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Abstract: The paper describes the magnetic resonance imaging method applicable mainly in MRI and MRS in vivo studies. We 
solved the effect of changes of magnetic fields in MR tomography. This article deals with the reverse reconstruction results obtained 
from the numerical simulation of MR signals by various techniques, which will be usable for the experimental results verification. 
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1 GEOMETRICAL MODEL 
Fig. 1 describes the sample geometry for the 

numerical modeling. On both sides, the sample is 
surrounded by the referential medium. During the real 
experiment, the reference is represented by water, which 
is ideal for obtaining the MR signal.  
 

 
Fig. 1 The sample geometry for numerical modeling 

 

 

 
Fig. 2 The geometrical model in the system Ansys 

As shown in fig. 1, in the model there are defined four 
volumes with different susceptibilities. The materials are 
defined by their permeabilites : material No. 1 – the 
medium outside the cube (air), χ = 0, material No. 2 – the 
cube walls (sodium glass), χ = -11,67.10-6, material No. 3 
is the sample material (sodium glass), χ = -11,67.10-6, 
quartz glass, χ = -8,79.10-6, the simax glass (commercial 
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name), χ = -8,82.10-6, material No.4 is the medium inside 
the cube (water with nickel sulfate solution  NiSO4, χ = -
12,44.10-6). The permeability rate was set with the help of 
the relation µ=1+χ. For the sample geometry according to 
fig. 1, the geometrical model was built in the system. In 
the model there was applied the discretization mesh 
with 133584 nodes and 126450 elements, type Solid96 
(Ansys). The boundary conditions (1) were selected for 
the induction value of the static elementary field to be 
B0 = 4,7000 T in the direction of the z coordinate (the 
cube axis) – corresponds with the real experiment carried 
out using the MR tomograph at the Institute of Scientific 
Instruments, ASCR Brno. 

2  NUMERICAL ANALYSIS 
The numerical modelling was realized using the finite 

element method together with the Ansys system. As the 
boundary condition, there was set the scalar magnetic 
potential ϕm by solving Laplace´s equation 

( )m m 0div gradϕ µ ϕ∆ = − =   (1) 
together with the Dirichlet boundary conditon 

m .konstϕ =  on the areas Γ1 and Γ2 (2) 
and the Neumann boundary condition 

n mgrad 0ϕ⋅ =u  on the areas Γ3 a Γ4. (3) 

The continuity of tangential elements of the magnetic 
field intensity on the interface of the sample region is 
formulated by the expression 

n mgrad 0ϕ× =u  (4) 
The description of the quasi-stationary model MKP is 

based on the reduced Maxwell´s equations  
rot =H J  (5) 

=0div B  (6) 
where H is the magnetic field intensity vector, B is 

the magnetic field induction vector, J is the current 
density vector. For the case of the static magnetic 
irrotational field, the equation (5) is reduced to the 
expression (7). 

0rot =H  (7) 
Material relations are represented by the equation 

0 rµ µ=B H   (8) 
where µ0 is the permeability of vacuum, µr(B) is the 

relative permeability of ferromagnetic material. The 
closed area Ω, which will be applied for solving the 
equations (6) and (7), is divided into the region of the 
sample Ω1 and the region of the medium Ω2. For these, 
there holds Ω = Ω1∪ Ω2.. For the magnetic field intensity 
H in area Ω there holds the relation (7). The magnetic 
field distribution from the winding is expressed with the 
help of the Biot-Savart law, which is formulated as 

3
1=

4
d

π Ω

×
Ω∫

J RT
R  

(9) 

where R is the distance between a point in which the 
magnetic field intensity T is looked for and a point where 

the current density J is assumed. The magnetic field 
intensity H in the area can be expressed as  

= mgradφ−H T  (10) 
where T is the preceding or estimated magnetic field 

intensity, φm is the magnetic scalar potential. The 
boundary conditions are written as  

( )n T =0mgradµ φ⋅ −u  
on the areas Γ3 and Γ4. 

