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Abstract.  In most studies of the capacity of quantum channels, it is assumed
that the errors in the use of each channel are independent. However, recent work
has begun to investigate the effects of memory or correlations in the error, and
has led to suggestions that there can be interesting non-analytic behaviour in
the capacity of such channels. In a previous paper, we pursued this issue by
connecting the study of channel capacities under correlated error to the study
of critical behaviour in many-body physics. This connection enables the use of
techniques from many-body physics to either completely solve or understand
qualitatively a number of interesting models of correlated error with analogous
behaviour to associated many-body systems. However, in order for this approach
to work rigorously, there are a number of technical properties that need to be
established for the lattice systems being considered. In this paper, we discuss
these properties in detail, and establish them for some classes of many-body
system.
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1. Introduction

One of the most important problems of quantum information theory is to try to determine the
channel capacityof noisy quantum channels. In a typical scenario, Alice would like to send
Bob information over many uses of a noisy quantum communication link. As the channel is
noisy, this cannot usually be done perfectly, and so they must use some form of block encoding
to combat errors. The channel capacity is defined as the optimal rate at which information
may be transferred with vanishing error in the limit of a large number of channel uses. There
are a variety of different capacities, depending upon whether Alice and Bob are interested in
transmitting classical or quantum information, and whether they have extra resources such as
prior entanglement. In this paper, we will be concerned mostly with the capacity for sending
guantuminformation, and so whenever we write the term ‘channel capacity’, we will implicitly

be referring to thgquantumchannel capacity.

In most work on these problems, it has usually been assumed that the noisy channel
acts independently and identically for each channel use. In this situation, the transformation
&n corresponding ta-uses of the channel may be written asrafold tensor product of the
single-use channé:

En=E0&6® - ®&. (1)
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However, in real physical situations there may be correlations in the noise that acts between
successive uses, an interesting example being the decoherence of photons in optical fibres under
the action of varying birefringence, which can be correlated due to mechanical motion or slow
temperature fluctuationg]} In such situations, one cannot describe the action of the channel in

a simple tensor product form:

EnFERE® - L. (2)
In this setting, one must really describe the action of the channel by a family of quantum
operations corresponding to each number of uses of the charn&] 2, ..., oc:

{€nln. (3)

We will call any such family of operationsraemory channedr acorrelated channél Defining
the notion of channel capacity for such a correlated channel is not always straightforward.
In principle, a family of channels, such as equati@p hay not have any sensible limiting
behaviour a;m — oo®. However, in this paper, we will not need to discuss this issue in detail, as
we will only consider fairly regular channels that have a (unique) well-defined notion of channel
capacity.

In the case of uncorrelated errors, it has recently been shéjiingt the quantum channel
capacity of an uncorrelated quantum channel is given by:

®n
Q(&) = lim | (i ), (4)
wherel (§) is the so-calledoherent informatiorf the quantum channét
1 (§) :=supS(§(p)) — S(I &Y ) (¥ ])), (5)
)

whereS denotes the von Neumann entropyis a state, an¢i/) (| is a purification ofp.

Given that equation4) is the quantum channel capacity for memoryless channels, it is
natural to hope that the corresponding expression:
Q&) = lim L&) ©)

n—o0 n

will represent the quantum channel capacity in the case of correlated errors. However, this will
not always be the case, not least because this limit does not always 2xstd[see footnote 5).
However, in this paper, we will not only assume that this limit exists, we will also initially work
under the assumption that it represents the true quantum channel capacity. We will later discuss
this assumption in some detail.

A similar situation occurs for thelassical capacity of correlated quantum channels,
where formulae 4) and @) can be replaced with similar expressions involving the Holevo
guantity instead of the coherent information. Most prior work on calculating the capacities of
correlated quantum channels has focused on the capacity for classical information. Numerical

4 The term ‘it correlated’ is sometimes more appropriate as we will also discuss the notion of correlated error in
channels with a two or three spatial dimensional structure, such as might arise in ‘egg box’ storage such as optical
lattices. In such cases ‘memory’ does not really have a meaning.

5 This point is discussed in detail in papers such2Zaifid also in the literature on classical channels with memory
(see, e.g. the free online body). It turns out that for all channels (not just uncorrelated ones), one may define an
optimisticand apessimistichannel capacity. In the case of channels with uncorrelated error, and in ‘well-behaved’
correlated channels, these two notions coincide, giving the conventional definition of a channel capacity.
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and mathematical experiments involving a small number of channel uses suggest that in a variety
of interesting cases the classical capacity of correlated channels can display interesting non-
analytic behaviour. For instance, the sequence of pappe#s] investigates a certain family of
correlated channels parameterized byemory factom € [0, 1] which measures the degree of
correlations. The results o6 7] demonstrate that when the correlated channel is refreshed
after every two uses (i.e. consid&r® £, ® £, ® - - -, rather than the full correlated channel
{€n}), then there is a certain transition valpe= o at which the channel capacity displays

a definite kink, and above this threshold the optimal encoding states suddenly change from
product to highly entangled. Similar phenomena have subsequently been observed in a variety
of other casesg, 9].

Despite these interesting observations, it is still an open question whether the sharp kinks
in the capacity of these models still persist if the full correlated chaf@glis considered
asn — oo, or whether this behaviour is just an artefact of the truncation of the channel at
low n. The main difficulty in deciding such questions is that even under the assumption that
equations such as) (or its analogue for classical information—the regularized Holevo bound)
represent the true quantum capacity of a given correlated ch@fjelin most cases such
variational expressions are extremely difficult to compute. It is, however, interesting to note
that the non-analytic behaviour observed in the channel capacity of correlated channels is
somewhat reminiscent of the non-analyticity of physical observables that define a (quantum)
phase transition in strongly interacting (quantum) many-body systems, where in contrast true
phase transitionsisuallyonly occur in then — oo limit.

Motivated by this heuristic similarity, in a previous pap#&0], we connected the study of
channels with memory to the study of many-body physics. One advantage of this approach
is that allows the construction of a variety of interesting examples of channels for which
equation 6) can either be understood qualitatively or even calculated exactly using the
techniques of many-body physics. One would otherwise usually expect regularized equations
such as §) to either be quite trivial or completely intractable. This is perhaps the most
important consequence of this line of attack—nby relating correlated channels directly to many-
body physics, we obtain a good method for displaying models of channels with memory
that tread the interesting line between ‘solvability’ and ‘non-solvability’, in analogy with
the many such statistical physics models that have been proposed over the years. It is quite
possible that the insights afniversality scaling and renormalizationthat have been so
successful in many-body theory may provide valuable intuition for the study of channels with
correlated error.

Another advantage of this approach is its connection to physically realistic models of
correlated error. One can imagine that in many real forms of quantum memory, such as optical
lattices, any correlated errors might originate from interaction with a correlated environment
and thus be strongly related to models of statistical physics. This provides further physical
motivation to examine the properties of correlated channels with a many-body flavour.

The connection to many-body physics also naturally leads one to consider channels with
structure in two or more spatial dimensions. In such situations, it is no-longer appropriate to
think of correlations as ‘memory’, as the correlations arise not through a single time dimension,
but perhaps through spatial proximity in more than one dimension. In order to define a capacity
in such multidimensional situations, one would have to decide how to quantify the size of the
channel. Natural options could include the total number of particles in the system, or perhaps
the size of one linear dimension. Although we will not explicitly discuss multi-dimensional
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Figure 1. Each particle that Alice sends to Bob interacts with a separate
environmental particle from a many-body system.

examples in this work, such situations might have interesting connections to the study of error
tolerance in computational devices.

This paper is structured as follows. In order to make the paper self-contained, in the sections
preceding sectioii we present, including all missing detail, the resultsldi [ In section6, we
discuss in detail some sufficient conditions that many-body systems must satisfy in order to
lead to capacity results according to the approach that we adopt—the arguments that lead to
the development of these conditions were sketched@h however, here, we provide the full
argument. In section8 and9, we prove that these conditions hold for finitely correlated states
and formulate a Fannes-type inequality to show the same result for harmonic chains. In the
remaining sections, we discuss generalizations of our approach and present conclusions.

2. Many-body correlated channels

In this section, we recap the approach takenligj fo construct correlated error models with

links to many-body physics. The starting point is to suppose, as usual, that Alice transmits a
sequence of particles to Bob (the ‘system’ particles), and that each particle interacts via a unitary
U with its own environmental particle. So far, this is exactly the same setting as uncorrelated
noise. However, although each system particle has its own separate environment, one can
introduce memory effects by asserting that the environment particles are in the thgrouat

state of a many-body Hamiltonian, such that the interaction terms lead to correlations in the
environmental state (see figut® Unlike the uncorrelated case, this means that there will be
correlations in the noise on different system particles. At this point, it is important to discuss
some of the subtleties involved in the way that the ‘many-body’ system was defing&d.ihn

basic approaches to many-body physics, it is usual to consider a system with a finite number
of particles, obtain thermal states and ground states, and then take a limit as the number of
particles is taken to infinity. In more mathematical statistical physics literaftije owever,

it is usual to consider genuinely infinite systems from the start. This involves a number of
technical implications, including a very different approach to the concept of a state, which
can no longer be expressed in terms of basic density matrices. The two approaches are not
necessarily equivalent and may lead to different results. To avoid such technicalities in this
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work, we will follow the former approach, and for each number of uses of the channel

we will consider a many-body system of siaeAs a family of channels for eaan this is a
mathematically well-defined object, and it is a reasonable question to ask what the resulting
channel capacity is. In later sections of the paper, we will also asqenedic boundary
conditions to enable us to analyse whether equatl@h ié a valid quantum capacity or not.
Again, although this seems like an unnatural assertion, it is mathematically well-defined, and
in many systems the boundary conditions are believed to make a vanishingly small difference
which disappears in the largelimit.

