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Generalized Morse Wavelets

Sofia C. Olhede and Andrew T. Waldefsssociate Member, IEEE

Abstract—This paper examines the class of generalized Morse via solving a relevant eigenvalue problem and ftimde-scale
wavelets, which are eigenfunction wavelets suitable for use in eigenscajogram@\n eigenscak)gram is asca|ogram' where the
time-varying spectrum estimation via averaging of time-scale \yayelet is an eigenfunction derived from a time/frequency con-

eigenscalograms. Generalized Morse wavelets of ordér(the cor- trati bl = . bl t of orth |
responding eigenvalue order) depend on a doublet of parameters CENralion probiém. For an eigenprobiem, a set or orthogona

(3, ~); we extend results derived for the special cas = v = 1 €igenfunctions are obtained, and we may label the fifsof
and include a proof of “the resolution of identity.” The wavelets these, ordered by corresponding eigenvalue, as having “orders”
are easy to compute using the discrete Fourier transform (DFT) 1 = 0,..., K — 1. Using thesek eigenfunctions, a set df

and, for (8, v) = (2m, 2), can be computed exactly. A correction &;genscalograms can be computed and averaged to produce the
of a previously published eigenvalue formula is given. This shows . .
time-varying spectrum estimate.

that for v+ > 1, generalized Morse wavelets can outperform the
Hermites in energy concentration, contrary to a conclusion based A classical concentration problem is to look for the signal
onthey = 1 case. that loses the least energy after a truncation first in time and
For lfot?%ex Siglnf}lS, sgalo?_ram Ia?_alyses lmlJSt belc?”ied (j’(;ﬂ then in frequency, and the concentration region is the Carte-
using both the analytic and anti-analytic complex wavelets or o ; - ;
and %ven real wave)I/ets, whereas for):eal signrc)':tls, the analytic com-sIan produc[—T/2, T/2]. X [_.3/2’ B/2 .'The solutions (eigen-
functions) of the resulting eigenequation are the prolate sphe-

plex wavelet is sufficient. ) '
) roidal wave functions. Thomson [1] proposed the use of mul-
Index Terms—Scalograms, spectrograms, time—frequency anal-

ysis, wavelet transforms.

1 2

S(a,b) = m

tiple discrete taper estimators of stationary spectra based on dis-
crete prolate spheroidal sequences. Frazer and Boashash [2] ex-
tended Thomson'’s approach by segmenting the signal into qua-
. INTRODUCTION sistationary portions and computing the stationary spectrum es-
HE continuous wavelet transform provides a method féimator for each portion.
analysis of a signat(#); working with a single, possibly ~ This energy concentration problem is posed “in two times
complex-valued, wavelet functiori(¢), we can consider the one dimension,” and a general joint time-frequency perspec-
time-scale decomposition of a signal through the scalogrdive should relate to “one times two dimensions” (see [3, p.
(modulus-squared of the continuous wavelet transform) ~ 315]). Bayram and Baraniuk [4], [5] treated the concentration
problem in this latter form, looking at time-varying spectrum
/OO w(t)* <t - b) dt estimation via averaging dfme-frequency eigenspectrograms
oo a (a spectrogram being the modulus-squared of sliding-windowed
which expresses the energy of the signal at any scale) and complex ;inuspids), using a set of Hermite eige?‘func“o.” win-
time b. Here,*(-) denotes the complex conjugatessf.). dowg derived in [6] and optlmally concentrated in a region of
. ) ] the time—frequency domain.

Consider for a moment the field of spectrum analysis of sta- ayram and Baraniuk also looked at affine class time-scale
tionary stochastic ano!/or noisy signals. Research has showne[- enscalograms, using a set of Morse eigenfunction wavelets,
that much can be gal_ned by the foIIowmg steps. A set _Of MWhich is discussed in [9] and optimally concentrated in a
thogonal datg tapers is created, each giving rise to a d'ﬁer?%ion of the time—frequency domain, excluding zero fre-
spectrum estimate. These ;pectrym estlmates can then'be é’ncy. Generalized Morse eigenfunction wavelets of orders
aged, and the resulting estimate is more interpretable since the_ 0.....K — 1 depend on the choice of a doublet of
variance is much reduced. The same general approach ca gl%\me:[ers’/i ) when~ = 1, the zeroth-order wavelet
considered for scalogram estimation of stochastic and/or norf)yknown as’a éauchy Wavele'é ([10, p. 29]). Bayram and
signals. We wish to use several orthogonal wavelets from Whiéjaraniuk concentrated on the Morse’eigenfunction wavelets
we can create a set of different scalograms, which may be av%rr-ﬁ — =1
aged together to produce a low variance scalogram estimate. In this paper, we carefully analyze the generalized Morse

