keys are repre-
sented in the leaf nodes of the tree, and each internal
node corresponds to the longest common prefix shared
between the keys in that subtree.
Assume the example referenced in Figure 3. As one
would expect the root of the tree covers the full range

of keys. At each level the keys are partitioned accord-
ing to their first differing bit. The first difference occurs
between keys k3 and k4, thus, the left child of the root
node contains keys k0 to k3 and the right child contains
k4 to k7. We continue this process to essentially get a
hierarchical representation of the common prefixes be-
tween each key. At the bottom level of the tree we will
find that each child references a key.

Figure 3: A visual representation of an ordered radix
tree. The numbers 0-7 act as keys (leaf nodes) of the
tree. Each internal node represents a common range
prefix of the binary value of all the leaf nodes bellow it.
Notice we have N−1 internal nodes for N keys.

A radix tree is considered a compact data structure, as it
omits nodes which only have one child, thus removing
redundant information and decreasing the overall size
of the tree in memory.

One property of a binary radix tree is that any given
tree with N keys will have n−1 internal nodes. This
allows us to know, even before we construct the tree,
how many nodes, and thus how much memory, we will
require. Assuming that we have a lexicographically or-
dered tree allows us to express [i, j] as the range of keys
covered by any given internal node. We use δ (i, j) to
denote the length of the longest common prefix between
the keys ki and k j. The ordering of the keys automati-
cally implies that δ (i′, j′)≥ δ (i, j′) for any i′, j′ ∈ [i, j]
[Kar12]. We can then determine the common prefix
shared between a key under a given node by compar-
ing the first and last key it covers - all the other keys
in between are guaranteed to share the same or a larger
prefix.

In practice each internal node partitions the keys under
it on their first differing bit, the one following δ (i, j).
We can safely assume that in the range [ki,k j] part of the
keys will have said bit set to 0 and others will have it set
to 1. Since we are working with an ordered tree all of
the keys with the bit set to 0 will be presented before the
keys with the bit set to 1. We call the position of the last
key, where this bit has value 0, the split position denoted
by γ ∈ [i, j−1]. Since the split position is where the first
bit differs between the keys in the range we can say that
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δ (γ,γ + 1) = δ (i, j). The ranges [ki,kγ ] and [kγ+1,k j]
will be subdivided at the next differing bit. We can thus
say for sure is that δ (i,γ) > δ (i, j) and δ (γ + 1, j) >
δ (i, j). Taking Figure 3 once more as reference, we can
see that the first differing bit happens between keys k3
and k4, the range is then split at γ = 3 resulting in the
subranges [k0,k3] and [k4,k7]. The left child then splits
its range [k0,k3] at the third bit, γ = 1. The right child
splits the range [k4,k7] at γ = 4, at the second bit, and
so on.

4.2 Morton Codes
We start our process with a series of primitives repre-
sented by 3D points. In order to generate our BVH
we first start by deciding in which order each leaf node
will be represented in the tree. A good approach is to
sort the leafs according to their position, generally we
will want primitives close to each other in 3D space to
appear close to each other on the tree. In order to do
this we sort them via a space-filling curve, more specif-
ically a Z-order curve. For this we take the centroid of
each triangle and express it relative to the bounding vol-
ume of the entire scene, known after loading the scene’s
data.
Let bvhmin be defined as the minimum extents of the
scene’s bounding volume and bvhmax as its maximum.
If we define c as the centroid point of a given triangle
then we can express q, the same point, but now in co-
ordinates relative to the bounding volume of the scene
through the following formula:

q =
c−bvhmin

bvhmin−bvhmax
(1)

q’s coordinate values now vary between 0 and 1. We
can think of it as a point within the 3D space delimited
by the scene’s bounding volume. The closer each coor-
dinate is to 0 the closer the point will be to the minimum
point of the bounding volume, and, the closer it is to 1
the closer it will be to its maximum point.
We now want to express this 3D point as a Morton
code. The first step in this process is to transform our
point from a continuous space into a discrete one. We
achieve this by quantizing each floating point coordi-
nate into a range created by the difference between the
scene’s bounding volume maximum and minimum ex-
tremes. Morton codes are most efficiently expressed as
a single integer so to represent a 3D point in a single
integer value we will have to make some precision sac-
rifices. We assume a machine architecture with 32 bit
sized integers, meaning that in order to represent 3 dis-
tinct values in 32 bits we will have 10 bits for each of
the 3 Cartesian coordinates. We are thus left with the
following quantization equation:

q =
(c−bvhmin)×210

bvhmin−bvhmax
(2)