Of course even with these simplifications not all many-body systems can be solved
exactly, or even understood qualitatively. Moreover, even if the many-body system can be well
understood, the computation of the lin) fnay still be difficult, and may depend strongly upon
the choice of the unitaryy describing the interaction of each system particle with its associated
environmental particle. In order to provide concrete examples, one must hence make a judicious
choice ofU in order to make analytical progress. As 0], we choosdJ to be of the form
of a controlled—unitary interaction, where the environmental particles act as controls. In fact,
for ease of explanation we will also initially restrict the system and environment particles to be
two-level spins, and the interactith to be a controlled-phase ((CPHASE’) gate, which in the
computational basis for 2-qubits is defined as,

100 O
010 0

CPHASE=|J 5 1 ol (7)
000 -1

Later, we will discuss how higher-level analogues of the CPHASE enable similar connections
to many-body theories with constituent particles with a higher number of levels. The reason
we make these choices for the controlled unitary interactions is that explicit formulae may be
derived for the capacity in terms of relatively simletropicexpressions which are especially
amenable to analysis.

The restriction to controlled—unitary interactions also enables us to consider environment
particles that are classical. For instance, in the case of classical environment two-level spins, the
‘CPHASE’ interaction will be taken to mean that the system qubit undergoes a2 eanfition
when the environment spin is up, otherwise it is left alone. It turns out that by considering
classical environments it is possible to make more direct connections between the channel
capacity of our models and concepts from statistical physics.

So let us proceed in trying to understand the capacity in cases in which the system particles
are all two-level systems, with a CPHASE interaction. It is helpful to write the resulting channels
in a more explicit form. Let us consider a quantum environment first|Qyetenote spin-down,
and|1) denote spin-up. Let us suppose that the environment consibtspins (eventually we
will be interested in the limitN — oo) initially in a state:

pr,y|X1X2- o XN)(Y1Y2 .- YN (8)
X,y

where the sum is taken over dl-bit stringsx, y, andx;/y; denote thejth bit of strings

X/y, respectively. We can also describe a classical environment in the same way, simply
by restricting the input environment stateto be diagonal in the computational basis—the
CPHASE interaction will in this case leave the environment unchanged, and will affect the
system qubits as if the controls are entirely classical.
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If the environment is in the stat8); and the system qubits are initially in the statehen
the channel acting upon the system qubits is given by:

o= pZYZP. . Z\'e(ZPZy .. ) 9)
X

where Z; denotes the Paul- operator acting upon qubit Hence, regardless of whether
the environment is considered quantum or classical, the channel that we have described is a
probabilistic application oZ-rotations on various qubits. Although we will consider qukiid
be transmitted earlier in time than any other gyb#ith i < j, there is no need for us to actually
impose such a time ordering—because all the CPHASE interactions commute with each other,
such time ordering is irrelevaht

We will be interested in computing equatios) for such many-body correlated channels.
In the next section, we will show that the channel capacity of this channel is given by a simple
function of the entropy of thdiagonalelements in the spin-ydown basis of the environmental
state, i.e.

- Z Px,x |09/0x,x- (10)

In the case of a classical environment, this is just the actual entropy of the spin-chain. This
observation is very useful, as it allows us to apply all the formalism of many-body physics to
the problem, also enabling us to use that intuition to observe a number of interesting effects. In
the quantum case this function does not correspond to a conventional thermodynamic property.
However, we will discuss examples where it is still amenable to a great deal of analysis using
many-body methods.

3. A formula for the coherent information of our models

In order to calculate the regularized coherent informat@®nfdr our many-body correlated
channels, we will utilize the close relationship between the quantum channel capacity and the
entanglement measure known as th&tillable entanglemenitl2]. This connection utilizes a
well-known mapping between quantum operations and quantum states. Given any quantum
operation¢ acting upon a-level quantum system, one may form the quantum state:

JE) =1Q&(H) (), (11)

where|+) = id Y i_1 q4lil) is the canonical maximally entangled state of wvtevel systems.
The stateJ(€) is sometimes referred to as tl#oi—Jamiolkowskstate (CJ) of the operation
€ [13]. It can be shown that the mapping frafrto J(€) is invertible, and hence the staléf)
gives a one-to-one representation of a quantum operation. We will show that for the kinds of
correlated error channel that we have described above in equioth¢ quantum channel
capacityQ(€) of the channel equald (J(£)), the distillable entanglement of the staltef).

To make the presentation more transparent, we will make the argument for the CJ state of

a particular single qubit channel, as it is straightforward to generalize the argument to the entire

6 Note that this does not always mean that our channedisalin the sense discussed i#][As the number of

qubits changes, the state of the many-body system changes, and the output of the earlier uses of the channel will
change accordingly. This is in contrast to the requirement of causality impos2l kiowever, in the limit of a

large number of channel uses this effect will probably be negligible for most reasonable cases.
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family of memory channels described above. Hence, let us consider the following single qubit
‘dephasing’ channel:

Eip— pp+(L—pzZpZ’, (12)

where p is a probability, andZ is the PauliZ operator. The CJ representation of this
channel is:

J(E) =1 Q&E(+)(+]), (13)

where|+) is chosen as in equatiofh).

The argument relies upon the fact that the chanib®l possesses some useful symmetry.
This symmetry leads to the property that having one use of the channel is both mathematically
andphysicallyequivalent to having one copy df(€). Suppose that you have one use&€pfou
can easily creatd (£). However, it turns out that with one copl(€) you can also implement
one use of. Hence, both the operation and the CJ state are physically equivalent resources.
The argument works as follows. Suppose that you hB\&® and you want to implement one
action of€ upon an input state. This can be achieved by teleportipghrough your copy of
J(&). This will leave you with the staté(o; poiT), with the Pauli operatos; depending upon
the outcome of the Bell measurement that does the teleportation. However, the cli@hnel (
commutes with all Pauli rotations. So we can ‘undo’ the effect of the Pauli by applying the
inverse ofo;j, which for Paulis is juss; itself. Hence, we havetié’(aipaiT)Gi = E&(p). Hence,
by teleporting intoJ(£) and undoing the Pauli at the end we can implement one use of the
operation.

This observation allows us to relate the channel capacity of the channel to the distillable
entanglement of the CJ state. The proof proceeds in two steps, and follows well-known ideas
taken from [L2]. The aim is to show that the one-way distillable entanglemend @) is
equivalent toQ(&), so that previous results dn(J(£)) may be applied.

1. Proof thatQ(&) < one-way distillation: (i) Alice prepares many perfect EPR pairs and
encodes one-half according to the code that achieves the quantum cap@oityii) She
teleports the encoded qubits through the copies(89, telling Bob the outcome so that he
can undo the effect of the Paulis. (iii) This effectively transports all encoded qubits to Bob,
at the same time acting on them wih (iv) Bob does the decoding of the optimal code,
thereby sharing perfect EPR pairs with Alice, at the rate determine@d(6y. As this is a
specific one-way distillation protocol, this means ta& D.

2. Proof thatQ(&) > one-way distillation: (i) Alice prepares many perfect EPR pairs and
sends one-half of each pair through many uses of the cha&nii@l She and Bob do one-
way distillation of the resulting pairs (this involves only forward classical communication
from Alice to Bob). (iii) Thereby they share the perfect EPR pairs, at the rate determined
by D(J(£)), the one-way distillable entanglement. (iv) They can use these EPR pairs to
teleport qubits from Alice to Bob. As this is a specific quantum communication protocol,
this means tha@ > D.

These arguments can easily be extended to apply to any channel that is a mixture of Pauli
rotations on many qubits, hence including the memory channel models that we have described
above. Fortunately, the CJ state of our channel is a so-calledmally correlatedstate, for

which the distillable entanglement is known to be equivalent to the Hashing bound:

D(J(&)) = S(tre{J(E)}) — S(I(€)), (14)
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whereSis the von Neumann entropy. Note that for such chanfi#iiss expression is equivalent
to thesingle copycoherent information, which is hence additive for product chané@ls In
our case we are interested in the regularized value of this quantity for correlated channels, i.e.:

QU = lim D(Jn(é’)) = fim S(J(Sn)A)n— S(J(Sn))’ (15)
which can be computed quite easily as:
Qe =1 Jim 22K Pen)), (16)

where Diadpen,) the state obtained by eliminating all off-diagonal elements of the state of
the environment (in the computational basis). Hence, the computation of the quantum channel
capacity of our channgl€,} reduces to the computation of the regularized diagonal entropy
in the limit of an infinite spin-chain. Although in most cases this quantity is unlikely to be
computable analytically, it is amenable to a great deal of analysis using the techniques of
many-body theory. It is also interesting to note the intuitive connection between exprdgjion (
and work on environment assisted capacities—in the case of random unitary channels, where
the unitaries are mutually orthogonal, the diagonal entropy in express&rhés a natural
interpretation as the amount of classical information that needs to be recovered from the
environment in order to correct the erroig[15)].