This paper considers the genesis and properties of a set ’ . )
of such orthogonal wavelets. We will approach the proble%aveIetS (GMWs) for gene_rf;ﬂ andy. Section I! reprises the_

ime—frequency concentration problem for which the Hermite
eigenfunctions are the solution and shows that the energy con-
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the operator given here corrects the erroneous formula state@Restricting the signal to a domafid of time—frequency space
[9, p. 680]. Most importantly, from a practical perspective, wdefines the operatar(t) — (Ppx)(t), where
show that the GMWs can outperform the Hermites in energy

concentration whery > 1; this is contrary to the conclusion _
in [5], which was based on the= 1 GMWSs. The section con- (Ppz) (t) = // s, (8) (P51, ) dsdf.
cludes by noting that for each eigenvaldg, k = 0,..., K —1, (s:5)€D

a pair of eigenfunctions (wavelets) are obtained, where one isl'he ratio of the energy of the signal limited to the domain

an analytic function and the second its (anti-analytic) compl% E,(Pp) to that of the originalE,, is a real-valued quantity
conjugate, and a computational method is given for their comZ’D)’” say ’

putation from the frequency-domain formula. Section IV is corf!
cerned with the fact that since the pair of wavelets can also be

written as an even and an odd wavelet, two alternative orthog- w(D) = E. (Pp) = ((Ppe), (Ppw».
onal partitions ofL%(R) are achieved. Evenness and oddness Eo Eo

are also interpreted in terms of time direction through the COfr, is positive and bounded by unity, andZifis bounded, then
tinuous wavelet transform. For the special case of even and PQSke [6]) the operator is of trace class [12, pp. xvii, 37]. The
tive g andy = 2, itis shown that the zeroth-order even Wa"eletéperator is also self-adjoint, i.elz, Ppy) = (Ppz,y), and
can be found explicitly, in fact, in terms of Hermite polynomial§heref0re, by the Hilbert-Schmidt theorem [13, pp.t 203, 209],

and the odd wavelets by Hilbert transformation. there is a complete orthonormal baéls, (t)} for L%(R) so that
Section V is concerned with the effect of the orthogonal su Pphi)(t) = Aehi(t).

spaces (even{odd or analytic/antianalytic) on the computationThen, any function:(t) € L2(R) can be written

of time-scalesigenscalogramsvhich decompose the energy of

the signal. It is shown that for real-valued signals, a scalar ap- o0

proach is sufficient, using only the analytic wavelet, whereas z(t) = Z hi () {hy, =) .

for complex-valued signals, a vector approach is needed, using k=0

wavelets from both subspaces. With the results of this paper,

we conclude that the GMWs are a very useful multiple wavelb@t z(t) have unitenergy, = (z,z) = Y 72 [(hx, 2)|* = 1.

class with wide applicability (e.g., [11]). As the spectrum ofp is purely discrete [6], we can order the
eigenvalues in siz&yo > A; > ---. Then

A. Important Notation and Definitions

NE

<hk, .T) (Pphk) ; i <h1, .T) (Pph1)>

The inner product of two complex functions is given M(D)=<
c=0 =0

by (z,y) = [ga*(t)y(t)dt, where* denotes the com-
plex conjugate. We will need to work with both ordinary
frequency and angular frequency; the Fourier transform
of a function =(¢) in terms of frequency or angular fre-

o~

(i, )™ (hay ) Ay (e, )

L,
NgE

?.
I
<)
~
I
<)

quency is here defined aX(f) = [gz(t)e " 'dt _ S B Y (B 25 Ae N
and X(w) = [qx(t)e ™'dt, respectively. The inverse ,;22( ) (e, ) A il

Fourier transform is given by(t) = [ X(f)e®™/tdf, and
z(t) = (1/[2n]) [ X (w)e™tdw, respectively.

M

(i, )P A2 <> 1, 2P NG = A3
k=0

o~
Il

0

Clearly, (D) is maximized for unit energy by taking
|(ho, z)|? = 1 and|(hs, z)|*> = 0 Vk > 0. Hence (D) takes
A. Operator its maximum value of\3 for x(¢) = ho(t) or a complex mul-
tiple thereof. If we want to find a functioa(¢) that maximizes

In order to deal with domains that are more general thafy,) \yhile retaining the normalizatiof, = 1 and such that
Cartt_asan products, Daubechlgs [6] used an approach base ¢ Ar’1$> =0,k=0,...,j — 1, thenz(t) = h;(t) results, with
localization operators, and similar results can be found by co (D)
sidering related operators [7], [8]. The “coherent state” asso-
ciated with a point{, f) in time—frequency space is, ;(¢) =
27/t (t—s). The choices(t) = n—1/4e=*"/2 (the Gabor wave _ _ o
function) attains the Heisenberg-Gabor inequality; () has WhenD corresponds to the disc pf radiésabout the origin
the best localization around a poist () and is used here. Thein time-angular frequency space, 1.8r = {(s,f) = 87+
following “resolution of identity” holds for:(t) € L2(R) (2nf)* < R}, then the eigenfunctions take the form of scaled

Hermite polynomials [6]. Given the first two Hermite polyno-

mials Ho(t) = 1 and H, (t) = 2t, subsequent ones can be gen-
erated from the recursion

Il. TIME-FREQUENCY DOMAINS

maximized at)\f.

