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Abstract. In most studies of the capacity of quantum channels, it is assumed
that the errors in the use of each channel are independent. However, recent work
has begun to investigate the effects of memory or correlations in the error, and
has led to suggestions that there can be interesting non-analytic behaviour in
the capacity of such channels. In a previous paper, we pursued this issue by
connecting the study of channel capacities under correlated error to the study
of critical behaviour in many-body physics. This connection enables the use of
techniques from many-body physics to either completely solve or understand
qualitatively a number of interesting models of correlated error with analogous
behaviour to associated many-body systems. However, in order for this approach
to work rigorously, there are a number of technical properties that need to be
established for the lattice systems being considered. In this paper, we discuss
these properties in detail, and establish them for some classes of many-body
system.
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1. Introduction

One of the most important problems of quantum information theory is to try to determine the
channel capacityof noisy quantum channels. In a typical scenario, Alice would like to send
Bob information over many uses of a noisy quantum communication link. As the channel is
noisy, this cannot usually be done perfectly, and so they must use some form of block encoding
to combat errors. The channel capacity is defined as the optimal rate at which information
may be transferred with vanishing error in the limit of a large number of channel uses. There
are a variety of different capacities, depending upon whether Alice and Bob are interested in
transmitting classical or quantum information, and whether they have extra resources such as
prior entanglement. In this paper, we will be concerned mostly with the capacity for sending
quantuminformation, and so whenever we write the term ‘channel capacity’, we will implicitly
be referring to thequantumchannel capacity.

In most work on these problems, it has usually been assumed that the noisy channel
acts independently and identically for each channel use. In this situation, the transformation
En corresponding ton-uses of the channel may be written as ann-fold tensor product of the
single-use channelE1:

En = E1 ⊗ E1 ⊗ · · · ⊗ E1. (1)
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However, in real physical situations there may be correlations in the noise that acts between
successive uses, an interesting example being the decoherence of photons in optical fibres under
the action of varying birefringence, which can be correlated due to mechanical motion or slow
temperature fluctuations [1]. In such situations, one cannot describe the action of the channel in
a simple tensor product form:

En 6= E1 ⊗ E1 ⊗ · · · ⊗ E1. (2)

In this setting, one must really describe the action of the channel by a family of quantum
operations corresponding to each number of uses of the channeln = 1,2, . . . , ∞:

{En}n. (3)

We will call any such family of operations amemory channelor acorrelated channel4. Defining
the notion of channel capacity for such a correlated channel is not always straightforward.
In principle, a family of channels, such as equation (3) may not have any sensible limiting
behaviour asn → ∞

5. However, in this paper, we will not need to discuss this issue in detail, as
we will only consider fairly regular channels that have a (unique) well-defined notion of channel
capacity.

In the case of uncorrelated errors, it has recently been shown [4] that the quantum channel
capacity of an uncorrelated quantum channel is given by:

Q(E)= lim
n→∞

I (E⊗n)

n
, (4)

whereI (ξ) is the so-calledcoherent informationof the quantum channelξ :

I (ξ) := sup
ρ

S(ξ(ρ))− S(I ⊗ ξ(|ψ〉〈ψ |)), (5)

whereSdenotes the von Neumann entropy,ρ is a state, and|ψ〉〈ψ | is a purification ofρ.
Given that equation (4) is the quantum channel capacity for memoryless channels, it is

natural to hope that the corresponding expression:

Q({En}) := lim
n→∞

I (En)

n
(6)

will represent the quantum channel capacity in the case of correlated errors. However, this will
not always be the case, not least because this limit does not always exist ([2] and see footnote 5).
However, in this paper, we will not only assume that this limit exists, we will also initially work
under the assumption that it represents the true quantum channel capacity. We will later discuss
this assumption in some detail.

A similar situation occurs for theclassical capacity of correlated quantum channels,
where formulae (4) and (6) can be replaced with similar expressions involving the Holevo
quantity instead of the coherent information. Most prior work on calculating the capacities of
correlated quantum channels has focused on the capacity for classical information. Numerical

4 The term ‘it correlated’ is sometimes more appropriate as we will also discuss the notion of correlated error in
channels with a two or three spatial dimensional structure, such as might arise in ‘egg box’ storage such as optical
lattices. In such cases ‘memory’ does not really have a meaning.
5 This point is discussed in detail in papers such as [2] and also in the literature on classical channels with memory
(see, e.g. the free online book [3]). It turns out that for all channels (not just uncorrelated ones), one may define an
optimisticand apessimisticchannel capacity. In the case of channels with uncorrelated error, and in ‘well-behaved’
correlated channels, these two notions coincide, giving the conventional definition of a channel capacity.
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and mathematical experiments involving a small number of channel uses suggest that in a variety
of interesting cases the classical capacity of correlated channels can display interesting non-
analytic behaviour. For instance, the sequence of papers [5]–[7] investigates a certain family of
correlated channels parameterized by amemory factorµ ∈ [0,1] which measures the degree of
correlations. The results of [5]–[7] demonstrate that when the correlated channel is refreshed
after every two uses (i.e. considerE2 ⊗ E2 ⊗ E2 ⊗ · · · , rather than the full correlated channel
{En}), then there is a certain transition valueµ= µ0 at which the channel capacity displays
a definite kink, and above this threshold the optimal encoding states suddenly change from
product to highly entangled. Similar phenomena have subsequently been observed in a variety
of other cases [8, 9].

Despite these interesting observations, it is still an open question whether the sharp kinks
in the capacity of these models still persist if the full correlated channel{En} is considered
as n → ∞, or whether this behaviour is just an artefact of the truncation of the channel at
low n. The main difficulty in deciding such questions is that even under the assumption that
equations such as (6) (or its analogue for classical information—the regularized Holevo bound)
represent the true quantum capacity of a given correlated channel{En}, in most cases such
variational expressions are extremely difficult to compute. It is, however, interesting to note
that the non-analytic behaviour observed in the channel capacity of correlated channels is
somewhat reminiscent of the non-analyticity of physical observables that define a (quantum)
phase transition in strongly interacting (quantum) many-body systems, where in contrast true
phase transitionsusuallyonlyoccur in then → ∞ limit.

Motivated by this heuristic similarity, in a previous paper [10], we connected the study of
channels with memory to the study of many-body physics. One advantage of this approach
is that allows the construction of a variety of interesting examples of channels for which
equation (6) can either be understood qualitatively or even calculated exactly using the
techniques of many-body physics. One would otherwise usually expect regularized equations
such as (6) to either be quite trivial or completely intractable. This is perhaps the most
important consequence of this line of attack—by relating correlated channels directly to many-
body physics, we obtain a good method for displaying models of channels with memory
that tread the interesting line between ‘solvability’ and ‘non-solvability’, in analogy with
the many such statistical physics models that have been proposed over the years. It is quite
possible that the insights ofuniversality, scaling and renormalization that have been so
successful in many-body theory may provide valuable intuition for the study of channels with
correlated error.

Another advantage of this approach is its connection to physically realistic models of
correlated error. One can imagine that in many real forms of quantum memory, such as optical
lattices, any correlated errors might originate from interaction with a correlated environment
and thus be strongly related to models of statistical physics. This provides further physical
motivation to examine the properties of correlated channels with a many-body flavour.

The connection to many-body physics also naturally leads one to consider channels with
structure in two or more spatial dimensions. In such situations, it is no-longer appropriate to
think of correlations as ‘memory’, as the correlations arise not through a single time dimension,
but perhaps through spatial proximity in more than one dimension. In order to define a capacity
in such multidimensional situations, one would have to decide how to quantify the size of the
channel. Natural options could include the total number of particles in the system, or perhaps
the size of one linear dimension. Although we will not explicitly discuss multi-dimensional
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Figure 1. Each particle that Alice sends to Bob interacts with a separate
environmental particle from a many-body system.

examples in this work, such situations might have interesting connections to the study of error
tolerance in computational devices.

This paper is structured as follows. In order to make the paper self-contained, in the sections
preceding section7 we present, including all missing detail, the results of [10]. In section6, we
discuss in detail some sufficient conditions that many-body systems must satisfy in order to
lead to capacity results according to the approach that we adopt—the arguments that lead to
the development of these conditions were sketched in [10], however, here, we provide the full
argument. In sections8 and9, we prove that these conditions hold for finitely correlated states
and formulate a Fannes-type inequality to show the same result for harmonic chains. In the
remaining sections, we discuss generalizations of our approach and present conclusions.

2. Many-body correlated channels

In this section, we recap the approach taken in [10] to construct correlated error models with
links to many-body physics. The starting point is to suppose, as usual, that Alice transmits a
sequence of particles to Bob (the ‘system’ particles), and that each particle interacts via a unitary
U with its own environmental particle. So far, this is exactly the same setting as uncorrelated
noise. However, although each system particle has its own separate environment, one can
introduce memory effects by asserting that the environment particles are in the thermal/ground
state of a many-body Hamiltonian, such that the interaction terms lead to correlations in the
environmental state (see figure1). Unlike the uncorrelated case, this means that there will be
correlations in the noise on different system particles. At this point, it is important to discuss
some of the subtleties involved in the way that the ‘many-body’ system was defined in [10]. In
basic approaches to many-body physics, it is usual to consider a system with a finite number
of particles, obtain thermal states and ground states, and then take a limit as the number of
particles is taken to infinity. In more mathematical statistical physics literature [11], however,
it is usual to consider genuinely infinite systems from the start. This involves a number of
technical implications, including a very different approach to the concept of a state, which
can no longer be expressed in terms of basic density matrices. The two approaches are not
necessarily equivalent and may lead to different results. To avoid such technicalities in this
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work, we will follow the former approach, and for each number of uses of the channeln,
we will consider a many-body system of sizen. As a family of channels for eachn this is a
mathematically well-defined object, and it is a reasonable question to ask what the resulting
channel capacity is. In later sections of the paper, we will also assumeperiodic boundary
conditions to enable us to analyse whether equation (16) is a valid quantum capacity or not.
Again, although this seems like an unnatural assertion, it is mathematically well-defined, and
in many systems the boundary conditions are believed to make a vanishingly small difference
which disappears in the largen limit.