Although the above analysis has been conducted for two-level particles, it can be extended
to situations involvingd-level systems. In thé-level case, one can replace CPHASE with a
controlled shift operation of the form:

> Ikikl® Z(K), (17)

i=1,...d

where theZ (k) = Zj exp(i2rkj/d)|j)(]j| are the versions of the qubit phase gate generalized
to d-level systems, and the first part of the tensor product acts on the environment. With this
interaction all the previous analysis goes through, andltlexel version of equationl):

Q({£n}) = log(d) — lim M

(18)
gives the regularized coherent information, where Oiagéfers to the diagonal elements
in the d-level computational basis. It is important to consider the generalizatiahlével
systems because the thermodynamic properties of many-body systems do not always extend
straightforwardly to systems with a higher number of levels. For instance, one possible
generalization of the Ising model thlevel systems is th€otts model, which leads to some
very interesting and non-trivial mathematical structuté],[ and in the quantum Heisenberg
model the presence of a ground state gap depends on where the spins in the chain are integral
or half-integral [L7].

The simplicity of equationX6) enables one to immediately write down many noise models
for which the regularized coherent information can both be calculated, and also represents
the quantum channel capacity of the correlated channel. In particular, let us suppose that the
environment consists of classical systems described by a claBtdabv Chain(those readers
not familiar with the Markov chain terminology required here are directed to chapterl®jof [
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for a very readable introduction). If the state at each ‘st&i the environment represents the
instantaneous state of a Markov chain at tenthen the regularized entropy in equatid)is
given by theentropy rateof the Markov chain 18], provided that the Markov process is both
irreducible’ and possessesumiquestationary (equilibrium) state. Let the transition matrix of
M of the Markov chain be defined such thats+1) = Zj Mij p(s);, letv; be theith element
of the stationary probability distribution, and let be the entropy of columnin the Markov
chain transition matrix. With these conventions the entropy rate is given by:

im S(Dlag(penv)) Z vi H (29)

n—o00

In these cases the correlated channels fit quite neatly into the class of models proposed in
[2, 19|, and moreover these channels will bargetful [2]. As proven in P], for forgetful
channels the regularized coherent information is equal to the quantum capacity{sé® [

an independent coding argument which also works for Markov chain channels implementing
generalized Pauli rotations). Hence, for these models equdiB)megpresents the true quantum
channel capacity, and so we may write explicitly:

Q(Markov) =log(d) — > wiH;. (20)

i=1,...d

When unique, the stationary distribution of a Markov chain is given by the unique maximal
right eigenvector (of eigenvalue 1) of the transition matrix. Related results have been obtained
independently inZ0, 21].

4. Environment that is a classical system

In the case of a classical environment, the second term of equapis (precisely the entropy
of the environment, and so it can easily be computed in terms of the partition function.
The partition function of the classical system is defined as:

Z="Y exp—BE). (21)

where theE; are the energies of the various possible configurationspaad/(kgT), with T
the temperature arki Boltzmann’s constant. The entropy (in nats) of the system is given by
the following expression:

S(Diag(pen) = (1 B ﬁ) InZ. (22)
This means that in the case of a classical environment our channel capacity becomes
3\ . 1
Q&) = 1 logy(® (1—;3@) im inz. (23)

where the log(e) converts us back from nats to bits. This expression means that we can use all
the machinery from classical statistical mechanics to compute the channel capacity.

7 Irreducibility means that given any starting state there is a nonzero probability of eventually going through any
other state.
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In particular, any spin-chain models from classical physics that can be solved exactly will
lead to channels with memory that can be ‘solved exactly’ (provided that one can show that the
regularized coherent information is indeed the capacity, a problem that we shall discuss in later
sections). The most famous example of an ‘exactly solvable’ classical spin-chain model is the
Ising model. We will discuss the classical Ising model in detail in the next section, as it will also
be relevant to a certain class of quantum spin-chains.

However, there are alsmanyclassical spin-chain models the&nnotalways be solved
exactly, but which can be connected to a wide variety of physically relevant models with
interesting behaviour. As just one example, consider modifying the Ising spin-chain model to
allow exponentially decaying interactions between non-adjacent spins. The resulting model can
be related to a quantum double-well system, and is also known to exhibit a phase trénsition
This means that the corresponding correlated channels will also exhibit similar behaviour,
provided of course that the limit equatio) (truly represents the quantum channel capacity
for the models.

In this paper, we will not give detailed discussion of any further models involving a
classical environment (other than the classical one-dimensional (1D) Ising chain, which we
will discuss in the next section). As our expressi@g)(is simply the entropy of the classical
environment, the interested reader may simply refer to the many interesting classical models
(both solvable and almost solvable) that are well documented in the literature. Of course, to
make the analysis rigorous one would need to show that expregimnthe formula for the
guantum capacity in these cases. However, we conjecture that for most sensible models this
should be true. In the final section of the paper, we will present an analysis that demonstrates
this for a family of 1D models.

5. Quantum environments

Unfortunately expressiorilf) does not correspond to a standard thermodynamic function of
the environment state when the environment is modelled as a quantum system. It represents the
entropy of the state that results when the environment is decohered by a dephasing operation on
every qubit. Although this quantity is not typically considered by condensed matter physicists,
there is some hope that it will be amenable to analysis using the techniques of the many-body
theory.

In this paper, we will make a small step towards justifying this hope by analytically
considering a class of quantum environments inspired by recent work on so-finitety
correlatedor matrix product statef?22].

We will leave attempts to analytically study more complicated models to another occasion,
although in figure2, we present some numerical evidence that the quantum 1D Ising model
displays a sharp change in capacity at the transition point.

6. Quantum capacity for finitely correlated environments described by
rank-1 matrices

Finitely correlatedor matrix productstates are a special class of efficiently describable quantum
states that have provided many useful insights into the nature of complex quantum sy&lems |

8 See e.g. the lecture noteshdtp://www.tcm.phy.cam.ac.uk/bds10/phase/pt.ps.gz
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Figure 2. Numerics for the quantum Ising model suggest that there may be
transition behaviour in the capacity at the phase transition point of the 1D
guantum Ising model. In this figure, the central point of the horizontal axis is the
transition point of the quantum Ising model, and the curves become increasingly
steep as the number of spins is increased from 6 to 18. As the quantum Ising
model can be solved exactly in 1D, it is quite possible that an analytical solution
may be found for the channel capacity.

In a recent paper2f] it has been demonstrated that a variety of interesting Hamiltonians can
be constructed with exact matrix product ground states, such that the Hamiltonians in question
undergo non-standard forms of quantum ‘phase transition’.

As matrix product states are relatively simple to describe, one might hope that for such
ground states the computation of equati@g) (may be particularly tractable. In this section,
we will see that for matrix product states involvirank-1 matrices the analysis is particularly
simple, and may be reduced to the solution of a classical 1D Ising model.

Let us consider a 1D matrix product state, where each particle is a two-level quantum
system|0), |1). Let us assume that the matrices associated to each level are independent of the
site label, and are given b9, for level |0) and Q; for level |1). Hence, the totalnnormalized
state can be written as:

)= > tr{QQ;Q«...}lijk...). (24)
i,j.k..€{0,1)

From the form of expressionl§) we see that we are only interested in the weights of
the diagonal elements in the computational basis, or equivalently the state that results from
dephasing each qubit. It is easy to see thatuhisormalizedstate will be given by:

p= Y t(Q®eQNQ®QN.. Hij...)ij...I. (25)
i)j,...€{0,1}
In this expression if we relabel the matricés= Q,® Qj and B = Q; ® Qj then the
probability of getting various outcomes when measuring the environment in the computational
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basis will be given by traces of all possible products of #e& and Bs. For instance, the
probability of getting 01100... , when measuring the environment in the computational basis
will be given by:

1
Po1100.. = C(N)tr{ABBAA..}, (26)

where N is the number of qubits in the environment, aBdN) is a normalisation factor
given by:
C(N) =tr{(A+B)N}. (27)

C(N) can be computed by diagonalization. In the rest of this section, we will be interested
in cases wheré and B are both squareank-1 matrices. Some of the example Hamiltonians
discussed in43] have ground states with this property, and in fact, some special cases of the
noise models presented i, [6, 8, 9] can also be expressed in the form of matrix product
environments with rank-1 matrices (although in general those models require more than two
matrices as they require environmental spins with more than two levels). We will show that in
such situations the diagonal entropy in the computational basis is equivalent to the entropy of a
related classical Ising chain.
The first thing to note is that rank-1 matrices are almost idempotent. In facgiiid B are

both rank-1 matrices, then we have that:

A" =a"" A B™=hb""!B, (28)
wherea is the only nonzero eigenvalue éf andb is the only nonzero eigenvalue 8f Note
that because of the form éfandB as the tensor product of a matrix and its complex conjugate,
these eigenvalues b must be non-negative. We can define the normalized matrices:

- A - B

A= ~ B= b (29)
These normalized matriceme idempotent. To see how this can help, consider a particular
string, say,

Po111000= ﬁtr {(ABBBAAA},

if we substituteA and B into this expression, and use the idempotency, then the strings of
consecutive As and Bs will collapse to just oAer B, with total factors ofa* andb?® inserted
outside the trace:

_ 1 41:3 AR A _ 1 4143 AR

Po111000= C(N)a betr {(ABA)} = C(N)a btr {(AB)} . (30)
It is easy to see that this form is quite general—the probability of getting a particular string will
collapse to a simple expression. If there baecurrences oA andn —1| occurrences oB in
the string, an&K counts the number of boundaries between block&énd blocks oBs, then
the probability of the string becomes:

1 - \K

—— @bV Htr{(AB) }.

ciny @ {< ) }
Noting thatAB will also be a rank-1 matrix, let us use the letteto refer to its only nonzero
eigenvalue. Hence, the probability becomes:

1 I N-I K
—C(N)ab c". (32)

New Journal of Physics 10 (2008) 043032 (http://www.njp.org/)



http://www.njp.org/

14 I0P Institute of Physics () DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

This expression tells us quite a lot—firstly for any given channel described by rank-1 MPS
states, the only parameters that matteraré andc. So we need not work with the actual
matrices defining our state, we only need to work with matrices of our choice that have the
same parameteis, b andc. In the following, we will assert that is non-negative—this is
guaranteed because of the following argument: it holdsahkatr{ AB}, becauseAB is rank-1,
but becausé\B = Q,Q; ® Q;Q%/(ab), wherea andb are non-negative, this means thanust
be non-negative.

So let us just go ahead and pick the following matrices:

A=<g ‘/?’), B:(\/%) (E)). (32)

These matrices clearly have nonzero eigenvalesd b, respectively. So what about the
eigenvalue ofAB ? For the above choice of matrices we find that:

e [
= a . 33
A6 (O 0) @)

Hence, we find that the matrices that we have chosen have the correct vatudsafidc, as
required. Now we notice that the matrices that we have chosen in equa®ceré very similar
to the matrices that would define a classical Ising chain. In fact, if we make the following change
of variables froma, b andcto J, D andM:
a=expB(J+M)), b=expB(J—M)), c=exp(—p(4J+2D)). (34)
The inverse transformations are:
BI=(n(a) +In(b))/2, BM=(In(a) —In(b))/2,
(35)
BD=—(In(a) +In(b)) — (1/2) In(c).
It turns out that the parametedsand D will represent coupling constants aMiwill represent

a magnetic field. To see this, let us insert the new parameters into the chofcaraf B in
equation B2). Then we get that the matrice32) can be written as

exXp(J+M)) exp(—B(J+ D))
A= ( 0 0 ) ’
(36)

B ( 0 0 )
—\exp(—=B(J + D)) expB(J—M)))

The matrices in such a rank-1 MPS are essentially the top row and bottom row of a transfer
matrix. Comparing these matrices to the classical Ising transfer matrix, we see that the
following Hamiltonian (where for convenience we now follow the usual physics convention that
S € {_1’ +1})

H=-) Jssu—Ms+D(1-5S:)=~) (J-D)ss.u—Ms+D. (37)
i i
The D is just a constant shift in spectrum, so we can simply consider the Ising chain with
Hamiltonian:
H=-) (J-D)ss.— Ms. (38)
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Diverging gradient

v

g=0 &

Figure 3. This schematic figure shows the channel capacity when the
environment is the ground state of the Hamiltonian given in equatddh (
The symmetry in this plot is to be expected as the channel is invariant under
the replacemerny — —g. However, near the ‘phase transition’ pogi 0, the
gradient diverges.

The partition function for such a chain of particles depends upon the transfer matrix for this
(rescaled!) Hamiltonian:

T_ (exp(,B(J —D+M)) exp—B(J—D)) ) (39)
exp(—p(J -D)) expp(J-D-M))/"

Now from the partition function, we can calculate the entropy, and hence the capacity of our
channel. The formula turns out to be:

C—1_log,e (1— ﬂ%) fm Iz =1-logy(@ (1— ﬁ%) In s (40)

where A, is the maximal eigenvalue of the transfer matrd9)( Using these equations and
equation 85), one can perform the (tedious) manipulation required to derive a formula for
the regularized coherent information in terms of the coefficiants andc. Although we do

not present the formula that is obtained, fig@rehows the result for the model Hamiltonian
presented ing3]:

H = ZZ(QZ _ 1)O_Z(i)o,z(i+l) _ (1 +g)20_)5i) + (g _ 1)20,Z(i—l)o_)£i)o,z(i+l) (41)
i

for which the ground state is known to be a matrix product state of the form:

a0 on(39)

This model system has a non-standard ‘phase transitiorg -at0, at which some
correlation functions are continuous but non-differentiable, while the ground state energy is
actually analytic 23]. As discussed in the caption of figuBethis behaviour is mirrored in the
channel capacity.
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7. Conditions under which the regularized coherent information represents
the true capacity

In this section, we will explore under what conditions our assumption that the regularized
coherent information of equatioB)(

| (&)

Qi) = lim (42)

correctly represents the true quantum capacity of our correlated channels, assuming of course
that this limit exists. In the course of the discussion, we will also need to consider under what
conditions the regularized Holevo bound:

x(&n)
n

represents the capacity of the channeldiassicalinformation. The Holevo boung (£) for a
guantum channef is defined asZ4]:

x(€) = sup S(é’ <Z pi pi)) —~ Z P SEP)), (44)

{pi,oi}

C&) = nIim (43)

where the supremum is taken over all probabilistic ensembles of $@ates}, andS as usual
represents the von Neumann entropy. As pointed oul,i?}|, showing that equationgip)
and @3) are upper bounds to the quantum/classical capacity of a correlated channel is
straightforwvard—one can use exactly the same arguments used in the memoryless case
[4], [26]-[28]. Showing that equationgiR) and @3) also givelower bounds to the relevant
capacities is not as simple, and may not be true for some many-body environments.

However, it turns out that if the correlations in the many-body system fall off sufficiently
strongly, then the channel will be reasonably well behaved and equdfipis (he true capacity.
In this section, we will make this statement quantitative. We will closely follow the approach
taken in B] in the analysis of so-callefdrgetfulchannels. Some of the subtleties involved in the
analysis are explained in more detail in sectasf that paper. The conditions that we obtain are
independent of the unitary which governs the interaction between each system patrticle and its
corresponding environment, and so are applicable more widely than the dephasing interaction
considered here.

7.1. A qualitative description of the argument

In this subsection, we present an intuitive sketch of the argument that we will follow. Imagine
that the correlated channel is partitioned into large blocks that we shalliwallgubits,
separated by small blocks that we shall cglacerqubits. The idea is to throw away the
spacer qubits, inserting into them only some standard state, and to only ubeethebits

to encode information (see figu. If we are to follow this procedure, then we will not be
interested in the full channel, but only in its effect upon the live qubits. Let us use the phrase
live channelto describe the resulting channel, i.e. the reduced channel that acts dwvethe
qubits only. If the correlations in the many-body system decay sufficiently strongly, then by
throwing away just a few spacer qubits we will find that the live channel closely approximates
(in a sense to be discussed later) a memoryless channel. Let us call this memoryless channel
the productchannel. One can imagine trying to use the codes that achieve the capacity of the
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Figure 4. The live blocks of length are separated by spacer blocks of lergth
By discarding the spacer particles the channel effectively becomes a product
channel on the live blocks.

productchannel, without any further modifications, as codes forlitreechannel. It turns out
that under the ‘right conditions’ these codes are not only good codes for the live channel, but
their achievable rates approach equatiti®).(The goal of the next subsection will be to explore
exactly what these ‘right conditions’ are.

The guantitative arguments follow the method usedjnwhere three steps are required
to show that equatio@) is an achievable rate:

[A] First, we must show that product codes for the transmission of classical information
are good codes for the live channel.

[B] Then we must show that these good codes allow the regularized Holevo quantity to be an
achievable rate. This is done by showing that the product channel Holevo quantity (which
can be achieved by product codes) essentially converges to the regularized Holevo quantity
for the whole channel.

[C] Then we must argue that these arguments for the transmission of classical information can
be ‘coherentified(in the manner of 4]) to a good quantum code attaining equatidg)(

In the next subsection, we go through this process in detail to derive sufficient conditions
to demonstrate the validity of equatiof?) for our many-body channels.

7.2. Derivation of the conditions

In this subsection, we will go through steps [A], [B] and [C] in turn.

7.2.1. Step [A]. We will assume that the many-body systems in question satisfy periodic
boundary conditions and are translationally invariant (this means that the corresponding
correlated channe{&,} does not quite fit into the definition of causality proposed By [
however, it allows us to avoid the technicalities required to analyse a truly, genuinely, infinite
many-body system). Let us consider a specific length of ciNirsplit into v =N/(l +5)
sectionseach consisting of one live block of lendtand one spacer block of length= 6§l « 1.

