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Proof: Let the group delay [5] of �(!) be

� (!) = �0(!) =

+1

n=�1

dne
jn!:

Taking derivative of (14) with respect to !, we get
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Substituting the Fourier series representation of � (!) into the equation
above gives
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Therefore

d2n = (�1)ndn; n 6= 0:

Since fdng is the Fourier series coefficients of � (!), the limit of the
subsequence

fdn; d2n; d2 n; d2 n; . . .g

= fdn; (�1)ndn; (�1)ndn; (�1)ndn; . . .g

is equal to zero for any n 6= 0. Thus, � (!) = d0, and therefore �(!) =
d0! + �0, for j!j < �. It then follows from the phase condition (14)
with (15) that �(!) = !=2. The proof is complete.

Combining Propositions 1 and 2, we see that the unique solution to
the Hilbert transform pair condition (8) (or (9) with (10)) is given as
follows:

�(!) = e�j(!=2); j!j < �:

We now can summarize the main result on Hilbert transform pairs of
orthogonal wavelet bases as follows.

Theorem 2: Two orthogonal wavelet bases form Hilbert transform
pairs if and only if the scaling filters are offset from one another by
a half sample; that is, the two filters must have the same magnitude
response and their phasesmust be shifted by half a sample. Specifically,
they are related by

G0(!) = e�j(!=2)H0(!); j!j < �:

IV. CONCLUSION

The forming of Hilbert transform pairs of two scalar orthogonal
wavelet bases is re-examined in this note. Necessary and sufficient con-
ditions on scaling filters that render Hilbert transform pairs are derived.
The solutions to these conditions are obtained. In addition to the phase
condition, the identical magnitude response requirement for the two as-
sociated scaling filters is established. The uniqueness of the solution to
the Hilbert transform pair condition justify the use of the half-sample
delay requirement as a criterion in the design of Hilbert transform pairs
of orthogonal wavelets bases.
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Local Directional Denoising

S. C. Olhede and A. T. Walden

Abstract—Denoising of complex-valued signals involves the relationships
between the real and imaginary parts of the signal. The authors introduce
the idea of local directional thresholding, well-suited to signals that are bidi-
rectional overall but unidirectional at any one time, such as Doppler ultra-
sound, and show its efficacy on synthetic and real data.

Index Terms—Complex-valued signal, denoising, Hilbert transform, ul-
trasound, wavelet transform.

I. INTRODUCTION

Wavelet thresholding [1], [2] has become a standard approach to the
denoising of real-valued signals. The discrete wavelet transform is used
to transform the noisy signal, on the assumption that the wavelet coef-
ficients of the signal component are sparse and exceed those expected
from the noise. The wavelet coefficients are thresholded according to
their magnitudes, and the inverse transform is applied to obtain the de-
noised version of the signal. Circular shift equivariance can be achieved
by using the technique of “cycle-spinning” [3]–[5], where the signal ex-
traction procedure is applied not only to the original series but also to
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all possible circularly shifted series of interest; this is equivalent ([6, p.
429]) to applying standard thresholding to the wavelet coefficients of
the maximal-overlap/stationary/shift-invariant discrete wavelet trans-
form.

The success of any thresholding depends on an understanding of the
nature of the deterministic signal, and the statistical properties of the
noise. We begin with a detailed consideration of the signal. In this cor-
respondence, we look at the denoising of a particularly useful class of
complex-valued signals. The basic model is that of a complex-valued
deterministic signal contaminated with complex Gaussian white noise.
Let d denote the complex-valued column vector consisting of the
values of the deterministic signal, and ��� denote the complex-valued
noise vector, so that the observed data vector z is given by z = d+ ���.