Where q is now a 3D point whose coordinates are com-
posed of 10 bit integers. To correctly represent this
point along a Z-order curve we interleave the bits of
all three coordinates together to form a single binary
number. We take the value of each coordinate, expand
the bits by inserting 2 bit ”gaps” after each bit and then
interleave them. Beyond this point it is simply a matter
of calculating the Morton codes for each primitive and
sorting them via a parallel sorting algorithm, we used
radix sort for this operation.

4.3 Parallel Construction of BVH
This section follows the same line of thought described
by Karras in [Kar12]. The idea is to assign indexes for
the internal nodes in a way that enables finding their
children without depending on earlier results, this way
we can fully parallelize the construction of the BVH.

We create two separate arrays to store our nodes, L for
the leaf nodes and I for the internal nodes. We define
the layout of I as having the root node at the index 0,
denoted by I0. The index of each internal node will be
defined by its split position. For any given node the left
child will be defined in Iγ if it covers more than one
key and at Lγ if it doesn’t. Similarly the right child
will be located either at Iγ+1 or at Lγ+1. This layout
has an important property, the index of every internal
node will either coincide to the first or the last key it
covers. Take for example the root node, it covers the
entire range of keys [0,n−1] and is located at position
I0. A node covers the range [i, j]; its left child will be
located at the end of the range [i,γ] and its right child
located at the beginning of the range [γ +1, j].

Figure 4: Bar representation of the keys covered by
each internal node.

In Figure 4 we present a visual example of this prop-
erty. Node 0 covers the entire range [k0,k7] and is there-
fore located at I0. Its children, node 3 and 4 cover the
ranges [k0,k3] and [k4,k7] and are placed at I3 and I4,
respectively. Interestingly, this process will never result
in gaps or duplicates when populating the internal node
array. An advantage of using this scheme is that each
internal node is conveniently placed next to a sibling
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node in memory. And since internal nodes run from 0
to n− 1 we can use them to directly address the nodes
in memory.

In order to construct the BVH, we need to know more
than simply which nodes cover which keys, we need to
know how the nodes connect amongst themselves, i.e.
the parent-child relations.

Lets say we want to determine the direction in which
the range of keys covered by node Ii extends in. We call
this direction d. In order to determine d we compare the
length of the common prefix between the keys ki−1, ki,
and ki+1. If δ (i−1, i)> δ (i, i+1) then d =−1. And if
δ (i−1, i)< δ (i, i+1), then d =+1.

Knowing this we can say that ki and ki+d both belong
to node Ii, and that ki−d belongs to node Ii−d.

We now need to know how far the range of each node
extends. Since ki−d does not belong to the range of keys
covered by node Ii, we can safely assume that the keys
which are share amongst themselves a larger common
prefix than ki and ki−d do. We call this common prefix
δmin so that δmin = δ (i,d−1).

δ (i, j) > δmin for any ki belonging to Ii. This being
said all we need to do to find the other end of the range
is to search for the largest l that satisfies the equation
δ (i, i+ ld)> δmin. The fastest way to do this is to start
at ki and in powers of 2 increase the value of l until it no
longer satisfies δ (i, i+ ld) > δmin. Once this happens
we know that we have gone too far and we have left
the range of keys covered by Ii. Lets call this upper
bound lmax. We know for sure the correct value of l
is somewhere in the range [lmax/2, lmax− 1]. Now it is
only a matter of using a binary search to find the value
of l under which δ (i,d(l +1)+ i)≤ δmin.