In the following the sized, | will generally be taken to be large enough that the statements we
use hold. The live channel will be defined by:

Eive 1 A— tren{U (1,1, 1, ® AUTY, (45)

where A represents the state that Alice inputs to the live charthekpresents the interaction
between the environment a8, the labelsL,, Lo, ..., L, represent the live blocks from
sections 1..., v, and the trace is taken over the environment. Due to translational invariance
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the reduced state of the environment corresponding to each given live block will be same, and
so let us denote this state jp};. With this notation, thg@roductchannel will be defined by:

Eproduct: A — tren{U (03" @ AU} (46)

Note that both the live and product channels have a dependence upon both the live blodk length
and the total number of spirié. Let us first consider using the product and live channels to send
classicalinformation. By definition, if a given rat® is achievable for the product channel, then

for every error tolerance > O there is an integeN, such that fom > N, channel uses there

exist a set o = | 2"'R| codewordnl-qubit stategp, ... , p,} and a corresponding decoding
measurementMy, ..., M,} such that:

If the same codebook and decoding measurements are used without alteration for the live
channel, then the error would be:

tr{[Eive (0i) — 5product(,0i M} + tr{‘S‘producl(,oi YM;}. (48)

As the addition of Alice’s staté\, the unitary interactiotJ, and the POVM elemen¥]; can
all be viewed as one new POVM element acting only on the environment, the left term in this
formula can be bounded b24]

|tr{[glive(,0i) - gproducl(loi)] Mi}l < :‘2L||10L1L2....Lv - (,0|N)®v||1,

where| X ||, := tr{~/ XTX} is thetrace norm Hence, the erro@) in using the product code for
the live channel can be bounded by:

tr{ive (KM} > 1—€ — 2l pLyL,.. L, — (0R)®V]l1-
Assume that the rightmost term in this equation is bounded by:

1oL L, — (o) 1L < C vl Eexp(—Fs) (49)

for positive constant€, E andF. This assertion will be demonstrated for some special cases
in section8. Then this would mean that the error becomes bounded as

tr{€ive(pi)Mi} > 1—€ — Cvlfexp(—Fs). (50)

The e part of this error depends upon the number of block®ne potential problem that we
immediately face is that to decreaseve need to increase, however, increasing inevitably
increases the last error term in the equation. It is hencea poiori clear that both error terms
can be made to decrease simultaneously. However, it can be sl2o&f] [that if we pick

v =1% s=§l ands > 0 then both error components can be made to vanisinaseases, while

still operating at the achievable rates of the product channels (in fact, the number of sections
could be given any polynomial or subexponential dependentemvided that asymptotically

v(l) > 19).

So we see that provided conditiof) can be demonstrated for the many-body systems that
we consider, then the product channel works well for the live channel, as long as a large enough
live block size is used (however small the fraction of spacer qubitslence, equation4Q) is
the first of our sufficient conditions. In secti@we demonstrate that conditiod9) (which is
identical to equationg3) later in the paper) holds for some interesting classes of many-body
system, including matrix product states.
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Figure 5. To show that the product channel (which is just a product of the reduced
channel on a single live block) Holevo capacity is essentially the regularized
capacity, we need to show that the reduced channel on a single live block is
essentially independent of the total length of the chain. Hence, we need to show
that the reduced state bfcontiguous environment spins is approximately the
same regardless of whether the chain is (a) much longerlthan(b) slightly
longer than.

7.2.2. Step [B]. Now that we know that the product code is also suitable for the live channel,
itis necessary to check that the regularized Holevo bound (i.e. the regularized Holevo bound for
the full channel without throwing spins away) is actually an achievable rate for the live/spacer
blocking code that has been used. In order to make this analysis it will be convenient to define a
little more notation. For a total chain of lengtras before le€, denote the noisy channel. For a
contiguous subset gf < n of the spins that Alice sends, &t denote the effect of the channel
only upon those spins. Due to translational invariance the location of the spins is irrelevant, as
long as they form a contiguous block.

A given product channel with live block lengitland a total number of sping = v(l +s) =
18(1+6) has a Holevo quantity given by:

X (EN) = X (trendU (o)) ® )UT)), (51)
where thee merely acts as a place holder for the inputs to the channel. Our goal is to show
that for large enough this expression is close to the regularized Holevo bound equat®)n (
(see figureb). It is not too difficult to derive conditions under which this will be the case.
Suppose that we have a spin-chain of total ledgtt\ (1), where A(l) <« 1. In fact we will
only be considering functiona(l) > 0 such that lim., . A /(I) = 0. Thesubadditivityand the
Araki-Liebinequalities for the entropy Zf], section 11.3.4), i.e.

S(A)+S(B) > S(AB) > |S(A) — S(B)| (52)
can be inserted straightforwardly into the Holevo bound to show that:
X(Elia) = x(&+a) — 2Al0g(d), (53)

whered is the dimension of each communication spin (see &poThis equation follows from
the fact that the Holevo bound is the difference of two entropic terms, each of which can change
by at mostAlog(d) under the tracing out oA\ d-level particles. Dividing through by now
gives:
X(Elep) T+ A X (Era)
I 1 1+A
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This equation tells us that the Holevo quantity for a subséspins is very close to the Holevo
guantity for afull chain ofl + A spins, as long a4 is small. Our goal now is to show that if the
subset of spins is drawn from a much longer chain of lendth=15(1 +4§), then the subset still

has essentially the same value for the Holevo quantity, and so the regularized Holevo quantity
represents the capacity of the product channel. Intuition suggests that if the correlations decay
fast enough, then it should be the case thatNoe 1°(1 +6§), we should have approximately

£, ~ E\, as a given region should not ‘feel’ how long the chain is. Now suppose that we
define

P=P(,A) =l —onlli=ll0lra — Plsgesl1- (55)

Then for a given input state on the live block in question the output states will differ by at
most:

[treniU [0 ® (:0|+A p|6(1+5))]U T} I < V[o® (:0|+A :0|6(1+5))] ut I, < Pd, A). (56)

Hence, Fannes inequalit@@] (of which a version suitable for our purposeg®&X) — S(Y)| <
| X —=Y]|,log(d) +log(e)/e) can be used to bound the difference in the two Holevo functions
x (&0, x (&) as follows:

x( |6(1+5)) S X (ElLp) _2 (1‘) ( gd") + og(e))
| - |

Putting this equation together with equati@d) gives:

X( 2(1+3)) |+AX((€|+A) A 1 g()
| > I A —2|—Iog(d)—2(|><PIog(d)+ )

and taking the limit of largé gives:

|
I|im M >
So, as long as we can pick a functianl) such that lim., . A(l)/I =0, and such that the
norm distanceP (I, A(l)) vanishes with increasingthen we know that the regularized Holevo
guantity is the correct capacity.

o —Ilim 2(Plog(d)).

7.2.3. Step [C]. Now that we have understood the conditions under which the regularized
Holevo bound represents the capacity for the transmissiarastkicalinformation, we need

to try to undertake the same analysis éprantuminformation. As was also exploited ir2]]

the way that Devetak’s workd] proves that the regularized coherent information equals the
guantum channel capacity afemorylesghannels is to first prove a capacity formula for the
transmission ofprivate (secret) classical information, and then to make the private coding
schemecoherent This ‘coherentification’ procedure applies directly to correlated channels,
and so to argue that the regularized coherent informad@pi§ also achievable for channels

with correlated noise, it is sufficient to show that the private information codes that work for
the product channel are also suitable for the live channel. So now suppose that a malicious
eavesdropper is in charge of the environment of our correlated channel. We need to prove that
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the information that she can access is still limited when product private codes are used for the
live channel. We can see that the output that Eve obtains is given by:

Eiet A=t (U (AL, ® AUT), (57)

where the tildes mean that environment sjataust be extended to give a closed system fi.e.

is a pure state), the entire environment of which is assumed to be totally under Eve’s control. In
the case of the product channel, the privacy condition means that toe-dll there is ay such

that for allv > vy there exists some standard statsuch that:

ItrsysfU (5N)®' ® AU} -6, < € (58)

for all inputs A from the privacy code (readers familiar with, [4] will note that in those works

an extrarandomizationndex was included as a label in the code states-however, in our context
this is unimportant and so we omit it for ease of notation). Applying the same code to the live
channel gives the estimates:

ItreyslU (FLiL,. ., ® AU =01, < e +|ltreylU ([ ALy, ., — ()T AU,
e+, L, — (BN l1 (59)

The last term in this equation represents the norm difference betweguitifieationsof two
different possible environmental states. We are free to pick the purifications that give the greatest
overlap between the two environment states. Although this may seem like a contradictory step,
as we should allow Eve to have control over the environment, it is in fact valid because the
product code is by assertion private fall possible extensions of the product channel. The
coherentification procedure leads to the distribution of maximally entangled states which are
automatically uncorrelated from the environment, whatever purification Eve decided to use.
The last line from the previous equation hence becomes (using the fact that for two pure states
the overlap and the trace distance are related(hy) (¢| — |v¥) (¥ DI, =2/ 1 — |{V¥|d) |2, see
Nielsen and Chuang?fi, p 415, equation (9.99)], noting that the factor of 2 comes in from a
different convention for the trace norm):