B. Hermite Eigenfunctions

#(t) = // b g (1) (g2} dsdlf.
(S7f)c|R2 Hk+1(t) = 2tHk(t) — 2/€Hk_1(t), k Z 1.
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The orthonormal Hermite eigenfunctions take the form It follows from [16, sec.3.478(1)] that

2 2
—7/2 Ve ‘ dw =21 or / Ve ‘ df = 1.
Hylt)e ons | )| do = 2n [ e

BESEVIFEYCESV @
) ) _ Let us introduce translation and dilation parameternd
(see [14, p. 93]). The corresponding eigenvalues are jgnc R, respectively. (When the dilation parameter can only be

hi(t)

terms of the incomplete Gamma functio(a,b) = positive we will denote it by € R*.) Now, we have (3), shown
Joy*~remvdy/T(a) at the bottom of the page.
In addition
R2 R?/2 ykefydy 3 ~ Cabwlpl i1 ~ L
A(R) =P <k+1, ?> :/0 m Va(,'bﬁ)(’/) :|a|1/(2~,)6 bulv| T y(8,) (|a|(1/~,) 1a1/)
k' o ip2i _ ~11/(2v) ,—ibr|p| Tt
T J -
=1—¢F /QZ ——, k=012, R|a| ¢ U(r/2)—(1/2)(T)

whereI'(-) denotes the usual gamma function, and the final _ 1 7—0b

equality can be found in [15, egn. 6.5.13]. _/R ﬁ%‘/?)—(l/?) < a )
If D corresponds to a disc of radius about a point £, IR

2r f,) in time-angular frequency space, then the eigenfunctions e n(v)dr.

becomee®™fothy(t — s0), k = 0,1,2,. ... Note that

(8,7v) _ B
. TIME-SCALE DOMAINS VLT () =V, (=) 4)

A. Operator Let véﬁg”)(t) denote the inverse Fourier transformtg%ﬁ’”’)(u).

We will now develop the more complicated framework Oil'hen7
the generalized Morse wavelets. We begin with a version of the 1 =0
Cauchy wavelets [10, p. 29] given by & 0) Uéaz,ﬁ)(t) I/ = W(r/2)=(1/2) < = )L(Tv t)dr
[l . ’ R \/m a
2T (p+1) (1 where
= I+ e "

1 R
L(r,t) = 3 /R {n(u)cf“’(ﬂl’l 7t)d1/} dr.

Therefore,L(-,-) is a function that transforms the time param-
2w e ifw € Rt eter, and after this transformation has taken place, our new time
Up(w) = {6”(2”*1) ’ otherwise variable is dilated and translated. Note that whea 1, time is
’ ' not altered before scaling and translating. Furthermore
Now, we introduce parametefs> 1, 5 > (v — 1)/2 and let
r = (28+1)/~. First, define a weight function(w) associated /
with a change of variables by

which has a Fourier transform of [16, eqn.3.382(7)]

2
” %fﬁﬁ V;E’A’)(V) dv ifa,v e Rt )
d - . 2 .
n(w) = [%ﬂwr’_lw)} = |w|O1/2 /y = e ‘vaﬁﬁm(y) dv ifa,veR .
and, second, the frequency domain function and from (2) and (3), we see th@éti’”)(t) has norm unity.
The following “resolution of identity” holds for
V(’B”Y) (w) Il[(,,/Q)_(l/Q) (|w|”’_1w) 7’](&)) ‘T(t) € LQ(R)
_ %WW@““'“'%I, if weRT z(t) = Cy vé’ijw (t) <vé’i}w,x> a~*dadb  (6)
0, otherwise. (a,b)cR?
V;”i’w(u) _ |C~L|1/(2v) v (8,7 (|C~L|(1/v)—1 Eu/)
_ 2<T/2>+<1/j;(¢r[)m1|a|”2 p|Pe= @il ™ i G e RY @)
0, otherwise.
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whereCy = (23 + 1 — «)/(4y=). This is proved in the Fourier Then, in terms ofi € RT andb € R, if we have
transform domain, i.e., we show in the Appendix that
(a,b)e A = (s,/) €D