Of course even with these simplifications not all many-body systems can be solved
exactly, or even understood qualitatively. Moreover, even if the many-body system can be well
understood, the computation of the limit (6) may still be difficult, and may depend strongly upon
the choice of the unitaryU describing the interaction of each system particle with its associated
environmental particle. In order to provide concrete examples, one must hence make a judicious
choice ofU in order to make analytical progress. As in [10], we chooseU to be of the form
of a controlled–unitary interaction, where the environmental particles act as controls. In fact,
for ease of explanation we will also initially restrict the system and environment particles to be
two-level spins, and the interactionU to be a controlled-phase (‘CPHASE’) gate, which in the
computational basis for 2-qubits is defined as,

CPHASE=


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 . (7)

Later, we will discuss how higher-level analogues of the CPHASE enable similar connections
to many-body theories with constituent particles with a higher number of levels. The reason
we make these choices for the controlled unitary interactions is that explicit formulae may be
derived for the capacity in terms of relatively simpleentropicexpressions which are especially
amenable to analysis.

The restriction to controlled–unitary interactions also enables us to consider environment
particles that are classical. For instance, in the case of classical environment two-level spins, the
‘CPHASE’ interaction will be taken to mean that the system qubit undergoes a Pauli-Z rotation
when the environment spin is up, otherwise it is left alone. It turns out that by considering
classical environments it is possible to make more direct connections between the channel
capacity of our models and concepts from statistical physics.

So let us proceed in trying to understand the capacity in cases in which the system particles
are all two-level systems, with a CPHASE interaction. It is helpful to write the resulting channels
in a more explicit form. Let us consider a quantum environment first. Let|0〉 denote spin-down,
and|1〉 denote spin-up. Let us suppose that the environment consists ofN spins (eventually we
will be interested in the limitN → ∞) initially in a state:∑

x,y

ρx,y|x1x2 . . . xN〉〈y1y2 . . . yN|, (8)

where the sum is taken over allN-bit stringsx, y, and x j /y j denote thej th bit of strings
x/y, respectively. We can also describe a classical environment in the same way, simply
by restricting the input environment stateρ to be diagonal in the computational basis—the
CPHASE interaction will in this case leave the environment unchanged, and will affect the
system qubits as if the controls are entirely classical.

New Journal of Physics 10 (2008) 043032 (http://www.njp.org/)

http://www.njp.org/


7

If the environment is in the state (8), and the system qubits are initially in the stateσ , then
the channel acting upon the system qubits is given by:

σ →

∑
x

ρx,xZx1
1 Zx2

2 . . . ZxN
N σ(Z

x1
1 Zx2

2 . . . ZxN
N )

†, (9)

where Zi denotes the Pauli-Z operator acting upon qubiti . Hence, regardless of whether
the environment is considered quantum or classical, the channel that we have described is a
probabilistic application ofZ-rotations on various qubits. Although we will consider qubiti to
be transmitted earlier in time than any other qubitj with i < j , there is no need for us to actually
impose such a time ordering—because all the CPHASE interactions commute with each other,
such time ordering is irrelevant6.

We will be interested in computing equation (6) for such many-body correlated channels.
In the next section, we will show that the channel capacity of this channel is given by a simple
function of the entropy of thediagonalelements in the spin-up/down basis of the environmental
state, i.e.

−

∑
x

ρx,x logρx,x. (10)

In the case of a classical environment, this is just the actual entropy of the spin-chain. This
observation is very useful, as it allows us to apply all the formalism of many-body physics to
the problem, also enabling us to use that intuition to observe a number of interesting effects. In
the quantum case this function does not correspond to a conventional thermodynamic property.
However, we will discuss examples where it is still amenable to a great deal of analysis using
many-body methods.

3. A formula for the coherent information of our models

In order to calculate the regularized coherent information (6) for our many-body correlated
channels, we will utilize the close relationship between the quantum channel capacity and the
entanglement measure known as thedistillable entanglement[12]. This connection utilizes a
well-known mapping between quantum operations and quantum states. Given any quantum
operationE acting upon ad-level quantum system, one may form the quantum state:

J(E)= I ⊗ E(|+〉〈+|), (11)

where|+〉 =
1

√
d

∑
i =1...d |i i 〉 is the canonical maximally entangled state of twod-level systems.

The stateJ(E) is sometimes referred to as theChoi–Jamiolkowskistate (CJ) of the operation
E [13]. It can be shown that the mapping fromE to J(E) is invertible, and hence the stateJ(E)
gives a one-to-one representation of a quantum operation. We will show that for the kinds of
correlated error channel that we have described above in equation (9), the quantum channel
capacityQ(E) of the channel equalsD(J(E)), the distillable entanglement of the stateJ(E).

To make the presentation more transparent, we will make the argument for the CJ state of
a particular single qubit channel, as it is straightforward to generalize the argument to the entire

6 Note that this does not always mean that our channel iscausalin the sense discussed in [2]. As the number of
qubits changes, the state of the many-body system changes, and the output of the earlier uses of the channel will
change accordingly. This is in contrast to the requirement of causality imposed in [2]. However, in the limit of a
large number of channel uses this effect will probably be negligible for most reasonable cases.
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family of memory channels described above. Hence, let us consider the following single qubit
‘dephasing’ channel:

E : ρ → pρ + (1− p)ZρZ†, (12)

where p is a probability, andZ is the Pauli-Z operator. The CJ representation of this
channel is:

J(E)= I ⊗ E(|+〉〈+|), (13)

where|+〉 is chosen as in equation (11).
The argument relies upon the fact that the channel (12) possesses some useful symmetry.

This symmetry leads to the property that having one use of the channel is both mathematically
andphysicallyequivalent to having one copy ofJ(E). Suppose that you have one use ofE , you
can easily createJ(E). However, it turns out that with one copyJ(E) you can also implement
one use ofE . Hence, both the operation and the CJ state are physically equivalent resources.
The argument works as follows. Suppose that you haveJ(E) and you want to implement one
action ofE upon an input stateρ. This can be achieved by teleportingρ through your copy of
J(E). This will leave you with the stateE(σiρσ

†
i ), with the Pauli operatorσi depending upon

the outcome of the Bell measurement that does the teleportation. However, the channel (12)
commutes with all Pauli rotations. So we can ‘undo’ the effect of the Pauli by applying the
inverse ofσi , which for Paulis is justσi itself. Hence, we have:σiE(σiρσ

†
i )σi = E(ρ). Hence,

by teleporting intoJ(E) and undoing the Pauli at the end we can implement one use of the
operation.

This observation allows us to relate the channel capacity of the channel to the distillable
entanglement of the CJ state. The proof proceeds in two steps, and follows well-known ideas
taken from [12]. The aim is to show that the one-way distillable entanglement ofJ(E) is
equivalent toQ(E), so that previous results onD(J(E)) may be applied.

1. Proof thatQ(E)6 one-way distillation: (i) Alice prepares many perfect EPR pairs and
encodes one-half according to the code that achieves the quantum capacityQ(E). (ii) She
teleports the encoded qubits through the copies ofJ(E), telling Bob the outcome so that he
can undo the effect of the Paulis. (iii) This effectively transports all encoded qubits to Bob,
at the same time acting on them withE . (iv) Bob does the decoding of the optimal code,
thereby sharing perfect EPR pairs with Alice, at the rate determined byQ(E). As this is a
specific one-way distillation protocol, this means thatQ6 D.

2. Proof thatQ(E)> one-way distillation: (i) Alice prepares many perfect EPR pairs and
sends one-half of each pair through many uses of the channelE . (ii) She and Bob do one-
way distillation of the resulting pairs (this involves only forward classical communication
from Alice to Bob). (iii) Thereby they share the perfect EPR pairs, at the rate determined
by D(J(E)), the one-way distillable entanglement. (iv) They can use these EPR pairs to
teleport qubits from Alice to Bob. As this is a specific quantum communication protocol,
this means thatQ> D.

These arguments can easily be extended to apply to any channel that is a mixture of Pauli
rotations on many qubits, hence including the memory channel models that we have described
above. Fortunately, the CJ state of our channel is a so-calledmaximally correlatedstate, for
which the distillable entanglement is known to be equivalent to the Hashing bound:

D(J(E))= S(trB{J(E)})− S(J(E)), (14)
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whereS is the von Neumann entropy. Note that for such channelsE this expression is equivalent
to thesingle copycoherent information, which is hence additive for product channelsE⊗n. In
our case we are interested in the regularized value of this quantity for correlated channels, i.e.:

Q({En})= lim
n→∞

D(J(E))
n

= lim
n→∞

S(J(En)A)− S(J(En))

n
, (15)

which can be computed quite easily as:

Q({En})= 1− lim
n→∞

S(Diag(ρenv))

n
, (16)

where Diag(ρenv) the state obtained by eliminating all off-diagonal elements of the state of
the environment (in the computational basis). Hence, the computation of the quantum channel
capacity of our channel{En} reduces to the computation of the regularized diagonal entropy
in the limit of an infinite spin-chain. Although in most cases this quantity is unlikely to be
computable analytically, it is amenable to a great deal of analysis using the techniques of
many-body theory. It is also interesting to note the intuitive connection between expression (16)
and work on environment assisted capacities—in the case of random unitary channels, where
the unitaries are mutually orthogonal, the diagonal entropy in expression (16) has a natural
interpretation as the amount of classical information that needs to be recovered from the
environment in order to correct the errors [14, 15].

Although the above analysis has been conducted for two-level particles, it can be extended
to situations involvingd-level systems. In thed-level case, one can replace CPHASE with a
controlled shift operation of the form:∑

i =1,... ,d

|k〉〈k| ⊗ Z(k), (17)

where theZ(k)=
∑

j exp(i2πk j/d)| j 〉〈 j | are the versions of the qubit phase gate generalized
to d-level systems, and the first part of the tensor product acts on the environment. With this
interaction all the previous analysis goes through, and thed-level version of equation (16):

Q({En})= log(d)− lim
n→∞

S(Diag(ρenv))

n
(18)

gives the regularized coherent information, where Diag(ρ) refers to the diagonal elements
in the d-level computational basis. It is important to consider the generalization tod-level
systems because the thermodynamic properties of many-body systems do not always extend
straightforwardly to systems with a higher number of levels. For instance, one possible
generalization of the Ising model tod-level systems is thePottsmodel, which leads to some
very interesting and non-trivial mathematical structure [16], and in the quantum Heisenberg
model the presence of a ground state gap depends on where the spins in the chain are integral
or half-integral [17].

