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O. Šipr,1,* J. Minár,2,3 and H. Ebert2
1Institute of Physics ASCR v.v.i., Cukrovarnická 10, CZ-162 53 Prague, Czech Republic
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The influence of the spin-orbit coupling (SOC) on the magnetic dipole term Tα is studied across a range
of systems in order to check whether the Tα term can be eliminated from analysis of x-ray magnetic circular
dichroism spectra performed via the spin moment sum rule. Fully relativistic Korringa-Kohn-Rostoker Green’s
function calculations for Co monolayers and adatoms on Cu, Pd, Ag, Pt, and Au (111) surfaces were performed
to verify whether the sum over magnetic dipole terms Tx + Ty + Tz is zero and whether the angular dependence
of the Tα term goes as 3 cos2 θ − 1. It follows that there are circumstances when the influence of the SOC on
Tα cannot be neglected even for 3d atoms where the SOC is nominally small. The crucial factor appears to be
the dimensionality of the system: For 3d adatoms, the influence of SOC on Tα can be significant whereas for
monolayers it is always practically negligible. Apart from the dimensionality, hybridization between adatom and
substrate states is also important: Small hybridization enhances the importance of the SOC and vice versa.
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I. INTRODUCTION

Magnetism of diluted and low-dimensional systems, such as
adatoms, clusters, or monolayers, is one of the strongly pursued
research areas. Magnetization of these systems often cannot be
measured by macroscopic methods. It can, however, be probed
indirectly by making use of spectroscopy. One of the most
powerful methods in this respect is x-ray magnetic circular
dichroism (XMCD). It consists of measuring the difference in
the absorption of left- and right-circularly polarized x rays
in a magnetized sample while the energy of the incident
x rays is varied. Analysis of XMCD spectra is often performed
with the help of sum rules, which link integrals of XMCD
and x-ray absorption spectral peaks to local spin and orbital
magnetic moments. Most of the recent progress in magnetism
of atomic-sized systems is associated with the application of
the XMCD sum rules [1–3].

The strength of the sum rules is that they provide, in the
case of L2,3 edge spectra, separate information about the
orbital magnetic moment μorb and the spin magnetic moment
μspin of the photoabsorbing atom [4,5]. However, extracting
values of μorb and, especially, of μspin from the spectra is
not straightforward. Considering the most common case of
the L2,3 edge spectra and a sample magnetized along the α

direction (α = x,y,z), the spin magnetic moment sum rule
can be written as [5]

3

I

∫ (
�μL3 − 2 �μL2

)
dE = μspin + 7Tα

nh

, (1)

where �μL2,3 are the differences �μ = μ(+) − μ(−) between
absorption coefficients for the left- and right-circularly polar-
ized light propagating along the α direction, I is the integrated
isotropic absorption spectrum, μspin is the local spin magnetic
moment (its d component, to be precise), and nh is the
number of holes in the d band. The term Tα is the expectation
value of the intra-atomic spin dipole operator for the valence
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d electrons. It is often called the magnetic dipole term in
the literature dealing with XMCD. As the magnetization is
typically in the α = z direction, one often speaks simply about
the Tz term.

This magnetic dipole Tα term can be written as [6,7]

Tα = −μB

�
〈T̂α〉

= −μB

�

〈∑
β

QαβSβ

〉
, (2)

with

Qαβ = δαβ − 3r0
αr0

β (3)

being the quadrupole moment operator and Sα being the
spin operator. The Tα term cannot be easily determined by
experiment, and its occurrence in Eq. (1) thus poses a serious
problem. For bulk systems, it can be often neglected (provided
that the spin-orbit coupling (SOC) is not very strong [8]).
However, for low-dimensional systems it can be significant
[9–11]. Moreover, the Tα term cannot be considered just as
an additive correction that for similar systems simply shifts
the values of μspin by approximately the same amount. It was
demonstrated that neglecting Tα for a sequence of supported
magnetic clusters could lead to erroneous conclusions regard-
ing the dependence of the average μspin on the cluster size [12].
Likewise, neglecting Tα and its angular dependence could
introduce spurious anisotropy of μspin for low-dimensional
systems [6,13,14].