The real and imaginary parts of complex-valued signals can arise in
several ways, such as the following:

1) from two different signals where there is no special relationship
between the components;

2) as two channels from a multichannel recording, representing the
two components of polarized motion—e.g., the radial and ver-
tical recordings of Rayleigh waves in an earthquake coda [7]
(in this case, the real and imaginary parts would be physically
closely related);

3) directly as components of a complex-valued recording. (In
quadrature Doppler ultrasound [8, p. 89], the signal is backscat-
tered from the ultrasound beam by moving red blood cells, and
the Doppler effect is used to measure the velocity of blood flow;
femoral artery blood flow is in reverse directions during heart
contraction and dilation).

Our interest will be directed toward complex-valued signals carrying
directional information localized in time. As an example of a locally
directional signal, we consider a complex-valued blood flow record z
from in-vivo longitudinal Doppler ultrasound measurements on the he-
patic vein of a 33-year-old male. The sampling interval used was 0.5
ms. It is shown in Fig. 1(a). At the beginning and end of the signal, the
imaginary part lags the real part, while in the middle, the imaginary
part leads the real part. This is characteristic of the presence of two dif-
ferent flow directions, forward at the beginning and end, and reverse in
the middle.

Let us first think about the global directionality of a signal.
Let fDk; k = 0; . . . ; N � 1g be the discrete Fourier transform
(DFT) of the complex-valued signal fdt; t = 0; . . . ; N � 1g. The
DFT of the reversed signal f ~Dk; k = 0; . . . ; N � 1g is given by
~Dk = N�1

t=0 d
�te

�i2�tk=N , so that

~Dk =

N�1

t=0

1

N

N�1

l=0

Dle
i2�(�t)l=N e�i2�tk=N

=
1

N

N�1

l=0

Dl

N�1

t=0

e�i2�t(l+k)=N = DN�k:

If fk = k=N , k = (N=2) + 1; . . . ; N � 1, correspond to negative
Fourier frequencies, then (N �k)=N corresponds to positive frequen-
cies, and so reversing the time direction corresponds to mapping fre-
quency behavior at fk to �fk . Hence, directionality can be related to
analytic signals, supported on positive frequencies only, and antiana-
lytic signals, supported on negative frequencies only [9].

Fig. 2 shows the time–frequency spectrogram of the signal, i.e., the
local frequency content of the signal at any time, computed using a ze-
roth-order Hermite window [10, p. 298]. The positive frequency energy
is associated with forward flow, and the negative with reverse flow. We
conclude that basically the signal is bidirectional overall but unidirec-
tional at any one time.

Our approach to denoising of locally directional noisy signals is to
first split the data into analytic and antianalytic components. Where

Fig. 1. Decomposition of complex-valued hepatic vein data into analytic and
antianalytic components. In each plot, the solid line is the real part, and the
dotted line is the imaginary part: (a) the recorded signal, (b) analytic component
z =2, and (c) antianalytic component z =2. The sum of (b) and (c) gives (a).

Fig. 2. Hermite window spectrogram of the hepatic vein data.

the signal is locally forward directional, it will appear in the analytic
vector z+, and where it is locally reverse directional, it will appear in
the antianalytic vector z� [see Fig. 1(b) and (c)]. (The calculation of
z
+ and z� is discussed in Section II.) We then apply the maximal-

overlap discrete wavelet transform (MODWT) and hard threshold the
forward, W (z )

j;t , and reverse, W (z )
j;t , noisy wavelet coefficients, ac-

cording to their magnitudes, and reconstruct the deterministic signal as
the average of the two directional reconstructions. White noise spreads
evenly across positive and negative frequencies, and for those times
when the signal is forward directional, energy inW (z )

j;t will be noise
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and can be removed, and for those times when the signal is reverse di-
rectional, energy in W

(z )
j;t will be noise and can be deleted, so that

our approach should effectively eliminate half the noise. This is due to
properties of universal thresholding applied to pure noise wavelet co-
efficients, with one of the two directional components consisting only
of noise. (If the signal is not locally directional, then no advantage will
accrue from the additional steps; however, the wavelet transform will
still unbalance the energy in both directions and act in a manner similar
to standard denoising.)

We now give details of the steps involved, and statistical results on
the behavior of the noise.

