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Abstract: The paper deals with numerical modeling of a three-phase harmonic-current carrying shielded line. In most similar 

cases, computation of magnetic field and other associated quantities is realized using the finite element method that is effective, 

reliable and the results obtained correspond to the physical reality. Nevertheless, the method may become problematic when particu-

lar subregions (conductors, insulation, shielding elements) are geometrically incommensurable, which is even the case of thin shield-

ing shells. That is why the authors use the integral approach for modeling of the relevant effects. Presented is its basic continuous 

mathematical model that is solved numerically. The theoretical analysis is supplemented with a typical example.  
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INTRODUCTION 

One of the structural elements of heavy-current lines 
are often the shielding shells, whose main purpose is to 
reduce the magnetic field in their vicinity. Modeling of 
the effects of the shielding shell is not easy and usually 
must be carried out numerically. Reliable and robust for 
this purpose are various differential methods, particularly 
FE analysis. Nevertheless, application of these methods 
may become problematic when the individual subregions 
of the system (conductors, insulation, shielding elements) 
are geometrically incommensurable, which may lead to 
problems associated with the generation of the discretiza-
tion mesh.  

The first attempts to numerically solve problems of 
dynamic shielding started appearing in the seventies and 
the eighties of the last century. The relevant papers usu-
ally present methods consisting of the combination of 
analytical methods and various numerical techniques. The 
methodology was principally applied to the nonmagnetic 
cylindrical single or multiple shells (see, for example, 
[1]–[5]).  

The authors offer a method based on an integral ap-
proach, which may sometimes prove to be quite a useful 
and suitable alternative. This approach, of course, is not 
new, see, for example, [6]–[8], but in the past it was not 
used too frequently because of their drawbacks (necessity 
of working with dense or fully populated matrices, com-
putation of various complicated proper and improper 
integrals etc.).  

The paper presents the basic continuous integrodiffer-
ential mathematical model of the problem that is solved 

numerically. The theoretical analysis is supplemented 
with a typical example whose results are discussed. 

1 FORMULATION OF THE TECHNICAL PROBLEM 

Consider an arrangement in Fig. 1 containing three 
nonmagnetic phase conductors of any cross-section that 
are surrounded by a thin, well electrically conductive 
shielding shell that is also nonmagnetic. The phase 
conductors carry harmonic currents of the same 
amplitude I , but mutually shifted by 120°. The task is to 
determine the distribution of the current densities induced 
in the shielding shell and their influence on the resultant 
magnetic field. 

 

Fig. 1. Basic arrangement of the solved task 
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2 CONTINUOUS MATHEMATICAL MODEL  

First we will present a general mathematical model 
valid for any linear system, whose parts can, moreover, 
move.  

Let the system contain n  nonmagnetic metal bodies 
, 1, ,j j nΩ = …  (Fig. 2) whose electrical conductivities 

are in turn , 1, ,j j nγ = … . The bodies carry currents 

( ) , 1, ,ji t j n= …  and can move at time variable 

velocities ( ) , 1, ,j t j n= …v . The system is homogeneous 

and its permeability is 0µ . 

 

Fig. 2. A general system with n  nonmagnetic bodies 

 
Generally, the basic task is to determina 

• the distribution of current densities in the bodies that 
is a function of space and time, 

• the forces acting on the individual bodies of the 
system, 

• the corresponding volume Joule losses in the bodies 
and their temperature rise (when necessary).  

The knowledge of the above quantities is a must for 
the following thermal, mechanical and other calculations, 
for example in various coupled problems.   

The magnetic vector potential A  at any reference 
point k kQ Ω∈  in the system in Fig. 2 is given by formula 
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Here ( ),jP tJ  denotes the total current density at a 

general integration point jP  whose distance from the 

reference point ( )
k j

Q Pr t  is (due to possible mutual 

velocity between the bodies j  and k ) generally a 

function of time. The function ( )0 tA  is not known in 

advance and must be determined indirectly, as will be 

shown later on. The total current density ( ),jP tJ  at any 

integration point P  consists of two parts: the first one 

denoted as ( )ext ,jP tJ  comes from the field current 

(external sources) and the second one ( )eddy ,jP tJ  comes 

from the time variation of the magnetic field. 