In principle, the Tα term can be calculated and inserted
into Eq. (1). However, one would really have to make the
calculation for each system which is studied because the Tα

term is quite sensitive to details of the electronic structure
[9,10,12] and taking its values from calculations for only
similar systems might not be reliable. At the same time,
performing calculations for exactly the system one is interested
in may be difficult or impractical.

Fortunately, there appears to be a way to eliminate the Tα

term from Eq. (1) relying solely on experiment by performing
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a series of angle-dependent XMCD measurements. The key
here lies in decoupling the quadrupole moment operator Q̂

in Eq. (2) from the spin operator Ŝ. This can be performed
provided that the influence of the SOC on Tα can be neglected.
Then, for a sample magnetically saturated along the direction
α, one can express the Tα term as [15]

Tα =
∑
m

1

2
〈Y2m|Q̂αα|Y2m〉μ(m)

spin, (4)

where μ(m)
spin is the spin magnetic moment resolved into

components according to the magnetic quantum number m.
The matrix elements 〈Y2m|Q̂αα|Y2m〉 can be found in Stöhr
and König [15], and a more elaborate discussion of Eq. (4)
can be found in Stöhr [7] or Šipr et al. [14]. Elimination of
the Tα term from the sum rule (1) can then be achieved by
performing three XMCD measurements and making use of
the relation [15],

Tx + Ty + Tz = 0. (5)

Furthermore, if the system has higher than twofold symmetry
around the z axis, the magnetic dipole term depends on the
polar angle θ as [15,16]

Tθ ≈ 3 cos2 θ − 1. (6)

The magnetic dipole term, which we will denote Tθ for a gen-
eral direction in which the sample is magnetically saturated,
can thus be eliminated by a single XMCD measurement with
circularly polarized x rays coming in the direction of the magic
angle 54.7◦. This approach was employed, e.g., for studying
Co thin films and nanoclusters [13,17].

The important point is that eliminating Tα from the sum
rule analysis is possible only if the effect of SOC on Tα can be
neglected. The question is whether this happens in common
circumstances. Namely, there are theoretical indications that
the effect of SOC on Tα may be sometimes important. It was
found that Eq. (5) is strongly violated for free-standing Co
wires [18] (provided that correlation effects beyond the local-
density approximation are included via the Brooks orbital
polarization term [19]). For more realistic materials, violation
of Eq. (6) was predicted for a Pt monolayer with magnetization
induced from an Fe substrate [20]. Not surprisingly, this
violation is even more serious for systems with very strong
SOC, such as US [8,20]. Recently, there have been also
experimental indications that the SOC may be important
for the Tα term: Violation of Eq. (5) was observed for the
low-temperature monoclinic phase of magnetite nanoparticles
[21].

The most typical situation when XMCD sum rules are
used is studying magnetism of 3d metals in multicomponent
systems, and the Tα term has to be considered especially for
thin films, adatoms, or clusters. One should thus explore to
what extent the SOC is important for Tα in these systems so
that one knows whether Eqs. (5) and (6) can be applied to
eliminate the Tα term from the XMCD analysis or not.

To get a comprehensive view, we focus on a sequence of
systems comprising Co monolayers and Co adatoms on Cu,
Pd, Ag, Pt, and Au (111) surfaces. In that way we account for
effects connected with the change in dimensionality and for
effects connected with the changes in chemical environment as

well. It should be noted in this context that the substrate may
have a crucial influence on some SOC-induced properties,
such as the magnetocrystalline anisotropy [22]. There is also
theoretical evidence that the substrate has a decisive influence
on Tα of the supported systems [12].