(11) 

where un is the normal vector, ΓFe-0 is the interface 
between the areas ΩFe and Ω0 ∪ ΩW. The area Ω0 is the 
region of air in the model, the area ΩW is the region with 
the winding. The continuity of tangential elements of the 
magnetic field intensity on the interface of the area with 
ferromagnetic material is expressed 

( )n T =0mgradφ× −u  (12) 
By applying the relation (10) in the relation (11) we 

get the expression 
0=rad-T m00 φµµµµ gdivdiv rr  (13) 

The equation can be discretized (13) by means of 
approximating the scalar magnetic potential 

( )m
1

, ,
NN

j j
j

W x y zϕ ϕ
=

=∑   

pro ( ), ,x y z∀ ⊂ Ω  

(14) 

where ϕj is the value of the scalar magnetic potential 
in the j-th node, Wj the approximation function, NN the 
number of nodes of the discretization mesh. By applying 
the approximation (14) in the relation (13) and 
minimizing the residues according to the Galerkin 
method, we get the semidiscrete solution 

1

grad grad d 0
NN

j i j
j

W Wϕ µ
= Ω

⋅ Ω =∑ ∫
,  

1,i NN= …  . 

(15) 

The system of equations (15) can be written briefly as 

[ ] 0T
ij ik ϕ⎡ ⎤ ⋅ =⎣ ⎦ ,  { }, 1,i j NN∈ …  

(16) 

The system (16) can be divided into 
I

D

⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥
⎣ ⎦⎣ ⎦

U 0
K

U 0 ,  
(17) 

where UI = [ϕ1,…,ϕNI]T is the vector of unknown 
internal nodes of the area Ω including the points on the 
areas Γ3 and Γ4. UD = [ϕ1,…,ϕND]T is the vector of known 
potentials on the areas  Γ1 and Γ2 (the Dirichlet boundary 
conditions). NI in the index marks the number of internal 
nodes of the discretization mesh, ND is the number of the 
mesh boundary nodes. Then, the system can be written 
further in 4 submatrixes 

The system of equations (16) can be solved with the 
help of standard algorithms. The scalar magnetic 
potential value is then used for evaluating the magnetic 
field intensity according to (10). 

3  NUMERICAL MODEL 
The numerical modelling results are represented in 

fig.2 and fig.7. The numerical modelling results were 
then used for the representation of the module of 



 

 

magnetic induction B along the defined path. For the 
model meshing, the element size selected as optimum 
was 0,5.10-3m. The boundary conditions ±ϕ/2 were set to 
the model edges, to the external left and right boundaries 
of the air medium, as represented in fig.1. The excitation 
value ±ϕ/2 was set using again the relation (21).This is 
derived for the assumption that, in the entire area, there 
are no exciting currents, therefore there holds for the rot 
H = 0 and the field is irrotational.  

Consequently, for the scalar magnetic potential ϕm 
holds 

mgradH ϕ−=  (18) 
The potential of the exciting static field with intensity 

H0 is by applying (18) 
zHdzuH zm ⋅=⋅= ∫ 00ϕ

 
(19) 

where 

r

BH
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Then  
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where z is the total length of the model edge. 

4 EXPERIMENTAL VERIFICATION 
The experimental measuring was realized using the 

MR tomograph at the Institute of Scientific Instruments, 
ASCR Brno. The tomograph elementary field 
B0 = 4,7000 T is generated by the superconductive 
solenoidal horizontal magnet produced by the Magnex 
Scientific company. The corresponding resonance 
frequency for the 1H cores is 200 MHz. 

 

 
Fig. 3 Elementary configuration of the MR magnet for 

the 200MHz tomograph, ISI ASCR 

 
Fig. 4 The measured preparation. The preparation 

seating in the tomograph 

5 THE COMPARISON OF RESULTS: 
NUMERICAL MODELLING AND MEASURING 

 
Fig. 5 The magnetic induction B pattern, numerical 

model, without the sample 
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Fig. 6 The measured pattern of magnetic inductione B, 

through the medium, without the Sample 

6 CONCLUSION 
The numerical modelling and analysis of the task 

have verified the experimental results and, owing to the 
modificability of the numerical model,  we have managed 
to advance further in the experimental qualitative NMR 
image processing realized at the ISI ASCR 
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Fig. 7  The  magnetic induction B pattern, numerical 

model, quartz glass, ∆B=17 µT 
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