The second Maxwell equation for fields with 
movement reads 
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and its formal solution reads 
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where ϕ  is usually interpreted as a scalar electric 

potential.  
After multiplying (3) by electrical conductivity γ  of 

the involved media we have 
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whose particular terms can be interpreted as 
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Combining  (1), (4) and (5) at point k kQ Ω∈  and time 

t  provides 
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which, after performing the time derivative, gives 
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where ( ) ( ) ( )kj k jt t t= −v v v denotes the mutual velocity 

between the k − th and j − th body (so that ( ) 0kk t =v ) 

and ( )0k tJ  is an unknown function given as  
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These functions must be determined from some 
supplementary conditions. One of them is the indirect 
conditions in the form  

( ) ( ), d
j

j j j
S

Q t i t⋅ =∫ J S                     (8) 

where the integration in (8) has to be carried out over a 
suitable cross-section of the j − th body of the system 

(the selection of such a cross-section in case of 
geometrically complicated bodies is, however, not easy 
and usually depends on the task solved).  

In case of a 2D arrangement without motion the basic 
equation (6) may be simplified considerably. Moreover, 
when the field currents are harmonic, all current densities 
and also magnetic vector potential may be expressed in 
terms of their phasors. 

Consider an ideal 2D system containing generally 
several active and passive parts that is depicted in Fig. 3. 
Both magnetic vector potential and current densities have 
only one nonzero component in the direction of axis z . 



 

 

Now the modified equations describing these quantities 
read 
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Fig. 3. A general 2D arrangement 
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where the significance of particular symbols is the same 
as in (6). The integration is now performed not over the 
volumes of the individual bodies, but just over their 
cross-sections. 

3 NUMERICAL SOLUTION OF THE CONTINUOUS 

MODEL 

The solution of the system (9) has to be carried out 
numerically. First, all the surfaces , 1, ,iS i n= …  have to be 

discretized. Then we can proceed in two ways. The classical 
way consists in approximating the actual current density in 
every cell by a constant value at its midpoint. The number of the 
degrees of freedom (DOFs) is now equal to the number of cells 
+ number of the indirect conditions. A more sophisticated and 
efficient, but also much more laborious algorithm starts from a 
suitable modification of the Galerkin technique. This technique 
is based on replacing the actual distribution of current density in 
every element by a linear combination of the trial functions 
(here in two variables ,x y ). The most convenient is to create 

an orthonormal system of the trial functions whose usage 
improves the conditionality of the system matrix. The trial 
functions are usually polynomials of a selected degree, whose 
coefficients must be determined by specific integration.   

A more detailed description of the possibilities can be 
found in some previous papers of the authors (see, for 
example, [9] and [10]) 

4 ILLUSTRATIVE EXAMPLE 

The methodology was tested on several examples In 
this paper we present the computation of magnetic field 
in an arrangement of a three-phase system of conductors 
in a shielding shell. The system has the following 
parameters (see Fig. 1): 400I = A, 1000f = Hz, 

0.05ir = m, e 0.055r = m, 0.013R = m. The phase 

conductors have square cross-sections. 
The calculation is based on the following facts: 

� The distribution of current densities in the phase 
conductors is not affected by the shielding shell and 
is the same is if were not for the shell. 

� On the contrary, the distribution of the current 
densities in the shell is affected by the instantaneous 
distribution of the current densities in the phase 
conductors. 

� The total current in the shielding shell is (due to 
symmetry) equal to zero. 

Starting from these statements, the calculation 
consists of two steps. In the first one we calculate the 
distribution of the current densities in the phase 
conductors (that includes both skin and proximity 
effects), while in the second step we calculate the 
distribution of the current densities in the shell.  

The system was solved numerically using the zero-
order technique by the code developed and written by the 
authors.  

Fig. 4 shows the distribution of the force lines near 
the system of the conductors without shielding shell. 

 

Fig. 4. Distribution of the phasors of the force lines in the 

system without the shielding shell  

 

Fig. 5. Distribution of eddy current densities along the thickness 

of the shielding shell for varying angle α  (see Fig. 1) 



 

 

Fig. 5 shows the distribution of modules of the current 
densities induced in the shell (along the thickness of the 
shell for varying angle α , see Fig. 1). The distribution is 
repeated after 120°. 

5 CONCLUSION 

The algorithm provides results that agree with the 
data obtained by other already validated methods (finite 
element analysis etc.). Its further development can be 
seen in using elements of higher-order of accuracy. 
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