The simplicity of equation (16) enables one to immediately write down many noise models
for which the regularized coherent information can both be calculated, and also represents
the quantum channel capacity of the correlated channel. In particular, let us suppose that the
environment consists of classical systems described by a classicalMarkov Chain(those readers
not familiar with the Markov chain terminology required here are directed to chapter 5 of [18]
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for a very readable introduction). If the state at each ‘site’s in the environment represents the
instantaneous state of a Markov chain at times, then the regularized entropy in equation (18) is
given by theentropy rateof the Markov chain [18], provided that the Markov process is both
irreducible7 and possesses auniquestationary (equilibrium) state. Let the transition matrix of
M of the Markov chain be defined such thatpi (s+ 1)=

∑
j Mi j p(s) j , let vi be thei th element

of the stationary probability distribution, and letHi be the entropy of columni in the Markov
chain transition matrix. With these conventions the entropy rate is given by:

lim
n→∞

S(Diag(ρenv))

n
=

∑
i =1,... ,d

vi Hi . (19)

In these cases the correlated channels fit quite neatly into the class of models proposed in
[2, 19], and moreover these channels will beforgetful [2]. As proven in [2], for forgetful
channels the regularized coherent information is equal to the quantum capacity (see [20] for
an independent coding argument which also works for Markov chain channels implementing
generalized Pauli rotations). Hence, for these models equation (18) represents the true quantum
channel capacity, and so we may write explicitly:

Q(Markov)= log(d)−
∑

i =1,... ,d

vi Hi . (20)

When unique, the stationary distribution of a Markov chain is given by the unique maximal
right eigenvector (of eigenvalue 1) of the transition matrix. Related results have been obtained
independently in [20, 21].

4. Environment that is a classical system

In the case of a classical environment, the second term of equation (16) is precisely the entropy
of the environment, and so it can easily be computed in terms of the partition function.

The partition function of the classical system is defined as:

Z =

∑
i

exp(−βEi ), (21)

where theEi are the energies of the various possible configurations, andβ = 1/(kBT), with T
the temperature andkB Boltzmann’s constant. The entropy (in nats) of the system is given by
the following expression:

S(Diag(ρenv))=

(
1−β

∂

∂β

)
ln Z. (22)

This means that in the case of a classical environment our channel capacity becomes

Q({En})= 1− log2(e)

(
1−β

∂

∂β

)
lim

n→∞

1

n
ln Z, (23)

where the log2(e) converts us back from nats to bits. This expression means that we can use all
the machinery from classical statistical mechanics to compute the channel capacity.

7 Irreducibility means that given any starting state there is a nonzero probability of eventually going through any
other state.
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In particular, any spin-chain models from classical physics that can be solved exactly will
lead to channels with memory that can be ‘solved exactly’ (provided that one can show that the
regularized coherent information is indeed the capacity, a problem that we shall discuss in later
sections). The most famous example of an ‘exactly solvable’ classical spin-chain model is the
Ising model. We will discuss the classical Ising model in detail in the next section, as it will also
be relevant to a certain class of quantum spin-chains.

However, there are alsomanyclassical spin-chain models thatcannotalways be solved
exactly, but which can be connected to a wide variety of physically relevant models with
interesting behaviour. As just one example, consider modifying the Ising spin-chain model to
allow exponentially decaying interactions between non-adjacent spins. The resulting model can
be related to a quantum double-well system, and is also known to exhibit a phase transition8.
This means that the corresponding correlated channels will also exhibit similar behaviour,
provided of course that the limit equation (6) truly represents the quantum channel capacity
for the models.

In this paper, we will not give detailed discussion of any further models involving a
classical environment (other than the classical one-dimensional (1D) Ising chain, which we
will discuss in the next section). As our expression (16) is simply the entropy of the classical
environment, the interested reader may simply refer to the many interesting classical models
(both solvable and almost solvable) that are well documented in the literature. Of course, to
make the analysis rigorous one would need to show that expression (6) is the formula for the
quantum capacity in these cases. However, we conjecture that for most sensible models this
should be true. In the final section of the paper, we will present an analysis that demonstrates
this for a family of 1D models.

5. Quantum environments

Unfortunately expression (16) does not correspond to a standard thermodynamic function of
the environment state when the environment is modelled as a quantum system. It represents the
entropy of the state that results when the environment is decohered by a dephasing operation on
every qubit. Although this quantity is not typically considered by condensed matter physicists,
there is some hope that it will be amenable to analysis using the techniques of the many-body
theory.

In this paper, we will make a small step towards justifying this hope by analytically
considering a class of quantum environments inspired by recent work on so-calledfinitely
correlatedor matrix product states[22].

We will leave attempts to analytically study more complicated models to another occasion,
although in figure2, we present some numerical evidence that the quantum 1D Ising model
displays a sharp change in capacity at the transition point.

6. Quantum capacity for finitely correlated environments described by
rank-1 matrices

Finitely correlatedor matrix productstates are a special class of efficiently describable quantum
states that have provided many useful insights into the nature of complex quantum systems [22].

8 See e.g. the lecture notes athttp://www.tcm.phy.cam.ac.uk/bds10/phase/pt.ps.gz.
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Figure 2. Numerics for the quantum Ising model suggest that there may be
transition behaviour in the capacity at the phase transition point of the 1D
quantum Ising model. In this figure, the central point of the horizontal axis is the
transition point of the quantum Ising model, and the curves become increasingly
steep as the number of spins is increased from 6 to 18. As the quantum Ising
model can be solved exactly in 1D, it is quite possible that an analytical solution
may be found for the channel capacity.

In a recent paper [23] it has been demonstrated that a variety of interesting Hamiltonians can
be constructed with exact matrix product ground states, such that the Hamiltonians in question
undergo non-standard forms of quantum ‘phase transition’.

As matrix product states are relatively simple to describe, one might hope that for such
ground states the computation of equation (16) may be particularly tractable. In this section,
we will see that for matrix product states involvingrank-1matrices the analysis is particularly
simple, and may be reduced to the solution of a classical 1D Ising model.

Let us consider a 1D matrix product state, where each particle is a two-level quantum
system,|0〉, |1〉. Let us assume that the matrices associated to each level are independent of the
site label, and are given byQ0 for level |0〉 andQ1 for level |1〉. Hence, the totalunnormalized
state can be written as:

|ψ〉 =

∑
i, j,k...∈{0,1}

tr{Qi Q j Qk . . . }|i jk . . . 〉. (24)

From the form of expression (16) we see that we are only interested in the weights of
the diagonal elements in the computational basis, or equivalently the state that results from
dephasing each qubit. It is easy to see that thisunnormalizedstate will be given by:

ρ =

∑
i, j,...∈{0,1}

tr{(Qi ⊗ Q∗

i )(Q j ⊗ Q∗

j ) . . . }|i j . . . 〉〈i j . . . |. (25)

In this expression if we relabel the matricesA = Q0 ⊗ Q∗

0 and B = Q1 ⊗ Q∗

1 then the
probability of getting various outcomes when measuring the environment in the computational
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basis will be given by traces of all possible products of theAs and Bs. For instance, the
probability of getting 01100. . . , when measuring the environment in the computational basis
will be given by:

p01100... =
1

C(N)
tr{AB B AA. . . }, (26)

where N is the number of qubits in the environment, andC(N) is a normalisation factor
given by:

C(N)= tr{(A+ B)N
}. (27)

C(N) can be computed by diagonalization. In the rest of this section, we will be interested
in cases whereA and B are both squarerank-1 matrices. Some of the example Hamiltonians
discussed in [23] have ground states with this property, and in fact, some special cases of the
noise models presented in [5, 6, 8, 9] can also be expressed in the form of matrix product
environments with rank-1 matrices (although in general those models require more than two
matrices as they require environmental spins with more than two levels). We will show that in
such situations the diagonal entropy in the computational basis is equivalent to the entropy of a
related classical Ising chain.

The first thing to note is that rank-1 matrices are almost idempotent. In fact, ifA andB are
both rank-1 matrices, then we have that:

An
= an−1A, Bm

= bm−1B, (28)

wherea is the only nonzero eigenvalue ofA, andb is the only nonzero eigenvalue ofB. Note
that because of the form ofA andB as the tensor product of a matrix and its complex conjugate,
these eigenvaluesa,b must be non-negative. We can define the normalized matrices:

Ã =
A

a
, B̃ =

B

b
. (29)

These normalized matricesare idempotent. To see how this can help, consider a particular
string, say,

p0111000=
1

C(N)
tr {(AB B B AAA)} ,

if we substituteÃ and B̃ into this expression, and use the idempotency, then the strings of
consecutive As and Bs will collapse to just oneÃ or B̃, with total factors ofa4 andb3 inserted
outside the trace:

p0111000=
1

C(N)
a4b3tr

{(
ÃB̃ Ã

)}
=

1

C(N)
a4b3tr

{(
ÃB̃
)}
. (30)

It is easy to see that this form is quite general—the probability of getting a particular string will
collapse to a simple expression. If there arel occurrences ofA andn − l occurrences ofB in
the string, andK counts the number of boundaries between blocks ofAs and blocks ofBs, then
the probability of the string becomes:

1

C(N)
(al bN−l )tr

{(
ÃB̃
)K
}
.

Noting that ÃB̃ will also be a rank-1 matrix, let us use the letterc to refer to its only nonzero
eigenvalue. Hence, the probability becomes:

1

C(N)
al bN−l cK . (31)

New Journal of Physics 10 (2008) 043032 (http://www.njp.org/)

http://www.njp.org/


14

This expression tells us quite a lot—firstly for any given channel described by rank-1 MPS
states, the only parameters that matter area, b andc. So we need not work with the actual
matrices defining our state, we only need to work with matrices of our choice that have the
same parametersa,b and c. In the following, we will assert thatc is non-negative—this is
guaranteed because of the following argument: it holds thatc = tr{ÃB̃}, becauseÃB̃ is rank-1,
but becausẽAB̃ = Q0Q1 ⊗ Q∗

0Q∗

1/(ab), wherea andb are non-negative, this means thatc must
be non-negative.

