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Abstract The paper deals with design analysis and simulation of power resonant inverter with integrated LCLC filter and VF 

transformer (LCTLC). The filter provides sinusoidal output voltage for sensitive loads with harmonic distortion roughly 5% in the 

whole range of the load (0-100%). The LCTLC filter is supplied from either single-phase voltage inverter in full- or half- bridge 

connection, or from simple DC/DC buck converter. The output can be considered as simply controlled AC HF power generator 

(power supply) or DC rectified output (DC power supply), or/and as AC LF source with variable frequency. 
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I. INTRODUCTION 

There are many applications when load has to be 
supplied by harmonic voltage with solid harmonic 
distortion smaller than 5 %. Also, many applications need 
to be supplied from DC/DC power supply with integrated 
HF transformer. A LCTLC Resonant Inverter can provide 
both types of AC or DC power supply functions. Other 
suitable types are LCC resonant converter or LCCLC 
converter [1], [2]. One of the novel types of converters are 
LCLCL converter [3] based on LLC resonant scheme, and 
LCTLC inverter [4], [5] consists of DC/DC buck 
converter, LCLC resonant filter and HF transformer (HV 
or normal MV). The HF transformer can also be 
connected after the LCLC filter, if necessary. The inverter 
(LCTLC) is usually used as power supply for either HV 
rectifiers [6] (vacuum displays and CRTs, or X-ray 
devices) or HF cycloconverters or matrix converters, for 
2-phase motor applications [7], [8], respectively. 

 

II. BASIC LCTLC INVERTER ANALYSIS 

The basic scheme of LCTLC resonant inverter is 
shown in Fig. 1. It consists of DC/DC buck converter, LC 
series resonant filter (with parameters L11, R11, C1), HF 
transformer (HV, MV or LV), and LC parallel resonant 
filter (L22, R22, C2). The HF transformer can also be 
connected after the LCTLC filter, if it is necessary. 

 
Fig. 1. Basic scheme of LCTLC resonant inverter 

Based on works [4]-[6] one can create following 
equivalent scheme of the LCTLC circuit, Fig. 2. The 
equivalent parameters of the HF transformer (Lσ, Rσ, 
Lm, RFe) are included into resulting component parameters: 
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Fig. 2. Equivalent scheme of LCTLC circuit 

The state-space equations for equivalent circuit with 
R-L load will be 
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where 
 iL1, iL2 - currents through the inductors L1 and L2, 

respectively 
iL - current through the load Rload, Lload 

uC1, uC2  - capacitors voltages of C1 and C2, respectively 
u(t) - output voltage of the converter (filter input 

voltage) 
 

III. DESIGN OF LCLC COMPONENTS 

Resonant frequency of L1C1 and L2C2 should be the 
same as basic fundamental frequency of the converter and 
is requested by load demands. So, based on Thomson 
relation 
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where  

1π2 ωωres = , ω1 is fundamental frequency of the converter.  
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Theoretically, L1ωres and other members of (3) can be 
chosen from wide set. Not to exceed nominal voltages and 
currents of the accumulative elements we take value of the 
nominal load. Then 
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where  
q  -  quality factor is ratio of component’s impedance 
L1, L2, C1 and C2 to load impedance.  
 

IV. SIMULATION RESULTS 

Using suitable numerical method or directly Matlab 
functions  allow (2) the time waveforms of the quantities 
of LCTLC inverter can be obtained. Simulation results of 
the quantities of LCTLC inverter with full width of pulse 
is depicted Fig. 3, where output voltage of LCTLC 
inverter is high quality (THD ~ 5 %) in steady-state. 

 
Fig. 3. Basic simulated waveform of LCTLC inverter with full width of 

pulses 

Other system consists of high frequency LCTLC 
inverter and 2-phase high frequency cycloconverter or 
matrix converter, respectively. Simulation results of the 
output quantities of LCTLC inverter and five-pulse 
cycloconverter is depicted Fig. 4.  

 
Fig. 4. Simulation results of the output quantities of LCTLC inverter and 

five-pulse cycloconverter 

For output voltage of five-pulse cycloconverter, Fig.4, 
connecting to output of the LCTLC inverter the 
fundamental harmonics can be calculated [9] using term  

( ) ( ) ( )[ ]tttttt ωω5cosωω5cos2/1)ω(sin)ω5sin( +−−=⋅  (5) 

After integration the result is U5max(1.h) = 0,8164 Uamp 

→ 81,46% . The fundamental voltage harmonics of multi-
pulse cycloconverter are in Fig.5.  

 

Fig. 4. Calculated fundamental harmonics of the output voltage of multi-
pulse cycloconverter  

V. CONCLUSION 

Design analysis of high frequency LCTLC inverter has 
been presented. It can be declare from the simulation and 
experimental results that output voltage of LCTLC inverter 
is high quality (THD ~ 5 %), output voltage is nearly 
constant in whole range of the load, frequency of the 
voltage is constant. 

Output quantity of such a type of inverter can be used 
for second stage presented by half-bridge converters or 
matrix converter, respectively.  
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