X(v) = Cy Ve w) (Vi X ) a2 dadb. (7)
/L m2 ’ ’ we can rewrite our operator as
(a,b)ER
_ _ N S "
Consider a symmetric bounded sétof R=. Using the corre- (p,, ) () = Co// [Ui’ijw(t) <Ul(lfféw)7x>
spondence A
a= O 2|7 sign(f); b= Cyts|alt— /Y +o7) () <v<_‘ff_> >}db a~2da.

for constants”; andC,, which will be defined later, we have The domairD = D 5, over which the operatdPp,. , _ can

(a,b) € A — (s,f) €D be characterized [9, p. 678] is given by

and define the operat@?-,, wherex (¢ P-x)(t), b 27 0 \?
peratdty,, wherex(t) — (Pp)(t), by Dw:{(&f)m?.(i)( )

|2 £
(Ppa) (t) = Co // ol ) (o857 wy a2 dadn. ,
: o\ o
(ah)ea <20
. . o |27 f]| 2 f|

The positive self-adjoint operator is trace class since if we take

any basis{¢;} of L2(R), then for finiteD whereC; andC, are
2
> (W Pty =Co // Z (o7 )| 2da 24 (74 1) yi2vr (v - 1)
1 S by Ch=——+——2;:Cy= .
el ' I(r) ’ I(r)
—=C ‘ B B ‘ a=2da db . : -
0 // } <U“ v Yy > “ The regionDc g, consists of two parts symmetrically placed
(a,0)cA about thef = 0 line, but the region never includes = 0
=Cp a=2da db since a wavelet is a bandpass filter; the wavelet transform treats
e frequencies in a logarithmic fashion, and herie, s -, cannot
(2B +1- include zero frequency, however largeis.
50O // dsdf < oo Under the change of variables
1~2

(s:.)cD
OY2x|f77; b= Cytsat= /)
where we have made use of (5).

The ratio of the energy of the signal limited to the donBin the setDc 3~ corresponds exactlyfo —iC|2 < (C2—1),i.e.

to that of the original ig«(D) = {(Ppx), (Ppa))/Ex. Then,by A = {(a,b): a® +b? +1 < 2aC’} in the half-plane defined by
the Hilbert-Schmidt theorem, there is a complete orthonormal 4 4 4 € C, 3(2) = a > 0.

basis{tx(¢)} for L*(R) so that(Ppie)(t) = Atk(t) and,  The area ofDc 5, may be derived as
as shown in Section II-A, whef,, = 1 the maximum energy
is (D) = A3. The functionz(¢) that maximizeg:(D) while

retaining the normalization and such thalt,,z) = 0, k = [Pesql :27r// dsdf

0,...,4 — Lis simplyz; (), andyu(D) is maximized at?. (Sg)gpwn
_ 1“2 —2
B. Area of Concentration =2 X v a”"dadb
. . . . . a’+b7+1<2aC
The resolution of identity can be rewritten in terms of the
positive parametet using (6) r (7 +1- —) I (7 + A,) L
= a”“dadb
YI2(r)
a’+*H <2aC
z(t) = CO/ a”? / vé’@ﬁ) (t) vi’aﬁ), x -
acR+ beH|: o < ’b > 2r(C-1)T (7’—1—1—%) r (r—i—%)
= 20, .
8,0 (200, 2 b }da 0
The factor of 2 takes into account that both the equal-sized pos-
or, because of (4) and (7), as itive and negative frequency segmentsxf s , are mapped to
a®+b*+1 < 2aC witha > 0. We note thaD¢ g, = 67(C—1)
X() =C a2 / v, V(’B’A’),X whenj = v = 1, agreeing with this special case given in [9,
) 0/aeR€+ { beIR{|: we ) < b > eq. (3.11)].

Whens = 0, b is also zero, and then, satisfies

By B .
+Var )<Va,b ( )7X>} db }d“ ®) C—NC*—1)<a<C+/(C?-1).
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Fig. 1. Left: Hermite eigenvalues,(R) (dashed) and Morse eigenvaluesFig. 2. ~Left: Hermite eigenvalues, (2) (dashed) and Morse eigenvalues
Awrn(C) for 3 = ~ = 1 (solid) for domains of area 10 (top) and 150 (bottom)A«:-(C) for 3 = 20,4 = 3 (solid) for domains of area 10 (top) and 150
Right: Matching domain®; andDc¢ ; ;. (bottom). Right: Matching domair®:; andDc 20,3

so thath,.(C) = Iic—1)/c+1)(k + 1,7 — 1). Further, when
r > 2is an integer, we can write [15, eqn. 25.5.7]

