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Abstract: In this work, we developed a method, which is used for approximation of basic magnetic field B0 inside a specific 
spherical volume. This method uses Legendre multinominals expansion of magnetic flux density field measured at discrete points on 
spherical volume. Using optimization technique of Least square method we modeled map of magnetic flux density on the desired 
surface and compared it to measured values of magnetic flux density. The coefficients of spherical function expansion obtained from 
approximation process can be used for determination of shimming currents which feed correction coils of tomograph. The results of 
approximated maps are described and compared to measured maps in the experimental part of this article 
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INTRODUCTION 

Magnetic resonance tomography is an imaging 
technique used primary in medical setting to produce 
high quality images of the human body. Magnetic 
resonance imaging is based on the principles of nuclear 
magnetic resonance (NMR) and at the present time it is 
the most developed imaging technique at biomedical 
imaging [1]. Lately, medical science lays stress on the 
measuring of exactly defined parts of human body, 
especially human brain. If we want to obtain the best 
quality images we have to pay attention to homogeneity 
of magnetic fields, which are used to scan desired 
samples inside the NMR tomograph. We should know 
how to reduce in-homogeneity, which can cause 
misleading information at the final images of samples. 
Generally, in-homogeneity of magnetic fields at magnetic 
resonance imaging cause contour distortion of images. To 
eliminate this in-homogeneity correctly, we need to know 
the map of the magnetic field and we also need to have an 
exact information about parameters of the magnetic field. 
This paper presents the experimental method, which can 
easily create the map of electromagnetic flux density at 
any defined area inside the tomograph. This method uses 
mathematical theory of Legendre multinominals [3], 
which are used for approximation of magnetic field, if we 
know specific coefficients. The coefficients of Legendre 
multinominals, which are computed using measured 
values of magnetic flux density at exactly defined 
discrete points are used for creating map of magnetic 

field. If we know these coefficients, we are able to 
compute magnetic flux density at any point of defined 
area. At the ideal case, there should be no difference 
between measured data and approximated data. 
According to analogy between values of coefficients and 
shimming currents, we will be able to propose an iterative 
method to make an optimization of basic magnetic field 
in MR tomography [4]. 

1 PRINCIPLES OF NMR 
In quantum mechanics, spin [6] is important for 

systems at atomic length scales, such as individual atoms, 
protons or electrons. One of the most remarkable 
discoveries associated with quantum physics is the fact, 
that elementary particles can possess non zero spin. 
Elementary particles are particles that cannot be divided 
into any smaller units, such as the photon, the electron 
and the various quarks. The spin carried by each 
elementary particle has a fixed value that depends only on 
the type of particle, and cannot be altered in any known 
way. Particles with spin can possess a magnetic dipole 
moment, just like a rotating electrically charged body in 
classical electrodynamics. The main principle of 
magnetic resonance spectroscopy and magnetic resonance 
imagining is, that radiofrequency fields (RF pulses) 
excite transitions between different spin states in a 
magnetic field. The information content can be retrieved 
as resonance frequency, spin to spin couplings and 
relaxation rates. We can imagine, that protons are rotating 



 
along their axes and there is also a wobbling motion 
called precession, that occurs when a spinning object is 
the subject of an external force. Thanks to the positive 
charge of protons and its spin, protons generate a 
magnetic field and gets a magnetic dipole moment. If the 
protons are placed in a magnetic field, the magnetic 
moment will do precessional motion about the direction 
of magnetic field with specific frequency. This frequency 
is called Larmor frequency and can be described by the 
Larmor equation [6] 
 

BγΩ =       (1) 
 