The outline of the paper is the following. We start by
describing our computational framework. Then we present
results that are in line with Eqs. (5) and (6) for a series of Co
monolayers and adatoms. Here we demonstrate that whereas
for Co monolayers the effect of SOC on Tα can be neglected for
any of the investigated substrates, the situation is complicated
for Co adatoms where for some substrates Eqs. (5) and (6)
are valid whereas for others they are not. This outcome is
reinforced by inspection of the validity of the approximate
relation (4) for Tα . Finally, we investigate the density of states
(DOS) to get an understanding of why for adatoms on some
substrates Eqs. (5) and (6) are valid whereas for adatoms on
other substrates they are not.

II. COMPUTATIONAL SCHEME

The calculations were performed within the ab initio spin-
density functional theory framework, relying on the local spin-
density approximation (LSDA) with the Vosko-Wilk-Nusair
parametrization for the exchange and correlation potential
[23]. The electronic structure is described, including all
relativistic effects, by the Dirac equation, which is solved using
the spin-polarized relativistic multiple-scattering or Korringa-
Kohn-Rostoker (KKR) Green’s-function formalism [24] as
implemented in the SPR-TB-KKR code [25]. The potentials were
treated within the atomic sphere approximation (ASA), and for
the multipole expansion of the Green’s function, an angular
momentum cutoff of �max = 3 was used. The energy integrals
were evaluated by contour integration on a semicircular path
within the complex energy plane using a logarithmic mesh of
32 points. The integration over the k points was performed on
a regular mesh using 10 000 points in the full surface Brillouin
zone.

We deal with systems which do not have three-dimensional
periodicity, therefore, special approaches have to involved.
Calculations for supported monolayers are accomplished by
means of the tight-binding or screened KKR method [26].
The substrate was modeled by a finite slab of 16 atomic
layers, the vacuum was represented by 4 layers of empty
sites (this corresponds to 9 Å). Calculations for adatoms were
accomplished by means of embedded impurity formalism:
First the electronic structure of the host system (clean surface)
was calculated, and then a Dyson equation for an embedded
impurity cluster was solved [27]. The impurity cluster contains
131 sites; this includes one Co atom, 70 substrate atoms, and
the rest are empty sites. This cluster defines the zone in which
the electrons are allowed to react to the presence of the adatom;
there is an unperturbed host beyond this zone.

We investigate a series of Co adatoms and Co monolayers
on the (111) surface of the noble metals Cu, Ag, Au, Pd,
and Pt. In this way we include in our study substrates which
are hard to magnetically polarize (Cu, Ag, Au), substrates
that are easy to polarize (Pd, Pt), as well as substrates with
weak SOC (Cu), with moderate SOC (Pd, Ag), and with
strong SOC (Pt, Au). We assume that all atoms are located
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on ideal lattice sites of the underlying bulk fcc lattice; no
structural optimization was attempted. Although this would
affect comparison of our data with experiment, we do not
expect this to have a significant influence on the conclusions.
Likewise, relying on the ASA does not significantly restrict the
validity of our analysis because our focus is on the SOC and
the effects of SOC are most pronounced in the region close to
atomic nuclei where the potential is approximately spherically
symmetric.

III. RESULTS

A. Sum over magnetic dipole term components Tα

The first test of the influence of SOC on the Tα term is
checking the validity of Eq. (5). Our motivation comes from
the spin moment sum rule Eq. (1) in which μspin appears only
in combination with 7Tα as μspin + 7Tα . The key indicator is
thus the ratio 7Tα/μspin. Table I shows this ratio summed over
all three coordinates

∑
α=x,y,z 7Tα/μspin. It should be zero if

the influence of SOC on Tα can be neglected.
One can see that for Co monolayers the condition (5) is

fulfilled with a high accuracy. However, the situation changes
for Co adatoms. It is obvious from Table I that the ratio∑

α 7Tα/μspin is significantly larger for adatoms than for
the corresponding monolayers. For Pd and Pt substrates the
breakdown of Eq. (5) is modest. However, for Cu, Ag, and Au
substrates this breakdown is substantial. The physical reason
for this difference is discussed in Sec. III D 2 below.