k+r—1r—2 i
—1/~ L1 . c—-1 k+r—1 2
270 (r+1) wo-(e11) () (E

=0

For f > 0, we havef = Cy/(2ra*/7) so that

fmin = TR
{27rF(7’) [C+./(C2 - 1)] W}
agreeing with the special cage= v = 1 (orr = 3) given in
As f > 0 varies betweerf,.in and fuax, the corresponding  [9, €qn.4.6].
value on the boundary @ 5  is given bys = bCa=1+1/7), The energy concentration corresponding to ke Hermite

wherea = [Cy /(2x f)]7, andb = /(2aC —1—a2). Forf < 0, eigenfunction and théth Morse eigenfunction is, as we have

the boundary of the region is given by the obvious symmetrySeen, given by the square of thi eigenvalue. Wit = v = 1,
Fig. 1 shows the shapes of the domaimg and D¢ 1 ; for Whichisthe nongeneralized Morse case, we see in Fig. 1 thatthe

domain areas of 10 and 150, whereas Fig. 2 compeand Hermite eigenfunctions outperform the Morse ones, agreeing
with [5]. However, it is easy to find many values gfand v

Dc 20,3.
from the generalized Morse forms, for which the reverse is true:
C. Eigenvalues an example being = 20 andfy =3, as_shown_ in Fig. 2. Itis
the propertyy > 1 that is crucial to obtaining high energy con-

The form of each eigenvalue @5 , depends on and centrations, in particular, exceeding that of the Hermite eigen-
v (throughr) and onC. Unfortunately, the formula for the functions; therefore, the generalized Morse forms with 1
kth-order eigenvaluey;.(C), say, stated in [9, p. 680], is in- are critically required for this reason.
correct and may have led Bayram and Baraniuk [5, p. 306] to
conclude that “no closed form expression exists for the eigeb: Analytic and Anti-Analytic Eigenfunctions
values for any choices of andy other thans = v = 1.”A The spaceL(R) can be written as the direct sum of two
rederivation shows that in fact closed subspace$? (R) and H2 (R)

L*(R) = H3(R) @ H2(R). (9)

Clr+ k (C-1)/(C+1) ,
A (C) = T (1—; ) : / #F(1—2) "2 de.
(k+ 1P =1) Jo Here, elements of the projectidi¥(R) — H3 (R) are defined
- . , by z(¢) — x(t)/2+iH{z(¢)/2}, and elements of the projection
Th lete beta funct defined as [15, .6.6.1 S
e incomplete beta function is defined as [15, ean. 6.6.11 %5 o' 12 Ry are defined bys(t) — a(t)/2 — iH{z(t)/2}
[10, p. 28], whereH{{-} denotes the Hilbert transform. We see
L(u+v) that the subspacH? (R) contains “analytic signals,” i.e., func-

Y
_ u—1 _ v—1
Ly(u, v) = (u)(v) /0 N G tions for which the imaginary part is the Hilbert transform of
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the real part. A key property of an analytic signal is that it?(R). The continuous wavelet transform (CWT) is defined as
Fourier transform is supported by the positive frequencies onf§2, p. 24]
The subspacéf? (R) contains “anti-analytic signals,” that are

supported on the negative frequencies only. W (a, b;z,v) = / < b) dt, a,beR.
The kth eigenvalue of?p,. , . has multiplicity two with as- Vlal a

sociated Hermitian eigenfunctiom/gtﬂﬁ(t), which is an ana- Negative scales correspond to time-reversed wavelets, e.g., for
lytic wavelet, andy,_, . (), which is an anti-analytic wavelet, ¢ > ¢

both of norm unity. The Fourier transforms of these functions 1 P i

arereal-valuedon the positive and negative frequency axes, re- —p <_> —p < )

spectively, with [9, p. 679] Va —a Va

We can write any wavelet as

W (F) = VEAwp (20 )0 L (2f2n ) (10) 1 1
9(t) =3 [0 + $(=D] + 3 [0 — (=)

:% [w) (t) +¢(0)(t)} , say

for f > 0 and zero otherwise, and

Wig o (F) = V2Arp~ @rlf) e @D Lg (2127 | £1])

, i.e., a sum of an even wavelgt®) (t) = (1/+/2)[1(t) +(—t)]
for f < 0 and zero otherwise. Here,= » — 1 and A,z , = €., () (4 .
VIry2'T(k 4+ 1)/T'(k + )], and L (-) denotes the gener:’;\Iized"’.‘nOl anodd Wa_veleft (t) = (1/v2)[(t)—9(-1)]. Reversing
Laguerre polynomial time when using an even wavelet has no effect, and thus, the

odd part of the wavelet picks up any asymmetry in time. For the

. CWT with 0
Lce)—fj( " Tkt ot ) ks - 1
k — - I
I'le+m+DI'(k—m+1) m! . - . (e) . (o)
et ( I ) W (o, bi ) = (W (0 bz ) + W (a5, 9]
_ . . 1
Notice thatW, ., (f) = Vi, (-f) and since the Fourieriv(—q, b;z, 1)) =—— [W (a7 b;ﬂ?,z/}(e)) W (a,b;x,z/;@)ﬂ _
transforms are real, this means thigt, _ (t) andy;, W(t) are V2
complex conjugates, as expected. We will QaII@ ) and  W(a,b; 1) corresponds to time flowing in the same direction
V1.0, (t) the kth-order generalized Morse elgenfunctlons oior z andi; W(—a, b; x, 1) corresponds to time flowing in op-
wavelets. posite directions.
E. Computation off;", (t) B. Generalized Morse Wavelets
©350,7Y