where Ω is the frequency of precession, γ is the gyro-
magnetic ratio and B is strength of external magnetic 
field. In ordinary materials, the magnetic dipole moments 
of individual atoms produce magnetic fields that cancel 
one another, because each dipole points in a random 
direction. In ferromagnetic materials however, the dipole 
moments are all lined up with another, producing a 
macroscopic, non-zero magnetic field. If there is no 
external magnetic field, magnetic moments of atoms are 
chaotically spread and there is nearly no resulting 
magnetization vector M0. If we place a sample into the 
stationary magnetic field B0, we will realize, that there is 
a vector of magnetization M0 which is created as a sum of 
magnetic moments of each atom. The direction of this 
vector is the same as the direction of external magnetic 
field B0. This state is called longitudinal magnetization. 
Now we apply a high frequency magnetic field of 
induction B1, which is vertical to stationary magnetic 
field B0. This high-frequency magnetic field causes 
resonance effect and magnetization vector M0 starts to 
rotate with specific angular frequency. To measure vector 
M0, we need to drop it into the x-y plain (on condition 
that B0 has direction of z axes). This dropping is done by 
a high-frequency excitation pulse B1, which has a proper 
shape. This state is called transversal magnetization. Set 
of these pulses is called pulse sequence. Pulse sequence is 
a pre-selected set of defined RF and gradient pulses, 
usually repeated many times during a scan. Pulse 
sequences control all hardware aspects of the 
measurement process. At the x-y plain, there is scanning 
coil, which is used for scanning of FID signal. 

 

Fig.1:  FID signal and MR spectrum 

After excitation pulses, the spins has tendency to 
minimize transverse magnetization and to maximize 
longitudinal magnetization. The transverse magnetization 
decays toward zero with characteristic time constant T2 
and the longitudinal magnetization returns towards 
maximum with a characteristic time constant T1  

 
 

2 BASICS OF LEGENDRE MULTINOMINALS 
If we want to determine the magnetic flux density 

values in the specific points of measured area, we should 
use Legendre multinominals. The behaviour of first 6 
multinominals shows Fig. 2. 

 

Fig.2:  Behavior of Legendre polynoms up to 6th degree 

Magnetic field induction can be approximated at any 
point of measured area. These points can be selected 
using spherical coordinates [r, θ, φ], so we can define the 
approximation formula as follows [3] 

 

,
0 0

, ,

( , , ) (cos )

cos sin

KN m k
k

a m k
k m

m k m k

B r r P

A m B m

θ ϕ θ

ϕ ϕ

=

= =

= ⋅ ⋅ ⋅ ⋅

⎡ ⎤⋅ ⋅ + ⋅⎣ ⎦

∑ ∑    (2) 

 
It is possible to find coefficients Amk a Bmk like 

minimum value of this formula 
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where Bm are measured values of magnetic induction 

at the desired area (circle, sphere, cylinder) and Bia are 
approximated values of magnetic induction. This method 
is known as Least square method (LSM). Legendre 
multinominals of zero and first order are defined as 

 

0 ( ) 1P z =      (4) 

1( ) cosP z z υ= =      (5) 
 
and Legendre multinominals of higher order are 

defined  according to recursion formula 
 

( ) ( ) ( ) ( )1 1( ) 2 1 / 1n n nP z n z P z n P z n+ −= + ⋅ ⋅ − ⋅ +⎡ ⎤⎣ ⎦  (6) 

3 PRINCIPLE OF B0 CORRECTION 
Basic principle of non-homogeneous magnetic field is 

quite simple. If we know, that map of the magnetic flux 



 
density on specific volume has certain behavior, we will 
add another correction magnetic field, which has opposite 
behavior. The goal is to optimize correction field to 
desired behavior and the superposition of those two fields 
will be ideally without any fluctuations. In praxis 
absolutely homogeneous field is not possible, so we have 
to specify, which homogeneity is good for our purposes 
and which volume we will consider. We can define 
homogeneity on specific area according to this formula 
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where B0,max and B0,min are maximal and minimal 

values of magnetic flux density and B0,mean is average 
value of magnetic flux density on specific volume [1]. In 
literature is mentioned, that the homogeneity of basic 
magnetic field B0 should be better than 10 – 50 ppm on 
volume with diameter 50 – 60 cm. For purposes of 
spectroscopy we desire much better fields. The correction 
process is called “shimming” and has to be done nearly 
for each manufactured magnet, because manufactures are 
not able to produce magnets with absolutely 
homogeneous behavior. In fact, there are two types of 
correction – passive and active. Active gradients are 
generated by shimming coils. Ideal fields of these coils 
can be modeled according to Tab. 1. 