So let us just go ahead and pick the following matrices:

A =

(
a

√
cab

0 0

)
, B =

(
0 0

√
cab b

)
. (32)

These matrices clearly have nonzero eigenvaluesa and b, respectively. So what about the
eigenvalue ofÃB̃ ? For the above choice of matrices we find that:

ÃB̃ =

(
c
√

cb
a

0 0

)
. (33)

Hence, we find that the matrices that we have chosen have the correct values ofa, b andc, as
required. Now we notice that the matrices that we have chosen in equation (32) are very similar
to the matrices that would define a classical Ising chain. In fact, if we make the following change
of variables froma, b andc to J, D andM :

a = exp(β(J + M)), b = exp(β(J − M)), c = exp(−β(4J + 2D)). (34)

The inverse transformations are:

β J=(ln(a)+ ln(b))/2, βM=(ln(a)− ln(b))/2,
(35)

βD=−(ln(a)+ ln(b))− (1/2) ln(c).

It turns out that the parametersJ andD will represent coupling constants andM will represent
a magnetic field. To see this, let us insert the new parameters into the choice ofA and B in
equation (32). Then we get that the matrices (32) can be written as

A =

(
exp(β(J + M)) exp(−β(J + D))

0 0

)
,

(36)

B =

(
0 0

exp(−β(J + D)) exp(β(J − M))

)
.

The matrices in such a rank-1 MPS are essentially the top row and bottom row of a transfer
matrix. Comparing these matrices to the classical Ising transfer matrix, we see that the
following Hamiltonian (where for convenience we now follow the usual physics convention that
si ∈ {−1,+1}):

H = −

∑
i

Jsi si +1 − Msi + D(1− si si +1)= −

∑
i

(J − D)si si +1 − Msi + D. (37)

The D is just a constant shift in spectrum, so we can simply consider the Ising chain with
Hamiltonian:

H = −

∑
i

(J − D)si si +1 − Msi . (38)
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Figure 3. This schematic figure shows the channel capacity when the
environment is the ground state of the Hamiltonian given in equation (41).
The symmetry in this plot is to be expected as the channel is invariant under
the replacementg → −g. However, near the ‘phase transition’ pointg = 0, the
gradient diverges.

The partition function for such a chain ofN particles depends upon the transfer matrix for this
(rescaled!) Hamiltonian:

T =

(
exp(β(J − D + M)) exp(−β(J − D))
exp(−β(J − D)) exp(β(J − D − M))

)
. (39)

Now from the partition function, we can calculate the entropy, and hence the capacity of our
channel. The formula turns out to be:

C = 1− log2(e)

(
1−β

∂

∂β

)
lim

N→∞

1

N
ln Z = 1− log2(e)

(
1−β

∂

∂β

)
ln λ1, (40)

whereλ1 is the maximal eigenvalue of the transfer matrix (39). Using these equations and
equation (35), one can perform the (tedious) manipulation required to derive a formula for
the regularized coherent information in terms of the coefficientsa, b andc. Although we do
not present the formula that is obtained, figure3 shows the result for the model Hamiltonian
presented in [23]:

H =

∑
i

2(g2
− 1)σ (i )z σ

(i +1)
z − (1 +g)2σ (i )x + (g− 1)2σ (i −1)

z σ (i )x σ
(i +1)
z (41)

for which the ground state is known to be a matrix product state of the form:

Q0 =

(
0 0
1 1

)
, Q1 =

(
1 g
0 0

)
.

This model system has a non-standard ‘phase transition’ atg = 0, at which some
correlation functions are continuous but non-differentiable, while the ground state energy is
actually analytic [23]. As discussed in the caption of figure3, this behaviour is mirrored in the
channel capacity.
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7. Conditions under which the regularized coherent information represents
the true capacity

In this section, we will explore under what conditions our assumption that the regularized
coherent information of equation (6):

Q({En}) := lim
n→∞

I (En)

n
(42)

correctly represents the true quantum capacity of our correlated channels, assuming of course
that this limit exists. In the course of the discussion, we will also need to consider under what
conditions the regularized Holevo bound:

C(En) := lim
n→∞

χ(En)

n
(43)

represents the capacity of the channel forclassicalinformation. The Holevo boundχ(E) for a
quantum channelE is defined as [24]:

χ(E)= sup
{pi ,ρi }

S

(
E

(∑
i

piρi

))
−

∑
i

pi S(E(ρi )) , (44)

where the supremum is taken over all probabilistic ensembles of states{pi , ρi }, andS as usual
represents the von Neumann entropy. As pointed out in [2, 25], showing that equations (42)
and (43) are upper bounds to the quantum/classical capacity of a correlated channel is
straightforward—one can use exactly the same arguments used in the memoryless case
[4], [26]–[28]. Showing that equations (42) and (43) also givelower bounds to the relevant
capacities is not as simple, and may not be true for some many-body environments.

However, it turns out that if the correlations in the many-body system fall off sufficiently
strongly, then the channel will be reasonably well behaved and equation (42) is the true capacity.
In this section, we will make this statement quantitative. We will closely follow the approach
taken in [2] in the analysis of so-calledforgetfulchannels. Some of the subtleties involved in the
analysis are explained in more detail in section6 of that paper. The conditions that we obtain are
independent of the unitary which governs the interaction between each system particle and its
corresponding environment, and so are applicable more widely than the dephasing interaction
considered here.

7.1. A qualitative description of the argument

In this subsection, we present an intuitive sketch of the argument that we will follow. Imagine
that the correlated channel is partitioned into large blocks that we shall calllive qubits,
separated by small blocks that we shall callspacerqubits. The idea is to throw away the
spacer qubits, inserting into them only some standard state, and to only use thelive qubits
to encode information (see figure4). If we are to follow this procedure, then we will not be
interested in the full channel, but only in its effect upon the live qubits. Let us use the phrase
live channelto describe the resulting channel, i.e. the reduced channel that acts on thelive
qubits only. If the correlations in the many-body system decay sufficiently strongly, then by
throwing away just a few spacer qubits we will find that the live channel closely approximates
(in a sense to be discussed later) a memoryless channel. Let us call this memoryless channel
the productchannel. One can imagine trying to use the codes that achieve the capacity of the
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Figure 4. The live blocks of lengthl are separated by spacer blocks of lengths.
By discarding the spacer particles the channel effectively becomes a product
channel on the live blocks.

productchannel, without any further modifications, as codes for thelive channel. It turns out
that under the ‘right conditions’ these codes are not only good codes for the live channel, but
their achievable rates approach equation (42). The goal of the next subsection will be to explore
exactly what these ‘right conditions’ are.

The quantitative arguments follow the method used in [2], where three steps are required
to show that equation (42) is an achievable rate:

[A] First, we must show that product codes for the transmission of classical information
are good codes for the live channel.

[B] Then we must show that these good codes allow the regularized Holevo quantity to be an
achievable rate. This is done by showing that the product channel Holevo quantity (which
can be achieved by product codes) essentially converges to the regularized Holevo quantity
for the whole channel.

[C] Then we must argue that these arguments for the transmission of classical information can
be ‘coherentified’ (in the manner of [4]) to a good quantum code attaining equation (42).

In the next subsection, we go through this process in detail to derive sufficient conditions
to demonstrate the validity of equation (42) for our many-body channels.

7.2. Derivation of the conditions

In this subsection, we will go through steps [A], [B] and [C] in turn.

7.2.1. Step [A]. We will assume that the many-body systems in question satisfy periodic
boundary conditions and are translationally invariant (this means that the corresponding
correlated channel{En} does not quite fit into the definition of causality proposed by [2],
however, it allows us to avoid the technicalities required to analyse a truly, genuinely, infinite
many-body system). Let us consider a specific length of chainN, split into v = N/(l + s)
sections, each consisting of one live block of lengthl and one spacer block of lengths := δl � l .
In the following the sizesN, l will generally be taken to be large enough that the statements we
use hold. The live channel will be defined by:

Elive : A → trenv{U (ρL1L2... .Lv ⊗ A)U †
}, (45)

whereA represents the state that Alice inputs to the live channel,U represents the interaction
between the environment andA, the labelsL1, L2, . . . , Lv represent the live blocks from
sections 1, . . . , v, and the trace is taken over the environment. Due to translational invariance
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the reduced state of the environment corresponding to each given live block will be same, and
so let us denote this state byρ l

N. With this notation, theproductchannel will be defined by:

Eproduct: A → trenv{U ((ρ
l
N)

⊗v
⊗ A)U †

}. (46)

Note that both the live and product channels have a dependence upon both the live block lengthl
and the total number of spinsN. Let us first consider using the product and live channels to send
classicalinformation. By definition, if a given rateR is achievable for the product channel, then
for every error toleranceε > 0 there is an integerNε such that forn> Nε channel uses there
exist a set ofν = b2nl R

c codewordnl-qubit states{ρ1, . . . , ρν} and a corresponding decoding
measurement{M1, . . . ,Mν} such that:

tr{Eproduct(ρi )Mi }> 1− ε ∀i ∈ 1 . . . ν. (47)

If the same codebook and decoding measurements are used without alteration for the live
channel, then the error would be:

tr{[Elive(ρi )− Eproduct(ρi )]Mi } + tr{Eproduct(ρi )Mi }. (48)

As the addition of Alice’s stateA, the unitary interactionU , and the POVM elementMi can
all be viewed as one new POVM element acting only on the environment, the left term in this
formula can be bounded by [24]

|tr{[Elive(ρi )− Eproduct(ρi )]Mi }|6
1
2‖ρL1L2... .Lv − (ρ l

N)
⊗v

‖1,

where‖X‖1 := tr{
√

X†X} is thetrace norm. Hence, the error (48) in using the product code for
the live channel can be bounded by:

tr{Elive(ρi )Mi }> 1− ε−
1
2‖ρL1L2... .Lv − (ρ l

N)
⊗v

‖1.