II. ANALYTIC AND ANTI-ANALYTIC COMPONENTS

Given a complex-valued vector z = [z0; . . . ; zN�1]
T , with N

assumed even throughout, we denote the discrete Hilbert transform
(DHT) of z by Hz, where H is the DHT matrix [11], [12]. Let
z = x + iy. We define

z
� = z� iHz = x�Hy + i(y �Hx): (1)

The action of H is best understood in the frequency domain. The
DFT of z+=z� consists of taking the Fourier coefficients of z and
doubling them for positive/negative Fourier frequencies, leaving them
untouched for zero and Nyquist frequency, and zeroing them for neg-
ative/positive frequencies, i.e., if fZk; k = 0; . . . ; N � 1g is the DFT
of fzt; t = 0; . . . ; N � 1g, then

Z+
k =

Zk; k = 0; N

2

2Zk; k = 1; . . . ; N

2
� 1;

0; k = N

2
+ 1; . . . ; N � 1;

and

Z�k =

Zk; k = 0; N

2

0; k = 1; . . . ; N

2
� 1;

2Zk; k = N

2
+ 1; . . . ; N � 1:

We recall that the decomposition z = x + iy = (1=2) z+ + z� , is
illustrated in Fig. 1(b) and (c).

III. WAVELET TRANSFORMATION AND THRESHOLDING

A. Nondecimated Discrete Wavelet Transformation

Suppose we apply the MODWT to z. This is overdetermined and
also known variously as a stationary or shift-invariant or nondecimated
transform. At level j = J0 of the transform, we haveN -length wavelet
coefficient vectors W(z)

1 ; . . . ;W
(z)
J and a single scaling coefficient

vector V(z)
J , given by W(z)

j = Wjz, j = 1; . . . ; J0, and V
(z)
J =

VJ z, where Wj and VJ are N � N filter matrices of the form de-
scribed in [6, p. 171]; the filters involved are all real-valued. If the basic
scaling and wavelet filters haveL coefficients, then the rows ofWj and
VJ are constructed from filters with Lj = (2j � 1)(L� 1)+ 1 coef-
ficients. Let fW (z)

j;t ; t = 0; . . . ; N � 1g denote the elements ofW(z)
j .

Clearly, alsoW(z)
j = Wjz = Wjd +Wj��� = W

(d)
j +W

(���)
j . The

vector z can be reconstructed via

z =

J

j=1

WT
j W

(z)
j + VT

J V
(z)
J : (2)

Now, z = x + iy = (1=2) z+ + z� , and so from (2)

z =
1

2

J

j=1

WT
j W

(z )
j +W

(z )
j + VT

J V
(z)
J : (3)

Fig. 3. Analysis of hepatic vein data. (a)–(d) Absolute values of MODWT
coefficient vectors, (1=2)W for j = 1; . . . ; 4, respectively (solid lines),

and (1=2)W for j = 1; . . . ; 4, respectively (dotted lines).

For the hepatic vein data, Fig. 3(a)–(d) shows (1=2)W
(z )
j for

j = 1; . . . ; 4, respectively, as solid lines, and (1=2)W
(z )
j for j =

1; . . . ; 4, respectively, as dotted lines. We note that whenever large co-
efficients occur, the forward component either dominates the reverse
component, or vice versa.

B. Sparseness and Thresholding

The idea of sparsity when thresholding real-valued noisy signals is
that a relatively few wavelet coefficients carry most of the energy in the
signal [2], and the universal thresholding strategy was developed with
this property in mind. Two different notions of sparsity of a vector of
wavelet coefficients were suggested in [13]:

1) Only a small proportion of wavelet coefficients are nonzero.
2) The ordered amplitudes of the wavelet coefficients obey a

power law.
The amplitude of a complex quantity is well defined, and so these

measures of sparsity can be applied to complex coefficients, as is im-
plicit in [14]. Spatial adaptivity will apply to the complex case, with the
complex signal considered as a single entity, rather than two separate
ones (the real and imaginary parts), and will refer to the local (in time)
smoothing of the complex vector.
We shall consider the first of the two notions of sparsity in terms

of the particular form arising from the local directionality introduced
earlier. We assume that the deterministic components of z+ and z�,
namely d+ and d�, respectively, are complex-valued signals existing
in a suitable smoothness space [2]. This simply corresponds to as-
suming that the signal d is a sum of suitably smooth signals with local
directionality, where d+ and d� separately satisfy the same criteria
as those signals considered by Sardy in [14]. Hence, for locally direc-
tional signals and appropriate values of the doublet (j; t), it follows that

W
(d )
j;t 6= 0,W (d )

j;t = 0, and vice versa; in this instance,W (d)
j;t 6= 0,

and neither the real nor imaginary part of this quantity need be zero.
We thus threshold the forward W

(z )
j;t and reverse W

(z )
j;t direc-

tional versions of the noisy wavelet coefficients separately according
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to their magnitudes, obtaining W
(z )
j;t and W

(z )
j;t , respectively, and

reconstruct the deterministic signal as the average of the two recon-
structions:

ẑ =
1

2

J

j=1

WT
j W

(z )
j +W

(z )
j + VTJ V(z)

J : (4)

We shall call this local directional thresholding. Notice that this ap-
proach, applied to complex-valued signals, using real-valued wavelet
filters, gives rise to multiple (two) wavelet coefficients—the real and
imaginary parts—at each (j; t). Multiple wavelet coefficients are cre-
ated in [15] by using multiwavelets, and in [16], by using complex-
valued wavelet filters, but in both cases applied to a real-valued signal;
these approaches are fundamentally different to ours, since we seek to
exploit the physical relationship between the real and imaginary parts
of the complex-valued signal.

IV. NOISE STATISTICS

Thresholding is designed under the assumption of the absence of
signal, z = ���, and it is the properties of the noise that determine the
appropriate threshold.

A. The Noise Model

We shall use an isotropic noise structure for the complex vector ��� =
���1+ i���2, namely, [���1; ���2]T � N2N(0; (�2�=2)I), i.e., the vector has the
same distribution as a real 2N -vector-valuedGaussian random variable
with mean 0 and covariance matrix (�2�=2)I. Hence, both the real and
imaginary noise components consist of uncorrelated Gaussian white
noise with semivariance �2�=2, with zero correlation between them.

B. Local Directional Thresholding

Let ���� = ��� � iH��� = (I � iH)���. Note that since ��� is complex,
(���+)� 6= ����, where � denotes complex-conjugate. Then, with H de-
noting Hermitian transpose

Ef����[����]Hg =Ef(I� iH)������H(I� iHT )g
=�2� (I+HHT )� i(H�HT ) :

HHT is a symmetric Toeplitz matrix with first row
[1�(2=N); 0;�(2=N); 0;�(2=N); . . . ;�(2=N); 0], so HHT = I

to O(1=N) and sinceH is skew-symmetric, we have thatHT = �H,
so that, asymptotically

Ef����[����]Hg = 2�2� [I� iH]: (5)

The principal diagonal ofH is identically all zeros [11] so that the vari-
ances along the principal diagonal of Ef����[����]Hg are well defined.
Since ��� is complex Gaussian, Ef������T g = 0, and so Ef����[����]T g =
Ef(I � iH)������T (I � iHT )g = 0. Hence, asymptotically, ���� has a
complex Gaussian distribution with covariance matrix (5), i.e., ���� �
NC
N (0; 2�2� [I� iH]). The cross-covariance Ef���+[����]Hg is �2� [(I�

HHT )] so that the cross-covariance matrix will be null asymptotically.
Contrarily, the complementary cross-covarianceEf���+[����]T g is iden-
tically zero for allN . Note that ���+ and ���� are each formed from corre-
lated complex-valued random variables, but that, asymptotically, these
two vectors of random variables are uncorrelated with each other.