 

Name of 
gradient 

Equation for computing Order

Z1 z 1 

Z2 2z2(x2+y2) 2 

Z3 z[2z2-3(x2+y2)] 3 

Z4 8z2[z2-3(x2+y2)]+3(x2+y2)2 4 

Z5 48z3[z2-
5(x2+y2)]+90z(x2+y2)2 

5 

X x 1 

Y y 1 

ZX zx 2 

ZY zy 2 

X2-Y2 x2-y2 2 

XY xy 2 

Z2X x[4z2-(x2+y2)] 3 

Z2Y y[4z2-(x2+y2)] 3 

ZXY zxy 3 

Z(X2-Y2) z(x2-y2)]) 3 

X3 x(x2-3y2) 5 

Y3 y(3x2-y2) 5 
Tab.1. Equations for computing correction gradients 

 

If we are able to generate many behaviors of 
gradients, it means gradients of higher orders, we are able 
to correct nearly every in-homogeneity of basic magnetic 
field. In Tab.1 we discuss only gradients up to 5th order, 
because it corresponds with expansion of magnetic flux 
density used for our approximation at experimental part. 
[5]. Fig. 3 shows contour 3D graph of normalized 
gradient X3. 

 

 

Fig.3:  Ideal computed gradient X3 

In our case we will take advantage of analogy 
between those gradients and coefficients of expansion 
according to (2). 

4 MEASUREMENT PROCESS 
There is a sophisticated moving mechanism (Fig. 4), 

which enables staff to control the position of the probe in 
the magnetic field of tomograph. 

 

 

Fig.4:  Detailed view of moving mechanism 

For mapping of defined sphere is used a very small 
probe, which consists of a glass sphere, filled with water. 
This probe also contains scanning coils, which are used to 
get FID signal. Moving mechanism enables to put the 
probe into exactly defined points and measure magnetic 
field at those points , so we can map desired dimension. 
When the probe is situated at the correct place, we can 
apply one of the pulse sequences to get the frequency 
values. Data are sampled during a gradient echo 
sequence, which is achieved by de-phasing the spins with 
a negatively pulsed gradient before they are re-phased by 
an opposite gradient with opposite polarity to generate 



 
the echo. The program used to set the parameters of pulse 
sequences and show the spectral characteristics of 
measurement is called The NMR 1D . 
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Fig.5:  Example of spectral line inside homogeneous field 
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Fig.6:  Example of spectral line inside non – 
homogeneous field 

5 APPROXIMATION RESULTS 
All values of magnetic induction on following figures 

are presented at [µT] unit. Fig. 8 shows map of the field 
on the surface of sphere, which is created only from 
measured values. Fig. 9 is map created from computed 
values, it means values which were computed during 
minimum searching (LSM) in Matlab. If we will consider 
the errors of whole process, we have to divide them to 
errors obtained during measuring of magnetic flux 
density at discrete points and errors obtained during 
solving equations used for approximation. From those 
pictures, we are able to discuss only errors of 
approximation. We used fifth order of Legendre 
polynoms, which seems to be enough for our purposes. 
The influence of approximation error on polynom’s 
degree can bee seen at Fig. 7. 
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Fig.7:   Relative residual versus polynom degree 

 

Fig.8:   Measured map on the sphere surface  

 

Fig.9:  Approximated map on the sphere surface 

Now we tried to compute slice through the mapped 
volume and confront this slice with measured slices. First 
we had to process measured phase image. It means to do 
FFT transformation, normalization and phase unwrapping 
of measured phase image. Fig 10 shows phase image 
before unwrapping process, but after brightness 
normalization. Noisy area around region of interest was 
normalized to zero. Fig. 11 shows unwrapped and colored 
image. 

 

Fig.10:  Phase image of slice before unwrapping 



 

 

Fig.11:  Field after unwrapping and normalization 

 

Fig.12:  Imported map of the field in Matlab 

 

Fig.13:  Computed map in Matlab 

When we imported processed image into Matlab, we 
can see contour lines which correspond to equal values of 
magenetic flux density. On Fig. 12 and Fig. 13 we can 
see clearly, that the slices are very similar. The noisy area 
in the bottom of image is caused by air bubble inside 
glass sphere filled with water.  

 
 

6 CONCLUSION 
We proposed a method for optimization of basic 

magnetic field B0 in tomography. This method is based 
on results of approximation using spherical functions. 
Legendre multinominals are suitable for optimization, 
because of analogy between correction gradients of 
tomograph and coefficients obtained from expansion of 
magnetic flux density values. As we can see from results, 
the accuracy of approximation could be better, so the 
future work can be directed towards minimization of 
differences between measured and approximated values 
of magnetic flux density. 
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