Assume that the rightmost term in this equation is bounded by:

‖ρL1L2... .Lv − (ρ l
N)

⊗v
‖16 C v l Eexp(−Fs) (49)

for positive constantsC, E andF . This assertion will be demonstrated for some special cases
in section8. Then this would mean that the error becomes bounded as

tr{Elive(ρi )Mi }> 1− ε− C v l Eexp(−Fs). (50)

The ε part of this error depends upon the number of blocksv. One potential problem that we
immediately face is that to decreaseε we need to increasev, however, increasingv inevitably
increases the last error term in the equation. It is hence nota priori clear that both error terms
can be made to decrease simultaneously. However, it can be shown [2, 29] that if we pick
v = l 5, s = δl andδ > 0 then both error components can be made to vanish asl increases, while
still operating at the achievable rates of the product channels (in fact, the number of sectionsv

could be given any polynomial or subexponential dependence onl provided that asymptotically
v(l ) > l 5).

So we see that provided condition (49) can be demonstrated for the many-body systems that
we consider, then the product channel works well for the live channel, as long as a large enough
live block size is used (however small the fraction of spacer qubitsδ). Hence, equation (49) is
the first of our sufficient conditions. In section8, we demonstrate that condition (49) (which is
identical to equation (63) later in the paper) holds for some interesting classes of many-body
system, including matrix product states.
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Figure 5. To show that the product channel (which is just a product of the reduced
channel on a single live block) Holevo capacity is essentially the regularized
capacity, we need to show that the reduced channel on a single live block is
essentially independent of the total length of the chain. Hence, we need to show
that the reduced state ofl contiguous environment spins is approximately the
same regardless of whether the chain is (a) much longer thanl , or (b) slightly
longer thanl .

7.2.2. Step [B]. Now that we know that the product code is also suitable for the live channel,
it is necessary to check that the regularized Holevo bound (i.e. the regularized Holevo bound for
the full channel without throwing spins away) is actually an achievable rate for the live/spacer
blocking code that has been used. In order to make this analysis it will be convenient to define a
little more notation. For a total chain of lengthn as before letEn denote the noisy channel. For a
contiguous subset ofj 6 n of the spins that Alice sends, letE j

n denote the effect of the channel
only upon those spins. Due to translational invariance the location of the spins is irrelevant, as
long as they form a contiguous block.

A given product channel with live block lengthl and a total number of spinsN = v(l + s)=

l 6(1 +δ) has a Holevo quantity given by:

χ(E l
N)= χ(trenv{U ((ρ

l
N)⊗ •)U †

}), (51)

where the• merely acts as a place holder for the inputs to the channel. Our goal is to show
that for large enoughl this expression is close to the regularized Holevo bound equation (43)
(see figure5). It is not too difficult to derive conditions under which this will be the case.
Suppose that we have a spin-chain of total lengthl +1(l ), where1(l )� l . In fact we will
only be considering functions1(l ) > 0 such that liml→∞1/(l )= 0. Thesubadditivityand the
Araki–Liebinequalities for the entropy ([24], section 11.3.4), i.e.

S(A)+ S(B)> S(AB)> |S(A)− S(B)| (52)

can be inserted straightforwardly into the Holevo bound to show that:

χ(E l
l+1)> χ(El+1)− 21log(d), (53)

whered is the dimension of each communication spin (see also [2]). This equation follows from
the fact that the Holevo bound is the difference of two entropic terms, each of which can change
by at most1log(d) under the tracing out of1d-level particles. Dividing through byl now
gives:

χ(E l
l+1)

l
>

l +1

l

χ(El+1)

l +1
− 2

1

l
log(d). (54)
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This equation tells us that the Holevo quantity for a subset ofl spins is very close to the Holevo
quantity for afull chain ofl +1 spins, as long as1 is small. Our goal now is to show that if the
subset ofl spins is drawn from a much longer chain of lengthN = l 6(1 +δ), then the subset still
has essentially the same value for the Holevo quantity, and so the regularized Holevo quantity
represents the capacity of the product channel. Intuition suggests that if the correlations decay
fast enough, then it should be the case that forN = l 6(1 +δ), we should have approximately
E l

l+1 ∼ E l
N, as a given region should not ‘feel’ how long the chain is. Now suppose that we

define

P = P(l ,1) := ‖ρ l
l+1 − ρ l

N‖1 = ‖ρ l
l+1 − ρ l

l 6(1+δ)‖1. (55)

Then for a given input stateω on the live block in question the output states will differ by at
most:

‖trenv{U [ω⊗ (ρ l
l+1 − ρ l

l 6(1+δ))]U
†
}‖16 ‖U [ω⊗ (ρ l

l+1 − ρ l
l 6(1+δ))]U

†
‖16 P(l ,1). (56)

Hence, Fannes inequality [30] (of which a version suitable for our purposes is|S(X)− S(Y)|6
‖X − Y‖1 log(d)+ log(e)/e) can be used to bound the difference in the two Holevo functions
χ(E l

l+1), χ(E l
N) as follows:

χ(E l
l 6(1+δ))

l
>
χ(E l

l+1)

l
− 2

(
1

l

)(
P log(dl )+

log(e)

e

)
.

Putting this equation together with equation (54) gives:

χ(E l
l 2(1+δ))

l
>

l +1

l

χ(El+1)

l +1
− 2

1

l
log(d)− 2

(
1

l

)(
P log(dl )+

log(e)

e

)
and taking the limit of largel gives:

lim
l→∞

χ(E l
l 2(1+δ))

l
> χ∞ − lim

l→∞

2(P log(d)) .

So, as long as we can pick a function1(l ) such that liml→∞1(l )/ l = 0, and such that the
norm distanceP(l ,1(l )) vanishes with increasingl then we know that the regularized Holevo
quantity is the correct capacity.

7.2.3. Step [C]. Now that we have understood the conditions under which the regularized
Holevo bound represents the capacity for the transmission ofclassical information, we need
to try to undertake the same analysis forquantuminformation. As was also exploited in [2],
the way that Devetak’s work [4] proves that the regularized coherent information equals the
quantum channel capacity ofmemorylesschannels is to first prove a capacity formula for the
transmission ofprivate (secret) classical information, and then to make the private coding
schemecoherent. This ‘coherentification’ procedure applies directly to correlated channels,
and so to argue that the regularized coherent information (42) is also achievable for channels
with correlated noise, it is sufficient to show that the private information codes that work for
the product channel are also suitable for the live channel. So now suppose that a malicious
eavesdropper is in charge of the environment of our correlated channel. We need to prove that
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the information that she can access is still limited when product private codes are used for the
live channel. We can see that the output that Eve obtains is given by:

EEve
live : A → trsys{Ũ (ρ̃L1L2... .Lv ⊗ A)Ũ †

}, (57)

where the tildes mean that environment stateρ must be extended to give a closed system (i.e.ρ̃

is a pure state), the entire environment of which is assumed to be totally under Eve’s control. In
the case of the product channel, the privacy condition means that for allε > 0 there is av0 such
that for allv > v0 there exists some standard stateθ such that:

‖trsys{Ũ ((ρ̃
l
N)

⊗v
⊗ A)Ũ †

} − θ‖16 ε (58)

for all inputsA from the privacy code (readers familiar with [2, 4] will note that in those works
an extrarandomizationindex was included as a label in the code states-however, in our context
this is unimportant and so we omit it for ease of notation). Applying the same code to the live
channel gives the estimates:

‖trsys{Ũ (ρ̃L1L2... .Lv ⊗ A)Ũ †
} − θ‖16 ε +‖trsys{Ũ ([ρ̃L1L2... .Lv − (ρ̃ l

N)
⊗v] ⊗ A)Ũ †

}‖1

6 ε +‖ρ̃L1L2... .Lv − (ρ̃ l
N)

⊗v
‖1. (59)

The last term in this equation represents the norm difference between thepurificationsof two
different possible environmental states. We are free to pick the purifications that give the greatest
overlap between the two environment states. Although this may seem like a contradictory step,
as we should allow Eve to have control over the environment, it is in fact valid because the
product code is by assertion private forall possible extensions of the product channel. The
coherentification procedure leads to the distribution of maximally entangled states which are
automatically uncorrelated from the environment, whatever purification Eve decided to use.
The last line from the previous equation hence becomes (using the fact that for two pure states
the overlap and the trace distance are related by‖(|φ〉〈φ| − |ψ〉〈ψ |)‖1 = 2

√
1− |〈ψ |φ〉|2, see

Nielsen and Chuang [24, p 415, equation (9.99)], noting that the factor of 2 comes in from a
different convention for the trace norm):

6ε + 2
√

1− F2(ρL1L2... .Lv , (ρ
l
N)

⊗v), (60)

where F is the Uhlmann fidelity [24]. Hence, using the well-known relationship between
the Uhlmann fidelity and the trace norm of two states (1− F(x, y)6 2‖x − y‖16√

1− F(x, y)2, Nielsen and Chuang [24, p 416], from which one can obtain
√

1− F(x, y)26
√

2(1− F(x, y))6 2
√

‖x − y‖1), we find that:

‖trsys{Ũ (ρ̃L1L2... .Lv ⊗ A)Ũ †
} − θ‖16 ε + 4

√
‖ρL1L2... .Lv − (ρ l

N)
⊗v‖1. (61)

Putting the norm bound (49) (which we have not yet justified) into this equation gives:

‖trsys{Ũ (ρ̃L1L2... .Lv ⊗ A)Ũ †
} − θ‖16 ε + 4

√
C v l Eexp(−Fs), (62)

which is small enough for the assignmentv = l 5, s = δl , as long asl is large enough.
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7.2.4. Summary of sufficient conditions.All of this analysis means that in order to argue that
the regularized coherent information and the regularized Holevo bound are the true quantum or
classical capacities, the following two conditions taken together are sufficient:

1. To show that the product codes are also good for the partitioned memory channel,

‖ρL1L2... .L l5
− (ρ l

N)
⊗l 5

‖16 C l5 l Eexp(−Fs), (63)

for some positive constantsC, E andF , whereN = l 6(1 +δ), s = δl .