After finding the value of l we can use j = i+ ld to spec-
ify the other end of the range.

Lets call δnode the length of the common prefix shared
between ki and k j, given by δ (i, j). We use δnode to
search the split position γ that partitions the keys cov-
ered by Ii. Now we perform a search for the largest
s ∈ [0, l− 1] that satisfies δ (i, i+ sd) > δnode. i.e., we
need to find the furthest key which shares a larger prefix
with ki than k j does.

Discovering γ allows us to determine the ranges cov-
ered by each children. The left child will have a range
covering [min(i, j]),γ] and the right child will cover
[γ +1,max(i, j)].

For the final step we analyze the values of i, j and γ .
If i = γ we know Ii’s left child is the leaf node Lγ ,
otherwise it’s the internal node Iγ . Correspondingly if
j = γ + 1 we say Ii’s right child is the leaf node Lγ+1,
otherwise it’s internal node Iγ+1. Pseudocode for this
algorithm can be found in Algorithm 1.

Algorithm 1 Pseudocode for the parallel construction
of a BVH [Kar12].

for all internal node with index i ∈ [0,n−2] do
// Determine direction of the range (+1 or -1)
d← sign(δ (i, i+1)−δ (i, i−1)
// Compute upper bound for the length of the range
δmin← δ (i, i−d)
lmax← 2
while δ (i, i+ lmax ·d)> δmin do

lmax← lmax ·2
// Find the other end using binary search
l← 0
for t← lmax/2, lmax/4, ...,1 do

if δ (i, i+(l + t) ·d)> δmin then
l← l + t

j← i+ l ·d
// Find the split position using binary search
δnode← δ (i, j)
s← 0
for t←{dl/2e,dl/4e, ...,1} do

if δ (i, i+(s+ t) ·d)> δnode then
s← s+ t

γ ← i+ s ·d
// Output child pointers
if min(i, j) = γ then le f t← Lγ else le f t← Iγ

if max(i, j) = γ +1 then right← Lγ+1 else right← Iγ+1
Ii← (le f t,right)

4.4 Compression
Reducing memory footprint and bandwidth is our goal.
A certain amount of bandwidth is reduced by simply us-
ing a BVH. We can further improve our gains by com-
pressing both the BVH and the triangle mesh.

4.4.1 BVH Compression

We start a thread at each internal node and make our
way up to the top of the tree. Once we reach the top
of the tree we start walking the same path in the oppo-
site direction, that is, from the root node to the internal
node in question. As we descend each level we take the
bounding box of the previous parent and subdivide each
dimension in 1024 segments. We treat this 10243 grid
as a voxel space and map the minimum and maximum
points of the current level’s node bounding box into the
nearest corresponding voxels.

It becomes clear that we lose some precision as we de-
scend each level since we are going from floating point
coordinates into integer indexes. Each index will be
contained in the range [0,1024[, so we can store 3 of
these indexes in a single 32 bit integer. Each bounding
box can then be stored as a single 2 integer data struc-
ture instead of a 6 float data structure, reducing its size
down from 24 bytes to 8 bytes. It is obvious that with
this method our BVH will become more loosely cou-
pled since we lose precision when going from a con-
tinuous space (world coordinates) into a discrete one
(voxel indexes). We round up when mapping the maxi-
mum point of a bounding volume to a voxel and round
down when mapping the minimum so our bounding
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(a) SHINY

(152 triangles)
(b) BUNNY

(70K triangles)
(c) ASIAN DRAGON

(7.2M triangles)
Figure 5: Test Scenes.

volumes remain coherent. We predict this loss of preci-
sion will not have a big impact in our intersection tests,
we will most likely intersect a few more bounding vol-
umes, as they will be slightly larger in size, but we do
not expect a significant increase in the number of tests.
One thing to take into account is that in each thread we
must quantize the entire path from the root to each inter-
nal node otherwise our BVH will become incoherent.