To get a finely sampled representation of the complex waveletThe twokth-order generalized Morse eigenfunctions can be
o} 5., (t), we first find a frequency valug, that is up to twice combined to give two real Morse wavelets—one even and one
as Iarge as the frequency at Whrﬁﬁ w(f) dies down to zero. 0dd—for each eigenvalue, with Fourier transforms

Next, define forlV a suitably large power of 2 (such as 512) . 1 3
helD) =75 (Wi (D) + Vi ()]
o (Qfol) forl =0 N
Cr=4 RN ) v O, (1) = [ (1) — Wi ()]
0, fori=5+4+1,...,M—1 kb iy/2 L k8 k3B
whereM = nN is a larger power of 2 thaiv, e.g., take: = The corresponding even and ofith-order generalized Morse
Then, form = 0,...,M — 1, a periodic representation of theWavelets are given by
complex Wavelet is given by © ©
U0 =2 [ W (7 cosn e
M-1
+(p) 1 27wlm/M o e .
Y (mAY) = - l}% e 2mim! w,g;w:z/ﬁ W, (f)sin(2n f)df

With At = 1/(20f). SInce fy, [dus (H)7dt = 1, itis found  With 9355 _(£), 9475 _(#) € R, and analytic wavelet
thatAt Eﬁf‘g [543 (mAD]? = 1. Finally, 7,  is found by o
rotatmgz/; ) to be centered on zero, ardqg is found by wi,ﬁw( )= \/— [z/k M( )+ Wiy w( )} :
complex conjuganon
The real part ofz/;,j;m(t) being even and the imaginary part

IV. GENERALIZED MORSEWAVELETS being odd, of course, results in its Fourier transfoi, _ (/)
being real-valued, as already noted.
A. CWT and Even and Odd Wavelets For a real function:(t), the even and odd wavelet transform
The function to be analyzed(t) and the wavelet)(¢) are components can be recovered from the real and imaginary parts
both assumed to be finite-energy functions, ix€t), /(t) € of the complex CWT.
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3 Hence
2 t ' s .
2 272nlﬁ67t /4H2'rn <§> :/ (_1)7711,27716739 —ixt g
R
1
:2/ (—1)’"3:2’"6_’”2 cos(xt)dx
0 R+
0 0.5 1

4 frequency (f) SO that

(_1)7712—[771-1—(1/4)] 2 t
2 Z/)0 m,2(t) = IRVERE om | 5

VI [2m+ (3)] 2
0
2 From (1), we can see thazt;o 2mQ(t) is proportional to

exp(—t2/8)hon(t/2), where hk() is the kth orthonormal

*o 05 1 Hermite eigenfunction introduced in Section II-B. A finely
3 frequency () sampled version of/;éfgmg(t) can be computed by applying
2 a numerical Hilbert transform (e.g., [17, p. 361]) to a finely
. sampled version Ozt;éf'Q)WQ(t).
0
4 V. EVEN, ODD, AND COMPLEX WAVELETS AND SCALOGRAMS
2 e , A. Eigenscalograms

frequency (i) For a set of wavelet eigenfunctiogig(¢), £ =0, ..., K — 1,
we can define a multiple window time-varying spectrum esti-

Fig. 3. Left: Even (solid) and odd (dashed) generalized Morse wavelets fr?{ate derived from a real-valued functlm(t) as the elgenscalo-

3 =5,y = 2,for (top) k = 0, (middle)k = 1, and (bottom)t = 2. Right:

Corresponding frequency functiohy; ,(f). gram [4], [5]
K—-1
We have already obtained a partition b?( ) in terms of ) EO di |W (a, b, 4|
the analytic and anti-analytic Waveleﬁa andz/;k 8 (0 S(a,byz,) = fra=)
[see (9)]. The even and odd wavel@i,%) andz/;k M( ) kE dy.
=0

enable us to create a different orthogonal parnnorL%(R)

which can be considered to be the direct sum of a time directigere the{d;. } are weights. For example, using Morse wavelets,
invariant space (even functions) and a time direction sensiti could setl; = A7. (C) (the energy concentration measure)
space (odd functions). The advantage of this partition is tH&f chosen values g8, v (and, hencey), andC.