<e+2/1-F2(pi,i, 1, (o). (60)

where F is the Uhimann fidelity 24]. Hence, using the well-known relationship between
the Uhlmann fidelity and the trace norm of two states—E(X,y) <2|x—VY|; <

v 1—F(x,Yy)? Nielsen and Chuan@f, p 416], from which one can obtaiil — F (X, y)? <
V21— F(X,y)) < 2/IXx—=Yl]), we find that:

It Byt 1, ® AU = 6111 < e +4 lpLy1a. 1, — (oW 1. (61)

Putting the norm bound}Q) (which we have not yet justified) into this equation gives:

ItreyslU (AL, ® AU -6, < e+4y/CulEexp—Fs), (62)

which is small enough for the assignment |°, s = §l, as long a$ is large enough.
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7.2.4. Summary of sufficient conditionsAll of this analysis means that in order to argue that
the regularized coherent information and the regularized Holevo bound are the true quantum or
classical capacities, the following two conditions taken together are sufficient:

1. To show that the product codes are also good for the partitioned memory channel,

1PLsL.. s — (o) [l < C 1°1Bexp(—F's), (63)

for some positive constan®, E andF, whereN =16(1+6), s=4l.

2. To show that the regularized coherent information is the appropriate rate the these codes
we need to show that

im 115l a0) = Plsaapll = Jim P A1) =0 (64)

for some functionA(l) such that lim., . A(l)/1 = 0. In fact, if equation§3) holds, in this
condition we could replacel's(m) with py; 1., Where the number of sectionsis any
function ofl with a sub-exponential dependence (e.g. a polynomial) that is asymptotically
larger thari®.

To demonstrate that these conditions hold for the most general types of many-body system is
a non-trivial task. However, in a number of interesting cases it is possible to prove that these
conditions hold. In the remaining sections, we demonstrate that these conditions hold for finitely
correlated/matrix product states, as well as for a class of 1D bosonic system whose ground states
may be determined exactly.

8. Proof of property equation (  63) for various states

In this section, we provide proofs for the validity of equatiéB)(for a variety of quantum states.
These include matrix-product states for which we have discussed explicit memory channels in
this paper. In fact, the proofs that we present for matrix product states are essentially contained
in previous works such ag®]. We also demonstrate analogous results for the ground state of
guasi-free bosonic systems as such systems may provide interesting examples for future work.
In addition to the results we present here and in the next section, M Hastings has demonstrated
that conditions§3) and ©4) hold for certain interesting classes of fermionic systédj.[

8.1. Matrix product or finitely correlated states

The proof that we present here is essentially one part of the proof of proposition 32].i@{r
presentation of the argument benefits from the arguments presented in appendB2pavid
the review article 33].

An important tool in the argument is the use of thedan canonical fornj34]. As some
readers may be unfamiliar with this technique, we briefly review it here. If a square rivatrix
has complex eigenvalug$,}, then it can be shown that a basis may be found in which the
operator can be expressed as the following direct sum:

M = @(Aaﬂa +\.,), (65)

where eachi, is an Identity sub-block with an appropriate dimension, and @4cdis anilpotent
matrix, meaning that for eack, there is some positive integkrsuch that\’* = 0. Moreover,
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each nilpotent matrixV, itself may be written as a block-diagonal matrix, where each sub-
block is either a zero matrix, or is all zero except possibly for 1s that may be positioned on the
super-diagonal. In other words, each sub-block of a giVeiis either zero or is of the form:

010

(66)

ol el

loNoNe)
(ool
(eNoN

The decompositiongb) is the Jordan canonical form &f. In our case the matri¥ will be
constructed from a completely positive map that can be associated to the matrix product states
that we consider. One consequence of this, for reasons that we discuss later, is that we will
ultimately only be interested in operatdvs whose eigenvalues satisfy=1A; = |A1| > |A2| >
|Asz] > .... For arelated reason, we will also only be interested matitésr which there is a
uniqueeigenvector corresponding 19, and also for which the sequence of integer povrs
r=1, ...,00is bounded.

For matrices obeying these extra conditions, we may exploit the Jordan normal form in
the following way. Pick the smallest integkisuch thatv**! = 0 for all AX. ThenM" can be
written as follows:

r
MI’ — r—m m .
®| T (n)me] 7
m=0,... ,k

If r is large, then all blocks correspondingitg# 1 will become small because of the™™ term,
and so the only sizeable contributionM will come from the block corresponding to= 1,
i.e. the sub-block:

LE. G

m=0,...,

Now we have asserted that the sequence of operdbérss bounded. However, it is not too
difficult to show that for =1, ... , oo the sequence of operatoB8] becomes unbounded if
N1 is nonzero. This means that if the sequence of operdidris bounded, we are forced to
conclude that\V; = 0, and hence abl has a unique maximal eigenvector, this meansthes
an identity matrix of dimension & 1, i.e.I; = 1.

Putting all this together means that a square matriwith a unique maximal eigenvalue 1,
such that the sequend#’ is bounded, may be decomposed as:

M =10 POl + M. (69)
a#l
This means thaM" can be written in the form:

M =1@x | P Z (m) (M m)/\/;“ . (70)

a#1 m=0,..

For our purposes it will be convenient to puII out a faatbfrom the term in square brackets:

M =ler | D rk (ﬂf)/\/y . (71)

a#1 m=0,... .k
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This has the advantage of making the operator in square brackets boundedrevermasThis

form for M" will be extremely useful to us. We will apply it to a completely positive map that
can be associated to any matrix product state. Using this, we will show the decay of correlations
required.

The relationship between matrix product states and CP maps is described in detail in
[22, 33]. Any matrix product state can be generated by repeatedly acting on a fictitious ancilla
particle using an appropriately constructed CP map. Suppose that we have a matrix product
state ofN particlesj € {1, ..., N}, each associated with a Hilbert spadg. Consider also a
fictitious ‘generator’ ancilla system on a finite dimensional spigg,. It can be shown that
the state of theN particles in the matrix product state can be defined as the state that results
from an appropriate CP map : B(Hgen) — B(Hgen) ® B(H;) which generates each particle
] €{1, ..., N}insequence. The generating ancilla is then traced out to give the matrix product
state of theN particles. Related to the map is the completely positive ma@, which is the
restriction of the maf to the generator ancilla as both input and output. The @apsentially
represents the transfer matrix of the MPS—for a review of how to consfréamtmatrix product
states, see3f3].

The starting state of the fictitious generator ancilla is usually taken as a fixed paht of
in the order that the MPS be translationally invariant. Away from a phase transition point, the
CP mapQ has a unique fixed point of eigenvalue 1, with all other eigenvalues of absolute value
strictly less than 1. Let this fixed point @ be the state. Furthermore, ag is a CP map, itis
clear that the sequence of ma@sis bounded. Hence, a3 acts as a finite dimensional linear
operator taking the ancilla space to itself, we can also think of it as a square matrix and apply
equation 1) to represent power®" of the map. Let us use this form to compute the action
of @' on an input density matriw of the fictitious ancilla. As any density matrix is taken to
a density matrix by a CP map, we may appRLYto give that the output o®" must have the
following form:

Q' (w) =0 +1'2} Oy, (72)

where in the second ter®;, is a sequence of operators whose norm can be bounded, and the
rka% term (which governs the size of the deviation from the final fixed peintrises as a
consequence of equationl). This equation essentially states that the deviatio@'@fv) from

o falls off as fast as¥A,. Although the explicit form of®, depends upon the input state, a
bound on the norm o®, can easily be constructed that is independenb.of his means that
lim,_ . @ = X, where we defin& as the (idempotent) channel that discards the input ancilla
state and creates a copymin its place. For finite' we may write:

Q' =% +r%) @, (73)

where®’ now represents operations of bounded norm acting on states of the ancilla (we have
dropped the potentialdependence ad’ to keep notation uncluttered, as it is unimportant).

Our goal in the remainder of this subsection will be to apply this deviation estimate to show
that equation@3) holds for matrix product systems. This can be done in two steps. In the first
step, we show that for two large blocks of lendgitiseparated by a distandgeventuallyL will
become the length of the live blocksandd will become the spacer distanéb, the reduced
state can be approximated by a product. The second step will use the triangle inequality to go
from this result to the full condition6@).
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The first step proceeds as follows. For convenience we will consider a chain of total chain
of length 2h + 2L +d, for which the state of the whole chain can be written:

tranc{-l-nJrI_+d+l_+n (0)} . (74)

If we take the limit asn — oo, the reduced state of the two large blogandB each of length
L can be written

pag = tanc{ZT QT 2 (0)} (75)
and the individual reduced states of each blédcknd B can be written:

pa=tranc{ZT"2(0)} (76)
and

pg = tranc{ ST X (0)}. (77)

Now from equation 13), we know that up to a correctiofA3@’, the channeld® becomes
equivalent tox. Hence, we find thgbag andpa ® pg deviate as follows:

loae — pa® pall = d“A3||trand ZT-O'TH £ (w)} | < constantc d A9 (78)

where the constant is independentofNow for our situatiori is simply the size of each block
I, and the spacing between the blocksis 5. Hence, for two live blocks separated by one
spacer block this bound becomes:

lpas — pa® pell < constantx s*A3 < constant sexp(log(x2)s).