The real ����1 = <f����g and imaginary ����2 = =f����g parts of ����

have covariances given by

Ef����1 (����2 )T g = Ef(���1 �H���2)(���T2 � ���T1HT )g = ��2�H

and Ef����2 (����1 )T g = �Ef����1 (����2 )T g. Again, since the principal di-
agonal of H is all zeros, we see that the real and imaginary parts are
uncorrelated at any time t, i.e., Ef��1;t��2;tg = 0. Further

Ef����1 (����1 )T g = Ef����2 (����2 )T g =
�2�
2

(I+HHT )

which is asymptotically equal to �2� I, and

Ef���+1 (����1 )T g = Ef���+2 (����2 )T g =
�2�
2

(I�HHT )

which is asymptotically equal to 0.
Applying the MODWT to z� in the absence of signal, we obtain, at

level j

W
(z )
j =Wj(���

�
1 + i����2 ) = n

�
j1 + in�j2

say. Now

covfn�j1;n�j2g =Efn�j1(n�j2)T g =WjEf����1 (����2 )T gWT
j

= � �2�WjHTWT
j : (6)

Further, Efn�j1(n�j1)T g = WjEf����1 (����1 )T gWT
j , which is asymp-

totically equal to �2�WjWT
j , and likewise for Efn�j2(n�j2)T g. Again,

since the diagonal elements of the matrix in (6) are zero, the Gaussian
random variables n�j1;t and n

�
j2;t are independent at any time t, with

mean zero and variance �2n = �2�=2
j to O(1=N), and j such that

Lj � N (see [17]).

Hence, asymptotically, W
(z )
j;t =�n

2

is a series of correlated

�22 random variables. Now,
p
[2 log(N logN)] provides a conservative

threshold for these correlated chi-square variables [14], [17], so we
arrive at the thresholding scheme

W
(z )
j;t = W

(z )
j;t ; if

jW j

�
>
p
[2 log(N logN)]

0; otherwise.
(7)

V. EXAMPLES

In this section, we shall compare our local directional thresholding
with three alternative methods.

A. Alternative Approaches

The first is what we shall call standard thresholding and consists of
separately thresholding the realW (<fzg)

j;t and imaginaryW (=fzg)
j;t parts

of the noisy wavelet coefficients according to their individual magni-
tudes; this is essentially [1] applied to both real and imaginary parts.
The second approach, called here analytic thresholding [17], involves
creating synthetic analytic signals a = <fzg + iH<fzg and b =

=fzg + iH=fzg and separately thresholding the real W (<fzg)
j;t and

imaginary W (=fzg)
j;t parts of the noisy wavelet coefficients according

to the magnitudes ofW (a)
j;t andW (b)

j;t , respectively. This approach pre-
serves phase relationships between the real-valued components. In the
third alternative, Sardy’s thresholding [14], we threshold the complex-
valued noisy wavelet coefficientsW (z)

j;t depending on their magnitudes.

B. Synthetic Noisy Signals

We use throughout the “least asymmetric” Daubechies filter of width
L = 8. Results are for series lengthsN = 512 and 1024. The stationary
wavelet transform is carried out to level J0 = 6 so that, as is common
practice, low frequencies are not subjected to thresholding. We took
a signal-variance-to-noise-variance ratio, i.e., signal-to-noise variance
ratio, of 50 (almost identical to the standard deviation ratio of 7 used
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Fig. 4. (a)–(d) Hermite window spectrograms for signals 1–4.

in [1]). The first three models for d are based around complex-valued
variations to the real Doppler signal in [1], as follows:

d1;t = 1�
t

N
exp

�i2�1:05

( t

N
) + 0:05

+
t

N
exp

�i2�1:05

�

t

N
+ 1:05

d2;t =
1� t

N
(1 + i)

p
2

sin
2�1:05
t

N
+ 0:05

d3;t = 1�
t

N
cos

2�1:05
t

N
+ 0:05

+ i
t

N
sin

2�1:05

� t

N
+ 0:05

:

The fourth signal is a Wang–Fish simulation [18] of a quadrature
Doppler ultrasound recording of blood flow in the femoral artery.