4.4.2 Mesh Compression
Karras [Kar12] uses each leaf node as a redirect to a
primitive. We can remove an indirection level by having
each leaf node envelop a single triangle and store said
triangle in the node itself. We can also try and diminish
the number of memory necessary to store a triangle by
following the same line of thought from the BVH com-
pression. By quantizing the position of each vertex of
each triangle, into the bounding box that encapsulates
it, we can go from having to store 9 floats to just 3 in-
tegers. This will of course have an impact on the model
itself as we will be losing the original coordinates of
each vertex. When recalculating each vertex back to
world coordinates we will be changing the final world
positions of each triangle, resulting in slight mesh de-
formation. Interestingly enough, this effect isn’t notice-
able unless examining models up close. In a practical
application like a game or simulation where the camera
and the objects are constantly moving this effect could
pass up unnoticed. This compression step can be done
in the same kernel as the quantization of the internal
nodes of the tree, thus having little to no effect on the
post-processing time of the BVH.

5 RESULTS
Tests were made using an NVIDIA GeForce GTX 970
with 4 GB of RAM. We chose to render our images in
1280x720p as this is one of the most commonly used
resolutions for multimedia content.

We tested our algorithm with three different scenes,
ASIAN DRAGON, SHINY and BUNNY.

SHINY (see Figure 5a) is a scene representative of
highly reflective and refractive scenes. It also represents
a low polygon scene. It consists of an icosphere sur-
rounded by five mirrors and a glass prism. This scene

focuses on testing performance in scenes with a high
number of secondary rays.

BUNNY (see Figure 5b) is what we would call a
”medium” sized scene. It serves as a midterm between
low polygon scenes (SHINY) and high polygon scenes
(ASIAN DRAGON). This scene only features eye and
shadow rays.

ASIAN DRAGON (see Figure 5c) is representative of
complex objects with a high number of triangles. It is a
dense model with a great number of triangles in a small
space. Our intent with this scene is measure the per-
formance gains of BVH compression for dense BVHs.
This scene only features eye and shadow rays.

5.1 Ray-Box Intersection Tests
Despite SHINY being a small, enclosed scene we no-
tice that lack of precision of the bounding volume areas
causes an increase of 9% in the intersection tests (see
Figure 6). We assume this is caused by reflected and
refracted rays, that would normally pass tangent to the
icosphere, but are instead tested and categorized as a
hit. In BUNNY we notice an increase of 7.1% in the
number of ray-box intersection tests, making it the less
affected of all the 3 scenes. In ASIAN DRAGON we
notice an increase of 12.38% in the number of ray-box
intersection tests. Since this scene has a high tree we
expect rounding ”errors” to accumulate over the levels
thus leading to this increase in the number of intersec-
tion tests.

5.2 Ray-Triangle Intersection Tests
SHINY has an increase of 11.1% in the tests performed.
We believe this number is greater, in comparison to the
other test scenes, because in this scene almost every ray
will hit an object and thus it will have to traverse the
entire BVH, making it more prone to the effects of loss
of precision of the bounding volumes.

In BUNNY we notice an increase of 7.4% in the number
of tests performed. This increase in the number of ray-
triangle test seems to be similar to the increase of ray-
box intersection tests.

ASIAN DRAGON has an increase of 10.75% tests per-
formed. As in BUNNY this number seems to go in hand
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with the increase of ray-box intersection tests, although
slightly lower.

5.3 Global Memory Reads
The following results are based in the number of in-
tersection tests performed and the size of each internal
node, leaf node and primitive.

In SHINY we notice we are able to achieve a significant
impact in the amount of memory read with node com-
pression (14.5%), but see little to no gains when im-
plementing mesh compression (see Figure 7). This is
because, in this scene, the number of ray-box intersec-
tions dwarfs the number of ray-triangle intersections,
hence optimizations made to the execution time of ray-
triangle tests will have little impact.

BUNNY reduces its memory accesses by 14% when
compressing internal nodes alone and 22% when com-
pressing the mesh alike. These results go in hand with
the results obtained in ASIAN DRAGON providing some
insight that every reasonably complex model is posi-
tively affected by our improvements.