2. To show that the regularized coherent information is the appropriate rate the these codes
we need to show that

lim
l→∞

‖ρ l
l+1(l ) − ρ

l
l 6(1+δ)‖1 = lim

l→∞

P(l ,1(l ))= 0 (64)

for some function1(l ) such that liml→∞1(l )/ l = 0. In fact, if equation (63) holds, in this
condition we could replaceρ l

l 6(1+δ) with ρ l
vl (1+δ), where the number of sectionsv is any

function ofl with a sub-exponential dependence (e.g. a polynomial) that is asymptotically
larger thanl 5.

To demonstrate that these conditions hold for the most general types of many-body system is
a non-trivial task. However, in a number of interesting cases it is possible to prove that these
conditions hold. In the remaining sections, we demonstrate that these conditions hold for finitely
correlated/matrix product states, as well as for a class of 1D bosonic system whose ground states
may be determined exactly.

8. Proof of property equation ( 63) for various states

In this section, we provide proofs for the validity of equation (63) for a variety of quantum states.
These include matrix-product states for which we have discussed explicit memory channels in
this paper. In fact, the proofs that we present for matrix product states are essentially contained
in previous works such as [22]. We also demonstrate analogous results for the ground state of
quasi-free bosonic systems as such systems may provide interesting examples for future work.
In addition to the results we present here and in the next section, M Hastings has demonstrated
that conditions (63) and (64) hold for certain interesting classes of fermionic system [31].

8.1. Matrix product or finitely correlated states

The proof that we present here is essentially one part of the proof of proposition 3.1 in [22]. Our
presentation of the argument benefits from the arguments presented in appendix A of [32] and
the review article [33].

An important tool in the argument is the use of theJordan canonical form[34]. As some
readers may be unfamiliar with this technique, we briefly review it here. If a square matrixM
has complex eigenvalues{λα}, then it can be shown that a basis may be found in which the
operator can be expressed as the following direct sum:

M =

⊕
α

(λαIα +Nα), (65)

where eachIα is an Identity sub-block with an appropriate dimension, and eachNα is anilpotent
matrix, meaning that for eachNα there is some positive integerk such thatN k

α = 0. Moreover,
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each nilpotent matrixNα itself may be written as a block-diagonal matrix, where each sub-
block is either a zero matrix, or is all zero except possibly for 1s that may be positioned on the
super-diagonal. In other words, each sub-block of a givenNα is either zero or is of the form:

0 1 0 0 .

0 0 1 0 .

0 0 0 1 .

0 0 0 0 .

. . . .

 . (66)

The decomposition (65) is the Jordan canonical form ofM . In our case the matrixM will be
constructed from a completely positive map that can be associated to the matrix product states
that we consider. One consequence of this, for reasons that we discuss later, is that we will
ultimately only be interested in operatorsM whose eigenvalues satisfy 1= λ1 = |λ1|> |λ2|>
|λ3|> . . . . For a related reason, we will also only be interested matricesM for which there is a
uniqueeigenvector corresponding toλ1, and also for which the sequence of integer powersM r ,
r = 1, . . . ,∞ is bounded.

For matrices obeying these extra conditions, we may exploit the Jordan normal form in
the following way. Pick the smallest integerk such thatN k+1

α = 0 for all N k
α . ThenM r can be

written as follows:

M r
=

⊕
α

[ ∑
m=0,... ,k

(
r

m

)
λr −m
α Nm

α

]
. (67)

If r is large, then all blocks corresponding toα 6= 1 will become small because of theλr −m
α term,

and so the only sizeable contribution toM r will come from the block corresponding toα = 1,
i.e. the sub-block:[ ∑

m=0,... ,k

(
r

m

)
Nm

1

]
. (68)

Now we have asserted that the sequence of operatorsM r is bounded. However, it is not too
difficult to show that forr = 1, . . . ,∞ the sequence of operators (68) becomes unbounded if
N1 is nonzero. This means that if the sequence of operatorsM r is bounded, we are forced to
conclude thatN1 = 0, and hence asM has a unique maximal eigenvector, this means thatI1 is
an identity matrix of dimension 1× 1, i.e.I1 = 1.

Putting all this together means that a square matrixM with a unique maximal eigenvalue 1,
such that the sequenceM r is bounded, may be decomposed as:

M = 1⊕

⊕
α 6=1

(λαIα +Nα). (69)

This means thatM r can be written in the form:

M r
= 1⊕ λr

2

⊕
α 6=1

∑
m=0,... ,k

(
r

m

)(
λr −m
α

λr
2

)
Nm
α

 . (70)

For our purposes it will be convenient to pull out a factorr k from the term in square brackets:

M r
= 1⊕ r kλr

2

⊕
α 6=1

∑
m=0,... ,k

( r
m

)
r k

(
λr −m
α

λr
2

)
Nm
α

 . (71)
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This has the advantage of making the operator in square brackets bounded even asr → ∞. This
form for M r will be extremely useful to us. We will apply it to a completely positive map that
can be associated to any matrix product state. Using this, we will show the decay of correlations
required.

The relationship between matrix product states and CP maps is described in detail in
[22, 33]. Any matrix product state can be generated by repeatedly acting on a fictitious ancilla
particle using an appropriately constructed CP map. Suppose that we have a matrix product
state ofN particles j ∈ {1, . . . , N}, each associated with a Hilbert spaceH j . Consider also a
fictitious ‘generator’ ancilla system on a finite dimensional spaceHgen. It can be shown that
the state of theN particles in the matrix product state can be defined as the state that results
from an appropriate CP mapT : B(Hgen)→ B(Hgen)⊗B(H j ) which generates each particle
j ∈ {1, . . . , N} in sequence. The generating ancilla is then traced out to give the matrix product
state of theN particles. Related to the mapT is the completely positive mapQ, which is the
restriction of the mapT to the generator ancilla as both input and output. The mapQ essentially
represents the transfer matrix of the MPS—for a review of how to constructT for matrix product
states, see [33].

The starting state of the fictitious generator ancilla is usually taken as a fixed point ofQ,
in the order that the MPS be translationally invariant. Away from a phase transition point, the
CP mapQ has a unique fixed point of eigenvalue 1, with all other eigenvalues of absolute value
strictly less than 1. Let this fixed point ofQ be the stateσ . Furthermore, asQ is a CP map, it is
clear that the sequence of mapsQr is bounded. Hence, asQ acts as a finite dimensional linear
operator taking the ancilla space to itself, we can also think of it as a square matrix and apply
equation (71) to represent powersQr of the map. Let us use this form to compute the action
of Qr on an input density matrixω of the fictitious ancilla. As any density matrix is taken to
a density matrix by a CP map, we may apply (71) to give that the output ofQr must have the
following form:

Qr (ω)= σ + r kλr
2 2r , (72)

where in the second term2r is a sequence of operators whose norm can be bounded, and the
r kλr

2 term (which governs the size of the deviation from the final fixed pointσ ) arises as a
consequence of equation (71). This equation essentially states that the deviation ofQr (ω) from
σ falls off as fast asr kλr

2. Although the explicit form of2r depends upon the input state, a
bound on the norm of2r can easily be constructed that is independent ofω. This means that
limr →∞Qr

=6, where we define6 as the (idempotent) channel that discards the input ancilla
state and creates a copy ofσ in its place. For finiter we may write:

Qr
=6 + r kλr

2 2
′, (73)

where2′ now represents operations of bounded norm acting on states of the ancilla (we have
dropped the potentialr -dependence of2′ to keep notation uncluttered, as it is unimportant).

Our goal in the remainder of this subsection will be to apply this deviation estimate to show
that equation (63) holds for matrix product systems. This can be done in two steps. In the first
step, we show that for two large blocks of lengthL separated by a distanced (eventuallyL will
become the length of the live blocksl , andd will become the spacer distanceδl ), the reduced
state can be approximated by a product. The second step will use the triangle inequality to go
from this result to the full condition (63).
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The first step proceeds as follows. For convenience we will consider a chain of total chain
of length 2n + 2L + d, for which the state of the whole chain can be written:

tranc

{
Tn+L+d+L+n(σ )

}
. (74)

If we take the limit asn → ∞, the reduced state of the two large blocksA andB each of length
L can be written

ρAB = tranc

{
6T LQdT L6(σ)

}
(75)

and the individual reduced states of each blockA andB can be written:

ρA = tranc

{
6T L6(σ)

}
(76)

and

ρB = tranc

{
6T L6(σ)

}
. (77)

Now from equation (73), we know that up to a correctiondkλd
22

′, the channelQd becomes
equivalent to6. Hence, we find thatρAB andρA ⊗ ρB deviate as follows:

‖ρAB − ρA ⊗ ρB‖ = dkλd
2‖tranc{6T L2′T L6(ω)}‖6 constant× dkλd

2 (78)

where the constant is independent ofL. Now for our situationL is simply the size of each block
l , and the spacing between the blocks iss = δl . Hence, for two live blocks separated by one
spacer block this bound becomes:

‖ρAB − ρA ⊗ ρB‖6 constant× skλs
26 constant× skexp(log(λ2)s).

To go from this result for two live blocks to equation (63) one simply notes that the above
argumentation can also be applied to blocks of unequal size, and then the triangle inequality
applied to sequences sums of a similar structure to‖ρL1L2L3L4 − ρL1L2L3 ⊗ ρL4‖ +‖ρL1L2L3 ⊗

ρL4 − ρL1L2 ⊗ ρL3 ⊗ ρ4‖ yields equation (63) with only a polynomial overhead inl .

8.2. Bosonic systems

Here, we consider chains of harmonic oscillators whose Hamiltonian can be written in
the form

H = p̂p̂T/2 + x̂V x̂T/2, (79)

where h̄ = 1 and we arrange the canonical conjugate position and momentum operators in
vector formx̂ = (x̂1, . . . , x̂n) andp̂ = ( p̂1, . . . , p̂n) and introduced the so-called potential matrix
V [35]. The potential matrix encodes the interaction pattern of the harmonic oscillators in the
chain. From now on we assume thatV is a k-banded matrix, i.e.Vi, j = 0 for |i − j |> k/2.
Physically this implies that interaction strength vanish strictly beyond the(k/2)th neighbour.
An important quantity in this context is thesymplecticmatrix σ which is defined byσ jk =

〈[ R̂j , R̂k]〉, where we denotêR = (x̂1, . . . , x̂n, p̂1, . . . , p̂n).
The ground state of the Hamiltonian equation (79) is then a Gaussian state [36, 37] in the

sense that its characteristic functionχρ(z)= tr[ρ̂Ŵz], whereŴz = eizTσ R̂ is the Weyl operator,
is Gaussian, i.e.