z/),(:'zg L) andzp,g?% ,(¢) are real functions. An example of even
and odd generalized Morse wavelets is givender 5andy — B- Real Signals

2 in Fig. 3, along with the corresponding frequency function Let D = 1/3", di. Then, withz(t) real-valued, the use of

defined in (10). the complex-valued Morse wavel&gtyﬁﬁ(t) means that
C. Time-Domain Eigenfunctions W* (a,by2, 9,0 )W (a, b5, 97)

For the special case ¢f= 2m, m € ZT, andy = 2, we can =W (a,b;z,9; ) W (a, b; @, [z/),j]*)
explicitly find the eigenfunctions in the time domain. We look —W (a be oz ¢_) W (a be oz ¢_)
at the casé& = 0; for k£ > 0, the same approach can be used, ’ ’
but it will be more complicated. Consider so that

e i S a,b;z,¢vt) =D did |W (a, by 2, ¢7F 2
z/}OanQ() /H\Ij(()%rnQ(f)CQ ftdf ( z/ ) zk: k{| ( z/k)|
2 D 2
22/ Aggam (27 )7 e cos(2m ft)df ) Z dk{|W (a,052,97)|
R+ L
2771—1—(3/4) 2 5 N2
meTw t)dw. + W (a, b2,
VT Ema 37 Jou @ ¢ coslende 7 O}

_1 N . + Q . —
We know from [16, sec.3.462] that T2 [S (@ by, ) o+ 5 (o, by ¢ )}

. ) + so the eigenscalogram can be viewednaglicitly making use
/(_1)7711,27716—39 it gy — 9= fre= /8Dy <ﬁ> of both theH3 (R) wavelet and theZ2 (R) wavelet. It is also
R straightforward to show that(a, b; z, ;") may be alternatively
whereD,, is the parabolic cylinder function. In addition, fromwritten as
[16, sec.9.253], we hav®, (z) = 27%/2¢ =" /*H,(2/\/2), 1ra . . .
whereH,, are again the Hermite polynomials (see Section I1-B). S (a, by, gif) = 5 [S (a, bz, ,)) +§ (%b;x’z/,( ))}
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W 0w @

W

Fig. 4. Top row, leftto right|W (a, b; @, ¥ ,)[2, W (a, b; 2, %3 )|, and their sum. Bottom row, left to rightV (a, b; «, {5 ,)|2, [W (a, b; ¢, v{% ,)|2,
and their sum.

via the other partition of.?(R). Note forz(¢) real-valued eigenfunctions into
2 €]
2W a,b;a:,z/)f 2: W a,b;.’l)’,i/)(é) <t :i|:z/)k (t):|
W ( ol ‘ ( 2 )‘ 2 P (t) 72 Lo
+ ‘W (a, b;a:,z/;,(f))‘ . For example, we could have
The even/odd partition is illustrated in Flg 4 which shows¢ (#) = 1 z/),;t’@ﬁ(t) o (1) = 1 z/)k 3 A/( )
the analysis of the real-valued signalt) = /3 ,(t) shown "\~ /3 (W) ‘ 2 z/lsot)a oI

in Fig. 3. With weights of unlty, the figure first shows (forThe integrated norm afy,(¢) equals unity. We then consider a

orderk = 0) |W(a,b; 9571/)002)|2 and |W(a, b; xﬂ/’oog)|2: vector form of the CWT:; for > 0
illustrating that the even and odd components occupy

(1) (t=b
separate parts of time/scale space and, second, shows W;(a,b;z,) = / [1/)*(2) (tj )]
their sum, with energy distributed over a domain of form V(2a) Jr U (150)
A = {(a,;b) : a® +b? +1 < 2aC} (see Section III-B). L [w (a b a?,z/)(l)>
Corresponding plots for ordér= 1 are also shown; we notice @
that because of the orthogonality of the eigenfunctions, there is \/2 Wy (a by x, 1y, )

now a “hole” at the point where the order= 0 eigenscalogram Now, the vector components here can be considered to be the
showed highest energy concentration. The higher order afs@ction(¢)s contribution at each point.(b) in each orthog-
leads to more dissipated energy concentration. onal subspace. These contributions are orthogonal and, hence,
cannot be added. The scalogramab can be considered to be

the “energy” of the function:(¢) at (a, b). Therefore, if we have

If z(t) is complex-valued, i.ex(t) = xzgr(t) + ixr(t), say, decomposed(t) into orthogonal subspaces bf(R), then we