In ASIAN DRAGON we see a steady decrease of ac-
cessed memory with our algorithms. We reduce mem-
ory accesses by 11.9% with node compression and, by
20.3% with mesh compression.

5.4 Kernel Execution Time
In this section we measure the execution time for each
of the most relevant kernels. KARRAS represents the
basic algorithm, as described by Karras in [Kar12].
NODE is the same algorithm with BVH compression.
NODE+MESH is the same algorithm with BVH and tri-
angle compression.

SHINY does not benefit significantly from our mod-
ifications. We notice a reduction in rendering time
of 6.7% when compressing internal nodes and 10.7%
when compressing the mesh. BVH construction and
compression time improvements are marginal at best.
We believe our modifications do not have an impact on
this scene since it’s easy to fit in the GPU caches.

KARRAS NODE NODE+MESH

TIME (MS) TIME (MS) TIME (MS)
BVH CREATION 2.17 2.17 2.17
NODE COMP 0 0.01 0.01
MESH COMP 0 0 0.01
RENDERING 48.93 45.68 43.68

Table 1: Kernel execution time for SHINY frame.

KARRAS NODE NODE+MESH

TIME (MS) TIME (MS) TIME (MS)
BVH CREATION 7.82 7.82 7.82
NODE COMP 0 0.24 0.24
MESH COMP 0 0 0.35
RENDERING 80.74 64.15 46.83

Table 2: Kernel execution time for BUNNY frame.

In the BUNNY scene we notice most of the time is spent
executing the rendering kernel as in SHINY. The cre-
ation of the BVH has a slight impact on the time re-
quired to render each frame and remains constant across
all 3 variations. Compression is quick but greatly im-
pacts the time it takes to render the scene. Here we
can see a reduction in rendering time of 20.55% when
compressing the BVH’s internal nodes and a reduction
of 41.01% when compressing both internal nodes and
triangles. We are able to achieve a 37.62% overall im-
provement in time to frame performance with a full re-
build.

KARRAS NODE NODE+MESH

TIME (MS) TIME (MS) TIME (MS)
BVH CREATION 424.64 424.64 424.64
NODE COMP 0 16.33 16.33
MESH COMP 0 0 24.43
RENDERING 246.36 194.44 160.95

Table 3: Kernel execution time for ASIAN DRAGON
frame.

In ASIAN DRAGON we see a time reduction of 21.08%
in rendering kernel execution when compressing just
the internal nodes, and 34.67% when compressing both
internal nodes and triangles. As we can see our algo-
rithm has a significant impact in high poly models, we
fetch a large number of BVH nodes in this scene. Un-
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fortunately the BVH CREATION kernel takes up most
of the time in each frame when dealing with such a high
number of polygons. So overall we are only able to
achieve a 6.6% improvement in time to frame perfor-
mance with a full rebuild.

6 CONCLUSIONS
In our tests we used the vanilla version of Karra’s al-
gorithm as a control benchmark. Tests showed all com-
plex test scenes benefit from our compression approach.
As we hypothesized the number of intersection tests in-
creases but the overall time to traverse the BVH and
perform each intersection test decreases. Some scenes
benefit more from our algorithm than others. We no-
tice that in scenes with a high number of polygons the
construction of the BVH becomes a bottleneck, taking
most of the time in the frame. This affects our algo-
rithm as much as the control algorithm. Gains from our
approach were diluted by this bottleneck for this kind
of scene.

As we initially expected real time ray tracing bene-
fits from a reduction in memory footprint and band-
width. Despite having to spend more time compressing
and then decompressing both the BVH and the scene’s
primitives in each frame this penalty is compensated by
the reduced time it takes to fetch the scene’s data from
global memory.

7 FUTURE WORK
BVH construction times are a bottleneck in high poly-
gon scenes. Our compression techniques improve ren-
dering times, but the construction times are still an is-
sue, in particular in large scenes with full rebuilds, these
could also benefit from working set minimization, com-
pression, or both. Using 64 bit types to store quantized
values could also be a solution worth exploring.
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