χρ(z)= χρ(0)e
−1/4zTσ Tγ σz+DT z, (80)
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whereγ j,k = 2Re[R̂j R̂kρ̂] and D = σ tr[ R̂ρ̂]. The density operator may then be recovered via

ρ̂ =
1

(2π)n

∫
d2nzχρ(−z)Ŵz. (81)

For the ground state the first moments vanish due to the reflection symmetry of the Hamiltonian.
Therefore, the ground state is fully characterized by the covariance matrixγ , which is defined
asγ j,k = 2Re[R̂j R̂kρ̂], where we have explicitly used the fact that the first moments vanish.
An explicit computation reveals that the covariance matrix of the ground state of Hamiltonian
equation (79) is given byγ = V−1/2

⊕ V1/2 [35].
For the following proof of equation (63), we will bound the trace norm by the quantum

relative entropy using [38].

Property 1. For all density operatorŝσ , ρ̂ we haveS(σ̂ ‖ ρ̂)> 1
2(tr|σ̂ − ρ̂|1)

2 andS(σ̂AB‖σ̂A ⊗

σ̂B)= S(σ̂A ⊗ σ̂B)− S(σ̂AB).
The entropy of a Gaussian state is determined by thesymplecticeigenvalues{µ j } of γ that

are simply the standard eigenvalues of the iγ σ . We then find [37]

S(ρ̂)=

N∑
j =1

f (µ j ), (82)

where

f (x)=
x + 1

2
log2

x + 1

2
−

x − 1

2
log2

x − 1

2
. (83)

In the following proof, we will need to compute reduced density matrices. On the level of
covariance matrices this is particularly easy as the covariance matrix of a sub-systemA is
obtained simply by removing all entries referring to operators in the complement ofA.

Before we proceed to the proof of property equation (63) we first derive a useful lemma
that extends Fannes inequality to Gaussian states. Fannes showed [30] that for d-dimensional
systems and1= tr|ρ̂− σ̂ |6 1/e, we find|S(ρ̂)− S(σ̂ )|61logd −1log1. Obviously, in this
form the theorem cannot be extended to infinite dimensional continuous variable systems as
this would implyd → ∞ which renders the upper bound trivial. Considering Gaussian states
however it is possible to derive a more useful Fannes-type inequality.

Lemma 1 (Bosons).Given two N-mode Gaussian statesρ̂i characterized by covariance
matricesγi with symplectic eigenvalues{µ j

i } j =1,...,N that satisfymaxj |µ
j
1 −µ

j
2|6 B, where

B ≈ 0.176 230 08is the non-zero solution of(k + 2) log2(k + 2)+ k log2k = 2, we find

|S(ρ̂1)− S(ρ̂2)|6
N∑

j =1

−

∣∣∣µ j
1 −µ

j
2

∣∣∣ log2

∣∣∣µ j
1 −µ

j
2

∣∣∣61log2N −1log1, (84)

where1=
∑N

j =1 |µ
j
1 −µ

j
2|.

Proof. A Gaussian state is a valid quantum mechanical state exactly if it satisfies the uncertainty
relationsγ + iσ > 0. This impliesµ j

i > 1 for all i and j . To bound the entropy equation (82) we
note that forf (x) as defined in equation (83) we have

lim
x→1

[ f (x + k)− f (x)+ klog2k] 6 0 for k6 B (85)
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and that∀x > 1 and k> 0 we find d
dx [ f (x + k)− f (x)+ klog2k] 6 0. Thus, we have 06

f (x + k)− f (x)6−k log2k for all x > 1 andk6 B. Inserting this into the entropy formula
equation (82), we then find the first inequality in lemma1. The second inequality is obtained
from the fact that the entropy of any probability distribution withN nonzero probabilities is
bounded by log2N. This completes the proof. ut

It is worth noting that an analogous theorem may also be proven for the fermionic case9.

Theorem 1. In an infinite chain of harmonic oscillators in its ground state we pick two blocks,
each consisting of L contiguous harmonic oscillators. The two blocks are separated from each
other by d harmonic oscillators. Then we find that

‖ρAB − ρA ⊗ ρB‖16 C(L)e−αd (86)

for some polynomial C(L) and constantα independent of d.

Proof. We will proceed using lemma1 to bound the entropy differenceS(ρ̂AB‖ρ̂A ⊗ ρ̂B)=

S(0̂ρA ⊗ ρ̂B)− S(ρ̂AB). To this end we need to bound the difference in symplectic eigenvalues
of the covariance matrices corresponding toρA ⊗ ρB andρAB. Property 1 then yields the desired
result.

We denote withγground the ground state of the complete system and write the covariance
matrix of the two blocks of harmonic oscillators (both of lengthL) in the (x1, p1, x2, p2, . . . )

ordering as

0 =

(
0A 0AB

0T
AB 0B

)
. (87)

Given that the potential matrixV is banded we know from [39]–[41] that the entries ofγground

decrease exponentially in the distanced from the main diagonal. Therefore, the entries of0AB

are exponentially decreasing with distance from the lower left corner whose entry is of the order
C1e−αd.

We employ theorem 8.3.9 of [42] which states that

‖|λ
↓

i (A)− λ
↓

i (B)|‖6
√

cond(S)cond(T)‖|A− B| ‖ (88)

9 Indeed we find

Lemma 2 (Fermions): Given two N-mode Gaussian statesρi characterized by fermionic covariance matrices0i

and fermionic symplectic eigenvaluesµ j
i that satisfymaxj |µ

j
1 −µ

j
2|6 0.6 then we find

|S(ρ1)− S(ρ2)|6 2
N∑

j =1

−|µ
j
1 −µ

j
2|log2|µ

j
1 −µ

j
2|6 2(1log2N −1log1) (89)

where1=
∑N

j =1 |µ
j
1 −µ

j
2|.

Proof. Remember that the fermionic symplectic eigenvalues|µ
j
i |6 1 and that the entropy is given byS(ρ)=∑N

j =1 e(ν j ) with f (x)= −
1+x

2 log2
1+x

2 −
1−x

2 log2
1−x

2 . Straightforward analysis shows that for|x − y|6 0.5 and
06 x, y6 1 we have| − xlog2x + ylog2y|6−|x − y|log2|x − y| for all 06 x, y6 1. Thus for allx, y ∈ [0,1]
we find that| f (x)− f (y)|6 2|x − y|log2

|x−y|

2 . Inserting this into the entropy formula yields the first inequality in
lemma2. The second one follows in the same way as that of lemma2. This completes the proof. ut
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for every unitarily invariant norm and whereS(T) diagonalizeA(B) and cond(S)=

‖S‖ · ‖S−1
‖ is the condition number. Given that the matrix i0σ can be diagonalized by a matrix

of the formU0−1/2 we find

‖|(µi
1)

↓
− (µi

2)
↓
|‖6 (cond(0)cond(0A ⊕0B))

1/4
‖ |σ(0−0A ⊕0B)| ‖ . (90)

By the pinching inequality for Hermitean matrices [42] C(A)≺ A we find cond(0A ⊕

0B) and cond(0)6 cond(γground). For the trace norm we then find

‖(µi
1)

↓
− (µi

2)
↓
‖16 2(cond(γground))

1/2
‖σ0AB‖1. (91)

Then‖0AB‖16 2L‖0AB‖2 and‖σ‖1 = 4L yield

‖(µi
1)

↓
− (µi

2)
↓
‖16 16

√
cond(γground)L

2C2e
−αd (92)

for constantsα andC2 independent ofL. Inserting this into lemma1 finishes the proof. ut

As with matrix product states, application of the triangular inequality then yields
equation (63).

9. Proof of property equation ( 64) for various states

9.1. Matrix product or finitely correlated states

We consider the same states as in section8 and proceed similarly. We begin by computing

ρ l
l+1(l ) = tranc{T lQ1(l )(σ )}, ρ l

l 6(1+δ) = tranc{T lQl 6(1+δ)−l (σ )}.

Applying equation (73) again we can write the powers ofQ as

Q1(l ) =6 +1(l )kλ1(l )2 21, Ql 6(1+δ)−l
=6 + (l 7)kλl 5

222,

for two bounded operators21 and22. In this equation in order to unclutter the notation we have
replaced the firstl 6(1 +δ)− l with the weaker estimatel 7, and the second one (in the exponent)
by the weaker estimatel 5—in fact their form is not particularly important for what follows.
Putting these expressions for the powers ofQ into the expressions for the states, we find that for
sufficiently largel :

‖ρ l
l+1(l ) − ρ

l
l 6(1+δ)‖6 C × λ

1(l )
2 , (93)

whereC is a positive constant. Picking1(l )= l 1/2, for example, hence allows us to satisfy all
the required conditions.

9.2. Bosonic systems

As for condition equation (63), we consider the ground state for Hamiltonians that are quadratic
in the canonical coordinateŝx and p̂ andk-banded potential matricesV . The ground state is
then given byγ = V−1/2

⊕ V1/2.
Let us now considerρ(1)l := ρ l

l+1(l ) with covariance matrixγ1 and ρ(2)l := ρ l
l 6(1+δ) with

covariance matrixγ2, i.e. the reduced density matrices of a block ofl spins in a chain ofl +1(l )
harmonic oscillators (described by covariance matrix01) and in a chain ofl 6(1 +δ) harmonic
oscillators (described by covariance matrix02), respectively. Now, we will demonstrate that the

New Journal of Physics 10 (2008) 043032 (http://www.njp.org/)

http://www.njp.org/


29

covariance matricesγ1 andγ2 converge to each other in the limitl → ∞. In the following we
will choose, for our convenience,L sufficiently large to ensure thatl +1(l )6 l 6(1 +δ).

Given ak-banded potential matrixV let us choose a numberr =1(l )/k. Then V r is
1(l )-banded. Denote withF the composition of first applying an analytic matrix function to
a covariance matrix and subsequently picking the sub-block describing the reduced state of a
contiguous block ofL harmonic oscillators. Analogously, denote withpr the composition of
first applying ther th matrix power followed by picking a sub-block as before.