To go from this result for two live blocks to equatiof3] one simply notes that the above
argumentation can also be applied to blocks of unequal size, and then the triangle inequality
applied to sequences sums of a similar structuré g ,i.1, — AL 1,0 @ PLll + 1oLy, ®

PLs — PL1L, D pLs ® p4] yields equation§3) with only a polynomial overhead in

8.2. Bosonic systems

Here, we consider chains of harmonic oscillators whose Hamiltonian can be written in
the form

H=ppT/2+KVX'/2, (79)
whereh =1 and we arrange the canonical conjugate position and momentum operators in
vector formX = (Xg, ..., Xn) andp = (P, ..., Pn) and introduced the so-called potential matrix

V [35]. The potential matrix encodes the interaction pattern of the harmonic oscillators in the
chain. From now on we assume thatis a k-banded matrix, i.eV; ; =0 for |i — j| > k/2.
Physically this implies that interaction strength vanish strictly beyond klig)th neighbour.
An important quantity in this context is th®/mplecticmatrix o which is defined by =
([R;, Rd), where we denot® = (Xy, ..., &, P1. ... Pn).

The ground state of the Hamiltonian equati@f)(is then a Gaussian statéq, 37] in the
sense that its characteristic functigp(z) = tr[ﬁ\fvz], whereW, = &2 °R is the Weyl operator,
is Gaussian, i.e.

Xp(z) =X, (0)6_1/4ZT"TVGZ+DTZ, (80)
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wherey; = 2Re[§j R¢p] and D = otr[ Rp]. The density operator may then be recovered via

1 .
70 / d"zx,(—2)W,. (81)

For the ground state the first moments vanish due to the reflection symmetry of the Hamiltonian.
Therefore, the ground state is fully characterized by the covariance nyatwkich is defined
asyjk= 2Re[|3€,- Ieik[)], where we have explicitly used the fact that the first moments vanish.
An explicit computation reveals that the covariance matrix of the ground state of Hamiltonian
equation 79) is given byy = V-2 g Vv¥2[35).

For the following proof of equation6@), we will bound the trace norm by the quantum
relative entropy using3g.
Property 1. For all density operators, p we haveS(s || p) > %(tr|& — pl)? andS(6ag|6a ®
68) = S(GaA® 68) — S(GaB).

The entropy of a Gaussian state is determined bgyheplectieigenvaluegu j} of y that
are simply the standard eigenvalues of the .iWe then find 7]

p=

N
S(p) =) f(uy, (82)
j=1
where
X+1 x+1 x-1 X —
f(x)= > log, 5 T3 log, > (83)

In the following proof, we will need to compute reduced density matrices. On the level of
covariance matrices this is particularly easy as the covariance matrix of a sub-s§sem
obtained simply by removing all entries referring to operators in the complemet of

Before we proceed to the proof of property equatié8) (ve first derive a useful lemma
that extends Fannes inequality to Gaussian states. Fannes si&@ijvdth{ for d-dimensional
systems and =tr|p — | < 1/e,we find|S(p) — S(6)| < Alogd — Alog A. Obviously, in this
form the theorem cannot be extended to infinite dimensional continuous variable systems as
this would implyd — oo which renders the upper bound trivial. Considering Gaussian states
however it is possible to derive a more useful Fannes-type inequality.

Lemma 1 (Bosons).Given two N-mode Gaussian statgs characterized by covariance

.....

B ~ 0.176 230 08s the non-zero solution @k + 2) log,(k + 2) + klog,k = 2, we find

N
|S(p1) — S(p2)| < Z — ’,ujl — /Li’ log, ‘,u’l — ,ué‘ < Alog,N — AlogA, (84)

=1

whereA = Y1 Jul — )l

Proof. A Gaussian state is a valid quantum mechanical state exactly if it satisfies the uncertainty
relationsy +io > 0. This implies! > 1 for alli andj. To bound the entropy equatiod2) we
note that forf (x) as defined in equatio88) we have

Iiml[f(x+k) — f(x)+klog,k] <O fork<B (85)
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and thatvx >1 andk >0 we find %[ f(x+k) — f(x) +klog,k] < 0. Thus, we have &
f(x+k) — f(x) < —klog,k for all x > 1 andk < B. Inserting this into the entropy formula
equation 82), we then find the first inequality in lemnia The second inequality is obtained
from the fact that the entropy of any probability distribution withnonzero probabilities is
bounded by logN. This completes the proof. O

It is worth noting that an analogous theorem may also be proven for the fermionfc case

Theorem 1. In an infinite chain of harmonic oscillators in its ground state we pick two blocks,
each consisting of L contiguous harmonic oscillators. The two blocks are separated from each
other by d harmonic oscillators. Then we find that

loae — pa® pell, < C(L)e™™ (86)
for some polynomial () and constani independent of d.

Proof. We will proceed using lemma to bound the entropy differenc®(pagllpa ® o) =
S(0p A ® pe) — S(pas)- To this end we need to bound the difference in symplectic eigenvalues
of the covariance matrices corresponding i@ pg andpag. Property 1 then yields the desired
result.

We denote withyyoung the ground state of the complete system and write the covariance
matrix of the two blocks of harmonic oscillators (both of lengithin the (X1, p1, X2, P2, ...)

ordering as
r r
r=(_72 ). (87)

Given that the potential matri¥ is banded we know from3P]-[41] that the entries 0§y ound
decrease exponentially in the distant&om the main diagonal. Therefore, the entried'ag
are exponentially decreasing with distance from the lower left corner whose entry is of the order
Cle_"‘d.

We employ theorem 8.3.9 ofiP] which states that

1A} (A) — A (B)|[l < veond Scond T)[[|A— B | (88)

9 Indeed we find

Lemma 2 (Fermions). Given two N-mode Gaussian stajgscharacterized by fermionic covariance matridgs
and fermionic symplectic eigenvalues that satisfymax; |1 — 15| < 0.6 then we find
N

IS(o1) — S(p2)| <2 —|ud — udllogyl i) — pdl < 2(Alog,N — AlogA) (89)
j=1

.
whereA =Y |1y — ).

Proof. Remember that the fermionic symplectic eigenvalqus < 1 and that the entropy is given &(p) =
Zszl e(vj) with f(x) = —*log,1* — :*log,15*. Straightforward analysis shows that for— y| < 0.5 and
0< X, y <1 we have| — xlog,x +ylog,y| < —|x — y|log,|x — y| for all 0 < x, y < 1. Thus for allx, y € [0, 1]
we find that| f (x) — f(y)| <2|x — y|Iogz@. Inserting this into the entropy formula yields the first inequality in

lemma2. The second one follows in the same way as that of lerBnTais completes the proof. O
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for every unitarily invariant norm and wher8(T) diagonalize A(B) and condS) =
IS]l - I1S71| is the condition number. Given that the matiiei can be diagonalized by a matrix
of the formU T ~¥/2 we find
(D) — (1)1 < (condT)condTa @ T'e))* || [o (T = Ta@ Te)| || - (90)
By the pinching inequality for Hermitean matriced2] C(A) < A we find condl's &
I'g) and condI") < cond yground)- FOr the trace norm we then find

1) * = (u) 1 < 2(condyground) 2l T asll1- (91)

Then||I"agll; < 2L [T asll; and|lo ||, = 4L yield

(DY — (up)* Il < 16/condyground L2Coe™® (92)

for constantsr andC, independent oL. Inserting this into lemma finishes the proof. O

As with matrix product states, application of the triangular inequality then yields
equation 63).

9. Proof of property equation (  64) for various states

9.1. Matrix product or finitely correlated states
We consider the same states as in sediand proceed similarly. We begin by computing

:0|I+A(I) = tranc{TI QA(I)(U)}a 10||6(1+5) = tranc{TI QI6(1+5)_| (0)}.
Applying equation 73) again we can write the powers gfas

QA(U » +A(I)k)\,A(I)® Q|6(1+5)—| =3 +(| 7)k)\‘|25®2’

for two bounded operatord; and ®,. In this equation in order to unclutter the notation we have
replaced the firdt®(1 +§) — | with the weaker estimaté, and the second one (in the exponent)
by the weaker estimaté—in fact their form is not particularly important for what follows.
Putting these expressions for the powergahto the expressions for the states, we find that for
sufficiently largd :

|
||/’||+A(|) p|6(1+5)|| CX)\A() (93)

whereC is a positive constant. Picking(l) = /2, for example, hence allows us to satisfy all
the required conditions.