The breakdown of Eq. (5) for adatoms is not related to
any specific choice of the coordinate system. Similar numbers
as those shown in Table I are obtained if the sum over three
coordinate axes is substituted by a corresponding integral over
the full space angle (cf. also Fig. 1 below). It should be also
noted that the dependence of the spin moment alone on the
magnetization direction is negligible: The variations do not
exceed 0.03% for monolayers and 0.4% for adatoms.

B. Angular dependence of the magnetic dipole term

Another view on the same problem can be obtained by
inspecting the angular dependence of the magnetic dipole term
Tθ . Figure 1 shows the Tθ term calculated while varying the
angle θ between the magnetization direction and the surface
normal. The azimuthal angle φ was kept at 0◦ with the x axis
parallel to the [101̄] direction. If the influence of SOC can be
neglected, the Tθ dependence should satisfy Eq. (6). Therefore,
we tried to fit our ab initio data to the expression,

A(3 cos2 θ − 1) (7)

TABLE I. Sum 7(Tx + Ty + Tz) devided by μspin for Co mono-
layers and Co adatoms on noble-metal surfaces.

Substrate Monolayer Adatom

Cu 0.011 0.206
Pd 0.015 0.072
Ag 0.021 0.372
Pt 0.008 0.098
Au 0.009 0.284
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FIG. 1. Dependence of the magnetic dipole term Tθ on the
magnetization angle θ for Co monolayers (left panels) and Co
adatoms (right panels) on different substrates. Ab initio results are
shown by red marks, fits to A(3 cos2 θ − 1 + B) are shown by full
blue lines, and fits to A(3 cos2 θ − 1) are shown by dashed green
lines. Both fits are practically undistinguishable except for the cases
of adatoms on Cu, Ag, or Au.

(dashed green lines in Fig. 1). This fit is quite accurate except
for Co adatoms on Cu, Ag, and Au. In these cases the Tθ

dependence can be fitted with the function,

A(3 cos2 θ − 1 + B) (8)

(full blue lines in Fig. 1).
The fact that the Tθ dependence can be fitted by Eq. (6) only

if a rigid shift (represented by the constant B) is introduced
presents another evidence that the magnetic dipole term sum
rule (5) is not universally valid for supported 3d systems.

Likewise, for systems where the parameter B in Eq. (8) is
important, the term Tθ does not vanish at the “universal magic

144406-3
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TABLE II. Magnetic dipole term for M‖x (Tx) and M‖z (Tz)
evaluated using the exact expression (2) and using the approximate
relation (4).

Co monolayer Co adatom

Substrate Exact Approximate Exact Approximate

Cu Tx 0.020 0.021 0.057 0.031
Tz − 0.037 − 0.042 − 0.052 − 0.061

Pd Tx 0.028 0.027 0.099 0.093
Tz − 0.051 − 0.055 − 0.173 − 0.187

Ag Tx 0.025 0.024 0.059 0.008
Tz − 0.043 − 0.048 − 0.004 − 0.016

Pt Tx 0.028 0.028 0.109 0.098
Tz − 0.053 − 0.055 − 0.184 − 0.196

Au Tx 0.032 0.032 0.080 0.040
Tz − 0.061 − 0.064 − 0.066 − 0.079

angle” 54.7◦. Rather, the magnetization tilt angle for which
Tθ vanishes differs from substrate to substrate: It is 45◦ for a
Co adatom on Cu, 13◦ for an adatom on Ag, and 42◦ for an
adatom on Au. For other systems explored here, it is close to
54.7◦.