C. Complex Signals

then we find that in this case must add each contribution of the energy. The energy is thus
9 |W (a7 b, 1/):) |2 simply the norm sqt?r(;:-d of the vectW ;,(a, b; z, v):
2 2 . L
=W (atszpf)| 4 W (a2l S(abe ) = DS AW (a, b0, 9)Wila, by z,4).
k=0
2| (a’ b xR’z/)’(“e)) w (a’ b xl’¢£0)) VI. EXAMPLE
(&) () To illustrate the improved interpretability and lower variance
—W(abxfz/) ) (ab'sz/) ) : i :
’ ’ resulting from using several wavelets in a scalogram computa-

This illustrates that when dealing with the most general forHPn we consider the following model for the real-valued signal

of signals (complex) and using orthogonal subspace represeii tg)

tions, we need to makexplicit use of both orthogonal compo- a(t) = [t — 64.5]71 4 [t — 180.5] 71 +0.5Z(t)

nents fora > 0. (Note thaty; (t) = ¢;7(—t).) If L2(R) is the whereZ(t) is Gaussian noise with mean zero and variance unity.
direct sum of two orthogonal subspaces, we can composite dine realization of 256 samples at unit sample interval starting
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3 g }

L |‘
i
||
o 100 200 o 100 200

i lirr

Fig. 5. From left to right, the noisy signalt), log,, of the scalogram of the noisy signal using the single Morse wav@t%g,( (t), andlog,, of the average
scalogram using the three Morse wavelefs, . (t), ¢7., . (t), andyy; (1), with 3 = 2 andy = 1.1.

from zerois shownin Fig. 5. The scalograms (dmg,, scale) of VIl. CONCLUSIONS

the noisy signal using the single Morse wavelgtand the simple

average scalogram using the three Morse waveigts);F, and Our results show that the GMWSs have a considerable po-
¥ are also shown. The average scalogram using the multipdatial in digital signal processing. A set of orthogonal (eigen-
wavelets produces a much cleaner and more interpretable imdgection) wavelets are exactly what is required for scalograms

revealing the noise-free components:(f). formed by weighted averaging. For complex signals, scalogram
CO V( "/) l/ <V( ) X> —Qdadb
(a,b)CR?
dvy (2a) B (2&)7’/2 s L
=7, C// /db/ e (a+ib)r” 1/1’86 (a zb)ulX(Vl)a 2
(=0 R+ R+ \/ VI(r)
d;/l 2|a| g - - 1(2|a|) S e ~,
T ! db da (a+ib)v|v|” —(a—ib)ry|v1| X 2
+Lw<0) / / /7 { |v|7e —\/F(7) |1/| e (r)a
(Zd " a—+ib)r” 70, wb)s —1~—
—I(U>O)Co/ ds/ db/R+ da{ () e (@tib) (a—ib) W”’X( 1”) s/mM-15-2
2 al)” ~ . v—1 ~ .
oo [ s [ [ d&{(r|(i|)) P @A™ @7 (o]5[(1)1) |s|1”15‘2}
2 v
=T,-0)Co / ds / dad B0 o=is P grs(s — 1) X (st/7) stm-2a2
R+ R+ F(7
2|al)" SO
+I(,,<0)CO/ ds/ da {( |I/|867QV|V| efa5|s|’8/w27r6(s— 1/|1/|”’71)X (s|s|1/”’71) |s|1/71&2}
R— R-
(2a)"

=T, C.
(v>0) O/RH{ F(T)

+I(V<0)CO /R{(I—J(Cﬂ)) |V|8 (wlylwleaylylw1|1/|’827rX(1/)|1/|1W&Q}d&

Ve g’ 1/827rX(1/) 1= ”’aQ}dEL

[\)

:CO |1/|W7727rX(1/)/ e 2l gr=2 qg
(,) Rt
=Cogs NG )|V| T2 X () — 1) (2u[r)

=X(), veR
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analyzes must be carried out using both the analytic and anti-ang] T.Ww. Parks and R. G. Shenoy, “Time-frequency concentrated basis func-

alytic complex wavelets or odd and even real wavelets, whereas
for real signals, the complex analytic wavelet is sufficient. The

wavelets are easy to compute using the DFT and(fory) =

(2m, 2), can be computed exactly. Our correction of the previ{10]

ously published eigenvalue formula shows thatfas 1, they
can outperform the Hermites in energy concentration.

The complex nature of the wavelets makes them ideal for a
alyzing phase relationships in vector-valued or multicompone

time series [11].

APPENDIX
RESOLUTION OFIDENTITY

Recall thatVa(fZ’”)(u) is defined as

27/ ) |alm 2 T +
o) if areR

0, otherwise.

|| e—(arivwl

Hence, our integral ovelR? in »» anda will collapse to two in-
tegrals: one oveR*? in v anda and one oveR—2 in v anda.
LetC’ = 2nyCy, whereCy = (28 + 1 — ~)/(4~ym). Then, we
have the equation at the bottom of the previous page, and
last integral follows from [16, eqn.3.478(1)].
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