Then we concludepr (01)= pr (02) due to thek-bandedness ofV . Furthermore, by
Bernsteins theorem (seefootnote10 for a short introduction) we then find

‖F(01)− F(02)‖6 ‖F(01)− pr (01)‖ +‖pr (02)− F(02)‖6
4M(χ)

χ r (χ − 1)
.

Because χ > 1 (see footnote 10) this tends to zero with 1(L)→ ∞. Choosing F(A)= A1/2

andF(A)= A−1/2 allows us then to conclude that the difference of the covariance matricesγ1

andγ2 is bounded by an exponentially decreasing function in1(L).
To continue, we proceed in two steps. First, we show that the above property implies the

weak convergence of the two reduced density matrices. Then, we use this to show that this is
already enough to imply the trace norm convergence.

Lemma 3. Given two Gaussian statesρ(1)L and ρ(2)L above with vanishing displacement and
covariance matricesγ (1)L and γ (2)L such thatlimL→∞‖γ

(1)
L − γ

(2)
L ‖ = 0 then for any sequence

XL , where‖XL‖16 C, with finiterankwe havelimL→∞tr[(ρ (1)L − ρ
(2)
L )XL ] = 0.

Proof. Given that the Hamiltonian of the harmonic chain is gapped we find thatγ
(i )
L > c for

some constantc< 1 independent ofL. Then choose‖γ (1)L − γ
(2)
L ‖6 ε < c6 1, |1− e−x

|6 2|x|

10 Bernstein’s theorem concerns the approximation of functions by polynomials [43]. Given the setPr of
polynomials of degreer or less with real coefficients. For a continuous functionF on the interval [− 1,1] the
best approximation error is defined as

Er ( f )= inf{‖F − p‖∞ : p ∈ Pr }, (94)

where

‖F − p‖∞ = max
−16x61

|F(x)− p(x)|. (95)

Now assume thatF is analytic in an ellipseEχ with foci −1 and 1 and with half axesα > 1 andβ > 0. Then
χ > α +β. Then we have

Theorem (Bernstein). Let the function F be analytic in the interior ofEχ with χ > 1 and continuous onEχ . In
addition suppose that F(z) is real for real z. Then

Er (F)6
2M(χ)

χ r (χ − 1)
(96)

where

M(χ)= max
z∈Eχ

|F(z)|. (97)

It is straightforward to adapt the theorem to other intervals and we will thus apply this theorem for all intervals.
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for x 6 1, |1− e−x
|6 e|x| for all x andXL as above. We find∣∣tr [(ρ(1) − ρ(2)) XL

]∣∣= 1

(2π)n
|

∫
d2nz tr[W(−z)XL ]

(
χ
(1)
L (z)−χ (2)L (z)

)∣∣∣
6

‖XL‖1

(2π)n

∫
d2nze−1/4zTγ

(1)
L z
∣∣∣1− e−1/4zT (γ

(2)
L −γ

(1)
L )z
∣∣∣

6
‖XL‖1

(2π)n

∫
|z|62ε−1/4

d2nze−1/4zTγ
(1)
L z
∣∣∣1− e−1/4zT (γ

(2)
L −γ

(1)
L )z
∣∣∣

+
‖XL‖1

(2π)n

∫
|z|>2ε−1/4

d2nze−1/4zTγ
(1)
L z
∣∣∣1− e−1/4zT (γ

(2)
L −γ

(1)
L )z
∣∣∣

6
‖XL‖1

4(2π)n

∫
|z|62ε−1/4

d2nze−1/4zTγ
(1)
L z

|z|2ε

+
‖XL‖1

(2π)n

∫
|z|>2ε−1/4

d2nze−1/4zTγ
(1)
L z
∣∣∣1− e−1/4zT (γ

(2)
L −γ

(1)
L )z
∣∣∣

6
‖XL‖1ε

1/2

(2π)n

∫
|z|62ε−1/4

d2nze−1/4zTγ
(1)
L z

+
‖XL‖1

(2π)n

∫
|z|>2ε−1/4

d2nze−1/4zTγ
(1)
L ze1/4ε|z|2

6 ‖XL‖1

(√
ε

detγ (1)L

+ O
(
ε1/4e−ε−1/2

‖(01−ε)‖
))
,

where the last line follows from upper bounds on the error function. Note that the first term
on the right-hand side is proportional to trρ2

L which is bounded by a constant independent of
L because−log2 trρ2

L 6 S(ρL) and the harmonic chain Hamiltonian obeys an entropy-area
law [35]. Thus for sufficiently smallε the right-hand side becomes arbitrarily small. This
concludes the proof of lemma3. ut

Now we need to prove that weak convergence implies trace-norm convergence for
harmonic chains. The following proof will use in an essential way the fact that the ground state
of bosonic Hamiltonians that are quadratic in the canonical operators obey an area law [35, 39].

Lemma 4. For the ground state of a bosonic Hamiltonian H that is quadratic in the canonical
coordinates the limitlimL→∞tr[(ρ(1)L − ρ

(2)
L )XL ] = 0 for any sequence XL , with ‖XL‖16 K,

with finite rank already implies trace norm convergencelimL→∞‖ρ
(1)
L − ρ

(2)
L ‖1 = 0.

Proof. Given 0< ε < 1. To begin with we write

‖ρ
(1)
L − ρ

(2)
L ‖16 ‖ρ

(1)
L − Pρ(1)L P‖1 +‖Pρ(1)L P − Pρ(2)L P‖1 +‖Pρ(2)L P − ρ

(2)
L ‖1, (98)

for someP that is yet to be determined. We now would like to establish the existence of a
spectral projectionP of finite rank such that‖ρ(i )L − Pρ(i )L P‖1 < ε. In other words, we aim
to project onto the subspace made up of the eigenvectors corresponding to thekm largest
eigenvalues ofρ(i )L . We argue that such a projectionP(i )

L exists for eachρ(i )L . Then one may
project onto the subspace spanned by the subspaces determined byP(1)

L andP(2)
L which defines

PL . What we need is thatkm is bounded independent ofL. To see this, it is important to note
that the ground state ofH satisfies an area law, i.e. in the 1D setting there is a constantC such
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thatS(ρ(i )L )6 C for all L. Let us denote by{λ↓

k }k=0,...,∞ the decreasingly ordered eigenvalues of
ρ
(1)
L . Note that for allk we haveλ↓

k 6
1
k by trρ(i )L = 1. Thus we find

C >−

∞∑
k=km

λ
↓

k log2λ
↓

k > log(km)

∞∑
k=km

λ
↓

k . (99)

Therefore, we find for the choicekm> eC/ε that
∑

∞

k=km
λ

↓

k 6 ε for any choice ofL. Thus PL

can be chosen to be a rankkm projector. ThusPL is bounded in the trace norm but the subspace
onto which it projects will generally depend onL. Note further that with the abovePL the weak
convergence limL→∞tr[(ρ(1)L − ρ

(2)
L )XL ] = 0 implies that for sufficiently largeL we have that

‖PLρ
(1)
L PL − PLρ

(2)
L PL‖1 < ε. Thus, we find that for anyε > 0 and sufficiently largeL we have

‖ρ
(1)
L − ρ

(2)
L ‖16 3ε thus establishing the required trace norm convergence. ut

10. Generalizations to other interactions

It is natural to ask whether the approach that we have adopted can enable progress to be made for
unitary interactions other than controlled-phase gates (or their higher dimensional analogues).
Some generalizations are immediate. For instance, givenany channels that are probabilistic
applications of unitaries, where the unitaries are controlled on different classical or quantum
basis states of the environment, expression (16) can easily be shown to be an explicit lower
bound to the regularized coherent information. Hence, if the environment state has sufficiently
decaying correlations, expression (16) will also be alower bound to channel capacity. In a
similar manner it is likely that any channel whose capacity can be bounded by such simple
entropic expressions will benefit from similar insights.

11. Discussion and conclusions

We have considered models of correlated error inspired by many-body physics, with the aim
of demonstrating behaviour in the capacity that parallels similar behaviour in the associated
many-body systems. In this context, a number of interesting questions which require further
investigation.

The first of these questions regards our initial motivation—to find models of correlated
error that display interesting non-analytic behaviour. However, non-analytic behaviour in many-
body systems arises only in thethermodynamic limit, and so our results unfortunately do not
really explain why the non-analyticities that have been observed in papers such as [5]–[7] occur
for finite truncations of the channel. Furthermore, the quest for ‘genuine’ non-analyticity is
actually open to some debate—by redefining the parameters defining the channel, it is always
possible to remove any non-analytic behaviour. However, we hope that our work may help to
shed light on non-analytic behaviour for physically relevant parameter choices such as magnetic
fields and inter-particle couplings11. In realistic models of correlated error it is such forms of
parametrization that will probably be most important.

11 In this context it may be important to note that this is also an issue in the definition of phase transitions. Some
definitions of phase transitions avoid this problem by not relying explicitly on any parametrization, but instead by
relying on the divergence of correlation functions or the non-uniqueness of a ‘well-defined’ thermal state [11, 17].
Such definitions avoid the problems of defining non-analyticity, and may well have analogues in correlated error
channels.
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It will also be interesting to see how far the approach adopted here can be extended to other
possible system environment interactions. The channels that we have investigated above are all
of a very specific kind—as random unitary channels, they do not permit quantum information to
be transmitted from one system particle to another via the environment. More general channels
with memory will have this property, and so it will be interesting to understand what effects this
qualitative difference can make.

Another open question is whether the conditions (63) and (64) can be established for wider
families of many-body system. In addition to the systems for which we have demonstrated these
conditions, recent work by Hastings [31] demonstrates that they hold for the ground states of
many fermionic systems too. His approach raises interesting questions concerning topological
invariants which may have further significance for the problems considered in this paper.

Finally, it is important to note that the connections made in [10] and this work are actually
quite natural—entropies and correlations have a significant role in statistical physics, and so
quantum channel capacities with correlated error should have some connection to many-body
physics. However, it would be nice to know if there is a deeper link, perhaps through a more
direct connection between coding theory and the physics of physical systems such as spin-
chains.
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