C. Approximate relation for Tα in terms of μ(m)
spin

Getting an intuitive insight into the Tα term by relying on the
exact Eq. (2) is not easy. The approximate Eq. (4) is far better
suited for this purpose. It presents Tα as a linear combination of
orbitally projected components of the spin magnetic moment
μ(m)

spin, illustrating thus the frequently used interpretation of the
magnetic dipole term as the manifestation of the anisotropy of
spin-density distribution. Indeed, if all m components of μspin

are identical, Tα is zero.
However, this view is transparent only if the effect of SOC

on Tα can be neglected. Therefore we present in Table II
a comparison between values of Tα obtained by evaluating
the exact Eq. (2) and by evaluating the approximate Eq. (4).
We focus on two magnetization directions M‖x and M‖z.
For M‖y, the results are practically the same as for M‖x.
One can see from Table II that as concerns Co monolayers,
the approximate equation yields similar values as the exact
equation. For Co adatoms, the agreement is worse and, again, it
depends on the substrate. For adatoms on Pd and Pt, the validity
of the approximate equation is worse than for corresponding
monolayers, but it is still acceptable. However, for adatoms on
Cu, Ag, and Au the error of the approximate Eq. (4) reaches
50%–100%.

Comparison of the exact and approximate values of Tx and
Tz in Table II can serve as another indicator of the role of SOC
for the magnetic dipole term. The outcome of this analysis is
consistent with the conclusions based on inspection of Eq. (5)
in Sec. III A and Eq. (6) in Sec. III B. Namely, the influence
of the SOC on the Tα term can be neglected for monolayers
on any substrate and for adatoms on Pd and Pt, whereas it has
to be taken into account when dealing with Tα for adatoms on
Cu, Ag, and Au.

D. Density of states

1. Total spin-polarized DOS

To summarize, we found two trends concerning the impact
of SOC on Tα . First, the dimensionality or perhaps better the
size of the system is crucial: The effect of SOC can be always
neglected for monolayers but only sometimes for adatoms.
Second, there is a big variance depending on the substrate, but
the nominal strength of the substrate SOC does not seem to be
important.

Thinking about the explanation, one should realize that
in metals the SOC strength ξ should be compared to the
bandwidth. In our case that means to the bandwidths for
3d electrons W3d ; it is the ξ/W3d ratio that matters [15,28].
The bandwidth W3d depends on the hybridization, i.e., on
how electronic states around the 3d atom are affected by its
neighbors. An idea how this varies across our systems can be
obtained by inspecting the DOS. Therefore we present in Fig. 2
the spin-polarized DOS for all the systems we investigate.
Apart from the DOS for Co atoms we show also the DOS for
the nearest substrate atoms so that hybridization between them
can be studied.

One can see that (not surprisingly) the bandwidth for
monolayers is always significantly larger than the bandwidth
for adatoms, no matter what is the substrate. This clarifies
why the influence of SOC on the Tα term is negligible for the
monolayers: In that case, the effect of the hybridization always
overwhelms the effect of SOC.

2. DOS overlap integrals

What is not clear is why there are so big differences for
the adatoms when going from one substrate to another. The
bandwidth associated with adatoms as shown in Fig. 2 is ap-
proximately the same for all substrates. One can, nevertheless,
quantify the importance of hybridization between the adatom
and the substrate by evaluating the DOS overlap integral, i.e.,
the integral of the product of the DOS for the adatom n

(s)
Co and

for the nearest substrate atom n
(s)
subs,

h(s) ≡
∫

dE n
(s)
Co(E)n(s)

subs(E), (9)

where s stands for the spin. Higher h(s) means higher hybridiza-
tion and, consequently, larger effective bandwidth—even
though it may not be apparent visually in Fig. 2. An elucidating
relation between the integrals h(s) and the importance of the
SOC for Tα can be identified if we focus on the minority-spin
states (s =↓). In particular, the relative importance of SOC
for Tα (quantified as the ratio

∑
α 7Tα/μspin, cf. Sec. III A

and Table I) is approximately proportional to the degree of
atomiclike character of minority-spin adatom states (which
can be quantified as 1/h(↓)). This is demonstrated in Table III
where relative weights of

∑
α 7Tα/μspin and 1/h(↓) are shown.