9.2. Bosonic systems

As for condition equationd3), we consider the ground state for Hamiltonians that are quadratic
in the canonical coordinateésand p andk-banded potential matriceé. The ground state is
then given byy =V-12g VY2,

Let us now consideyol1 '= pl,aq, With covariance matrixy; and p? = p|6 (145 With
covariance matrix,, i.e. the reduced density matrices of a block spins in a chain df+ A(l)
harmonic oscillators (described by covariance malfrixand in a chain of®(1 +§) harmonic
oscillators (described by covariance mairiy), respectively. Now, we will demonstrate that the
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covariance matriceg; andy, converge to each other in the linhit> oco. In the following we
will choose, for our conveniencg, sufficiently large to ensure thh# A(l) <I18(1+6).

Given ak-banded potential matri¥ let us choose a number= A(l)/k. ThenV' is
A(l)-banded. Denote witlir the composition of first applying an analytic matrix function to
a covariance matrix and subsequently picking the sub-block describing the reduced state of a
contiguous block ol harmonic oscillators. Analogously, denote wiph the composition of
first applying the th matrix power followed by picking a sub-block as before.

Then we concludep, (T';) = pr (I'2) due to thek-bandedness oW¥. Furthermore, by
Bernsteins theorem (séeotnote10 for a short introduction) we then find

4M(x)
IFT) —FT)I < IIFT) —p Tl +p(T2) —FT)l < -
X'(x—1)
Because x > 1 (see footnote 10) this tends to zero with A(L) — oo. Choosing F(AY%= A
andF (A) = A~1/2 allows us then to conclude that the difference of the covariance magrices
andy» is bounded by an exponentially decreasing function ).

To continue, we proceed in two steps. First, we show that the above property implies the

weak convergence of the two reduced density matrices. Then, we use this to show that this is
already enough to imply the trace norm convergence.

Lemma 3. Given two Gaussian states” and p” above with vanishing displacement and

covariance matriceg” and »,? such thatlim _..|y" — y/?|| = 0 then for any sequence
@

Xv, where|| X, [|l; < C, with finiterankwe havdim _ ,tr[(p,” — p|(_2))XL] =0.

Proof. Given that the Hamiltonian of the harmonic chain is gapped we findﬂ,ﬁht; c for

some constant < 1 independent df. Then chooséy” — /2| <e <c<1,[1—e ¥ < 2/x|

10 Bernstein’s theorem concerns the approximation of functions by polynomials [43]. Given th sEt
polynomials of degree or less with real coefficients. For a continuous functlron the interval |- 1, 1] the
best approximation error is defined as

E (f) =inf{lF — pllo: pe P}, (94)
where
IF = pllo =_max [F) = pX)l. (95)

Now assume thaF is analytic in an ellipse€, with foci —1 and 1 and with half axes > 1 andg > 0. Then
x = a+B. Then we have

Theorem (Bernstein). Let the function F be analytic in the interior &f, with x > 1 and continuous og,. In
addition suppose that &) is real for real z. Then

2M(x)
E/(F) < ——— 96
(F) D) (96)
where
MO0 =max|F(2)]. (97)

It is straightforward to adapt the theorem to other intervals and we will thus apply this theorem for all intervals.
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forx <1,|1—e ¥ < e for all x and X, as above. We find
tr[(o™ = p®) X.]| = (2 ! / ztiw(-2X] (x* @ - 1@ )|

< ”XL”l/dzn _1/4zT
= (@2r)n

< ”XLHI/ d2nze—1/4zTyEl)z
2)" Jig<oe-14

+ ||XL||1/ gz e —1/477
2m)" Jizz0e-1a

X ®
|| Ll d2nze—l/4zTyL Z|Z|2€
4(27T) |z| <214

+ ”XL“l/ 2z e V4" 2
2m)" Jiz>2e-14

1/2
< ||X|_||1€ / d2nzefl/4zTy|f1)z
|z] <26~ V/4

z|1_ e—1/4zT ? =y Pz

1— e—1/4ZT(y|f2) Pz

2|1 _ g4 0P -z

1— e V4 PPz

(2m)"

N ||XL||1/ 27 o142 vzl /el 2
(2)" Jg>2e-14

[~ 1/4q—e V2| (T1—e)]|
< ”XLHl < dety(l) + O ( € ! )) P

where the last line follows from upper bounds on the error function. Note that the first term
on the right-hand side is proportional tgfrwhich is bounded by a constant independent of

L because-log, trp? < S(p.) and the harmonic chain Hamiltonian obeys an entropy-area
law [35]. Thus for sufficiently smalk the right-hand side becomes arbitrarily small. This
concludes the proof of lemnta O

Now we need to prove that weak convergence implies trace-norm convergence for
harmonic chains. The following proof will use in an essential way the fact that the ground state
of bosonic Hamiltonians that are quadratic in the canonical operators obey an ar8a,[39].|

Lemma 4. For the ground state of a bosonic Hamiltonian H that is quadratic in the canonical
coordinates the limitim L_wotr[(,o(l) —,oL))XL] =0 for any sequence X with || X [l; < K,
with finite rank already implies trace norm convergetio® _ .|| p" — p? |, = O.

Proof. Given O< € < 1. To begin with we write
I = o1 < llol” = Pol"Plly+IIPp” P — P Pl +[IPp® P — o1, (98)

for someP that is yet to be determined. We now would like to establish the existence of a
spectral projectiorP of finite rank such that|p’ — Pp"’P|; < €. In other words, we aim

to project onto the subspace made up of the eigenvectors corresponding kq kagest
eigenvalues op,’. We argue that such a projectid¥"’ exists for eachp’. Then one may
project onto the subspace spanned by the subspaces determiﬁéﬂ &yd Pﬁz) which defines

P.. What we need is thdt,, is bounded independent &f To see this, it is important to note
that the ground state dfl satisfies an area law, i.e. in the 1D setting there is a conStaath
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.....

p.”. Note that for alk we haver; < & by tro’ = 1. Thus we find

C>— ) ilogyrg >log(kn) D Ay (99)

k=Kkm k=km

Therefore, we find for the choida, > €°/¢ that} 2, Ay < € for any choice ofL. Thus P

can be chosen to be a rakk projector. ThusP_ is bounded in the trace norm but the subspace
onto which it projects will generally depend @n Note further that with the abov@_ the weak
convergence lim . tr[(p Y — p'?)X.] = 0 implies that for sufficiently largé. we have that
1P PL— PLp® PLI|; < €. Thus, we find that for any > 0 and sufficiently largé. we have

1Y — p@|1; < 3¢ thus establishing the required trace norm convergence. O

10. Generalizations to other interactions

Itis natural to ask whether the approach that we have adopted can enable progress to be made for
unitary interactions other than controlled-phase gates (or their higher dimensional analogues).
Some generalizations are immediate. For instance, gavsrchannels that are probabilistic
applications of unitaries, where the unitaries are controlled on different classical or quantum
basis states of the environment, expressibs) €an easily be shown to be an explicit lower
bound to the regularized coherent information. Hence, if the environment state has sufficiently
decaying correlations, expressiobo) will also be alower bound to channel capacity. In a
similar manner it is likely that any channel whose capacity can be bounded by such simple
entropic expressions will benefit from similar insights.

11. Discussion and conclusions

We have considered models of correlated error inspired by many-body physics, with the aim
of demonstrating behaviour in the capacity that parallels similar behaviour in the associated
many-body systems. In this context, a number of interesting questions which require further
investigation.

The first of these questions regards our initial motivation—to find models of correlated
error that display interesting non-analytic behaviour. However, non-analytic behaviour in many-
body systems arises only in thieermodynamic limjtand so our results unfortunately do not
really explain why the non-analyticities that have been observed in papers s&gH @sdccur
for finite truncations of the channel. Furthermore, the quest for ‘genuine’ non-analyticity is
actually open to some debate—by redefining the parameters defining the channel, it is always
possible to remove any non-analytic behaviour. However, we hope that our work may help to
shed light on non-analytic behaviour for physically relevant parameter choices such as magnetic
fields and inter-particle couplings In realistic models of correlated error it is such forms of
parametrization that will probably be most important.

11 |n this context it may be important to note that this is also an issue in the definition of phase transitions. Some
definitions of phase transitions avoid this problem by not relying explicitly on any parametrization, but instead by
relying on the divergence of correlation functions or the non-uniqueness of a ‘well-defined’ thermal §taf@.[

Such definitions avoid the problems of defining non-analyticity, and may well have analogues in correlated error
channels.
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It will also be interesting to see how far the approach adopted here can be extended to other
possible system environment interactions. The channels that we have investigated above are all
of a very specific kind—as random unitary channels, they do not permit quantum information to
be transmitted from one system patrticle to another via the environment. More general channels
with memory will have this property, and so it will be interesting to understand what effects this
gualitative difference can make.

Another open question is whether the conditiod® @nd ©4) can be established for wider
families of many-body system. In addition to the systems for which we have demonstrated these
conditions, recent work by Hasting81] demonstrates that they hold for the ground states of
many fermionic systems too. His approach raises interesting questions concerning topological
invariants which may have further significance for the problems considered in this paper.

Finally, it is important to note that the connections madelis} fnd this work are actually
guite natural—entropies and correlations have a significant role in statistical physics, and so
guantum channel capacities with correlated error should have some connection to many-body
physics. However, it would be nice to know if there is a deeper link, perhaps through a more
direct connection between coding theory and the physics of physical systems such as spin-
chains.
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