One hundred independent simulations of each noisy signal were
made, and for each case, denoising was carried out using standard,
analytic, Sardy’s, and local directional thresholding. Table I shows the
average and standard error over the 100 trials of the mean-square error
between signal and estimator, given as a proportion of �2� . A robust
estimate of �� was used (see, e.g., [6, p. 429]).

The Hermite spectrograms of all four noise-free signals are shown
in Fig. 4. Signals 1 and 4 both exhibit strong local directionality de-
termined by the phase relationships between their real and imaginary

TABLE I
AVERAGE (STANDARD ERROR) OF [MEAN-SQUARE ERROR=� ] FOR SIGNALS

1–4 AND THE FOUR THRESHOLDING METHODS. TOP BLOCK FOR N =

512, AND BOTTOM BLOCK FOR N = 1024

parts. The combination of the local directionality and the beneficial en-
ergy unbalancing action of the MODWT [e.g., Fig. 3(a)–(d)] results
in local directional thresholding outperforming analytic and Sardy’s
thresholding, with standard thresholding further behind.
Signal 2 has identical real and imaginary parts at any time. The mag-

nitude of the complex signal is thus large whenever the individual real
and imaginary parts are large. However, at any time, the signal has both
positive and negative frequency contributions, so no advantage accrues
to local directional thresholding. Sardy’s thresholding slightly outper-
forms both the analytic and local directional thresholding, again with
standard thresholding in fourth place. With equal real and imaginary
parts, the analytic thresholding does the same threshold tests for both
components: Sardy’s thresholding benefits from the fact that only N

thresholding tests are carried out compared with 2N with the alterna-
tive methods.
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Fig. 5. Phase constructed from thresholded Hepatic vein data using (a) Sardy’s
and (b) local directional thresholding.

Signal 3 has real and imaginary parts related in a way that does not
define a useful complex amplitude and phase for d3 and at any time
has both positive and negative frequency contributions. We would thus
expect thresholding methods that treat the real-valued components sep-
arately to perform best, and this is seen to be true. Both the analytic
and standard methods significantly outperform the intrinsically com-
plex approaches of Sardy or local directional thresholding.

C. Actual Noisy Signal

Finally, we return to the hepatic vein data of Fig. 3. This al-
ready-noisy complex-valued series, of length 776, was processed
exactly as for the synthetic examples. We can reparameterize
the thresholded values ẑt in terms of amplitude and phase as
ẑt = at exp (i2�'t), where of course at =

p
[(<fẑtg)2+(=fẑtg)2],

and 't = (1=[2�]) tan�1 (=fẑtg=<fẑtg), enabling us to assess these
aspects of the relationships between the real and imaginary parts.
Fig. 2 suggests a change from positive to negative frequencies (positive
to reverse directionality) around 0.1 s. Fig. 5 compares the (wrapped)
phase resulting from Sardy’s thresholding and local directional thresh-
olding for times leading up to and slightly beyond this directional
change-point. (Standard and analytic thresholding gives a very similar
result to Sardy’s thresholding.) We see that local directional thresh-
olding produces a better defined and more predictable phase behavior;
in fact, it also produces the smoothest amplitude behavior.

VI. CONCLUSION

Denoising of complex-valued signals via wavelet thresholding is a
nontrivial extension to denoising of real-valued signals. Some signals
have physically well-defined real/imaginary relationships; e.g., quadra-
ture Doppler ultrasound is bidirectional overall but unidirectional at
any one time. For these locally directional signals, we introduced the
idea of local directional thresholding and illustrated its efficacy on syn-
thetic and real data. We note that Doppler ultrasound signals and other

familiar directional complex-valued signals, such as in seismology, are
inhomogeneous but smooth.
The spectrogram can be used to test for local directionality. If the

signal at some time is present at negative or positive frequencies and
crosses the axis f = 0, it is locally directional; our approach is tuned
for this case. If not, other methods will be competitive/better as seen in
the simulations.
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