One can thus see that if adatom states are less hybridized
with the substrate leading to smaller effective bandwidth,
the relative importance of SOC increases—in agreement with
intuition.

The only caveat here is that this correspondence holds only
for minority-spin states; if majority-spin states are included in
the analysis, the correspondence between

∑
α 7Tα/μspin and
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FIG. 2. Spin-polarized DOS for Co adatoms (upper panels) and monolayers (lower panels) on noble metals. The blue solid lines show the
DOS for Co atoms (in states per eV), and the dashed brown lines show the DOS for those substrate atoms which are nearest neighbors to Co
atoms.

1/h(s) disappears. However, there is a reason for focusing on
minority-spin states only. If majority-spin states are mostly
occupied (as it is the case for our systems), it is the incomplete
occupancy of minority-spin states which induces asphericity.
The importance of partially filled minority-spin states for Tα

is also emphasized by the fact that the value of Tα strongly
depends on the position of EF , which cuts through minority-
spin states [9,10,12].

TABLE III. Comparing the importance of SOC for Tα (charac-
terized by sums over three Tα components, the second column) to the
degree of atomiclike character of states associated with the adatom
(characterized by reciprocal values of the DOS overlap integrals, the
third column).

Relative weight of Relative weight of∑
α 7Tα/μspin 1/

∫
dE n

↓
Co(E)n↓

subs(E)

Cu 0.181 0.197
Pd 0.061 0.091
Ag 0.390 0.324
Pt 0.092 0.117
Au 0.276 0.269

3. Orbitally resolved DOS for Co adatoms

Yet another view on hybridization of adatom states with
substrate states can be obtained from the orbitally resolved
DOS for the Co adatom. This is shown in Fig. 3: Majority-spin
states are inspected in the upper panels, and minority-spin
states are inspected in the lower panels. Several features
in this plot are worth commenting on. First, the individual
orbital-resolved peaks are broader for the majority-spin states
than for these minority-spin states. This is because for the
majority-spin states there is a considerable overlap with
substrate states whereas for the minority-spin states there is
practically no overlap (see Fig. 2). The Ag substrate with a
deep lying d band is an exception, and in this case the majority-
spin adatom states have no overlap with substrate states
either.

The DOS peaks for m = ±2 resemble broadened energy
levels as for an isolated atom. This is because the orbital
lobes for m = ±2 lie parallel to the surface where there are
no other atoms to hybridize with. The situation for m = 0 is
similar—here the orbital lobe points to the void between three
nearest substrate atoms. The influence of the substrate is most
pronounced for the m = ±1 orbitals, whose lobes are directed
toward neighboring atoms. Apart from that, states for m = ±1
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FIG. 3. Orbitally resolved DOS (in states per eV) for Co adatoms on noble-metal surfaces. Majority-spin d states are shown in the upper
panels, and minority-spin d states are shown in the lower panels. Meaning of the lines is shown in the two upper left panels.

and m = ±2 are split by the SOC. A more formal discussion
about resolving the DOS according to spin and orbital quantum
numbers as well as about the role of the SOC-induced splitting
for the magnetocrystalline anisotropy was recently presented
by Šipr et al. [28].

Here our attention is on the hybridization and, in particular,
on the difference among Cu, Ag, and Au substrates on one hand
and Pd and Pt substrates on the other hand. This difference
is apparent for the minority-spin states with m = ±1 (lower
panels of Fig. 3): Whereas there is only one single peak for each
of the m = ±1 components for the Cu, Ag, and Au substrates,
and there are two peaks for the Pd and Pt substrates (each of
them about 0.15 eV either below and above EF ). We can infer
from this that the hybridization is very small in the case of a
Co adatom on Cu, Ag, and Au whereas it is relatively large in
the case of a Co adatom on Pd and Pt. Consequently, the SOC
has a large role for the Tα term for adatoms on Cu, Ag, and Au
and only a small role for the Tα term for adatoms on Pd and
Pt. An analysis of the orbital-resolved DOS thus reinforces
the message obtained by analyzing the overlap integrals (9) in
Table III.

IV. DISCUSSION

The validity of the XMCD sum rules and specifically
the role of the Tα term were the subject of several earlier
studies [9,12,29]. The purpose of this paper was to focus on
the Tα term itself and to study systematically the conditions
under which the influence of SOC on it can be neglected for
low-dimensional 3d systems. Fulfillment of this condition is,
namely, necessary for eliminating the Tα term from the spin
moment sum rule (1) altogether. We found that even for atoms
with low SOC, such as Co, the influence of SOC on Tα in
certain environments can be so large that Eqs. (5) and (6)
cannot be used. The crucial factor turns out to be the ratio

between the SOC and the bandwidth ξ/W3d . This subsequently
translates itself into the dependence on the dimensionality. It
turns out that for Co monolayers the influence of SOC on
Tα can be neglected for any of the Cu, Pd, Ag, Pt, or Au
substrates. We assume that this is true for any 3d monolayer
on any substrate. Similar conclusions were drawn earlier for
bulk 3d systems and surfaces [20].

For adatoms the situation is more complicated. The narrow-
ing of the 3d band caused by the decrease in the dimensionality
appears to be just of that amount which is required for SOC
to become important for Tα . Hence details of the electronic
structure of the substrate begin to matter; for some substrates
(Pd,Pt) Eqs. (5) and (6) still can be used whereas for others
(Cu,Ag,Au) they cannot. The hybridization between adatom
and substrate states around EF seems to be the deciding factor.
We expect that for systems with considerable overlap between
adatom and substrate DOS around EF (minority-spin states
in our case, see Fig. 2) the influence of SOC on Tα can be
neglected even for adatoms. Otherwise Eqs. (5) and (6) should
rather not be used.

To find more about when the size of the system gets so small
that Eqs. (5) and (6) cannot be used anymore, we performed
calculations also for a Co wire on Au(111). The wire was built
along the [11̄0] direction, and we modeled it by a 2 × 1 surface
supercell. To test whether Eq. (5) could be applied for such a
system, we evaluated the ratio

∑
α 7Tα/μspin and found it to be

0.058 [30]. This is to be compared with 0.284 for a monolayer
and 0.009 for an adatom (see Table I). We conclude, therefore,
that the borderline between systems which satisfy Eqs. (5) and
(6) and which do not is somewhere between the wire and the
adatom. When analyzing XMCD spectra for small 3d clusters
of just a few atoms, one should not rely on Eqs. (5) and (6).
When analyzing XMCD spectra of clusters of hundreds of
atoms (as was the case, e.g., in the study of Koide et al. [17]),
reliance on Eqs. (5) and (6) is justified.
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V. CONCLUSIONS

The influence of spin-orbit coupling on the magnetic dipole
term Tα can be neglected for 3d transition-metal systems as
long as they are sufficiently large. If the system contains just
a few 3d atoms (as is the case of adatoms or small supported
clusters), the influence of SOC on Tα may be significant. This
further depends on the hybridization between states of the
3d atoms and of the substrate, especially around the Fermi
level: If the hybridization is only weak, the role of the SOC is
enhanced whereas if the hybridization is strong, the role of the
SOC is suppressed. For systems where the influence of SOC

on Tα cannot be neglected, the Tα term cannot be eliminated
from the XMCD spin sum rule—neither by relying on the
Tx + Ty + Tz = 0 relation, nor by making use of the magic
angle θ = 54.7◦.
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