
Cloth Simulation Using Soft Constraints

Mihai Frâncu
Politehnica University
Bucharest, Romania

mihai.francu@cs.pub.ro

Florica Moldoveanu
Politehnica University
Bucharest, Romania

florica.moldoveanu@cs.pub.ro

Abstract
This paper describes a new way of using projective methods for simulating the constrained dynamics of deformable
surfaces. We show that the often used implicit integration method for discretized elastic systems is equivalent to
the projection of regularized constraints. We use this knowledge to derive a Nonlinear Conjugate Gradient implicit
solver and a new projection scheme based on energy preserving integration. We also show a novel way of adding
damping to position based dynamics and a different view on iterative solvers. In the end we apply these fresh
insights to cloth simulation and develop a constraint based finite element method capable of accurately modeling
thin elastic materials.
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1 INTRODUCTION
For decades now the preferred method of simulating
elastic systems in computer graphics has been the
implicit integration of the equations of motion. The
method is very attractive due to its unconditional sta-
bility and large time steps. It has been widely used for
simulating cloth and finite difference or finite element
soft bodies in general. Constraint based methods on
the other hand have not received that much attention,
with the exception of rigid body dynamics. Only
recently there has been an increase in the number of
papers on the subject in relation to soft bodies and we
believe there is room for improvement. Many regard
the method as being an inaccurate approximation
of natural phenomena which are better described by
elasticity theory. In this paper we aim to reconcile the
two methods and show that they are two faces of the
same problem; this can prove useful for the further
development of both approaches.

1.1 Related work
Constraint based methods have appeared originally in
their acceleration based formulation for rigid body dy-
namics [Bar94]. Later on, velocity or impulse based
methods gained more popularity [AH04, Erl07]. Po-
sition based methods are actually a nonlinear version

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

of velocity based ones, in the sense that they can still
be expressed as velocity filters, but constraints are en-
forced at positional level [ST96]. Such a method was
made popular in games by [Jak01] and was later refined
and extended by [MHHR07] under the name Position
Based Dynamics (PBD). Part of the inspiration for this
method came from molecular dynamics where methods
like SHAKE or RATTLE are widely used [BKLS95]. A
more detailed study for the application to cloth simula-
tion in computer graphics was done in [Gol10]. Here
the method of fast projection is developed based on
an implicit treatment of constraint directions [HCJ*05]
and a better energy preserving integrator is also derived.
A similar method was used to develop the unified Nu-
cleus solver in Autodesk Maya [Sta09]. Position based
methods rely on projection for solving differential al-
gebraic equations (DAE), which is ultimately an opti-
mization problem [HLW06]. Another part of inspira-
tion came from strain limiting techniques used in elastic
cloth simulation [Pro96, BFA02].

Constraint based methods are often criticized for the
fact they simulate only nearly inextensible materials
and are prone to locking. In order to address this [EB08]
use fast projection in conjunction with a BDF-2 in-
tegrator on a conforming triangular mesh. They also
give a brief proof for fast projection being the limit of
infinitely stiff elastic forces. Other authors prefer to
use quad-predominant meshes or diamond subdivision
[Gol10].

Constraint regularization was employed mainly in
[Lac07] for making rigid dynamics with contact and
friction more tractable numerically. We take the name
soft constraints from [Cat10] where an older idea is
used: regularization under the mask of Constraint
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Force Mixing (CFM) [Smi06]. Recently constraint
regularization has been used for particle based fluid
simulation [MM13]. Another application was intended
for the simulation of deformable elastic models using
a constraint based formulation of the linear Finite
Element Method (FEM) [SLM06]. Similar position
based approaches can be found in [BML*14] and
[BKCW14]. The FEM constraint approach is similar
in philosophy with continuum strain limiting [TPS09].

The implicit integration of the equations of motion has
become pervasive for cloth since the seminal work of
[BW98]. The method was also applied for FEM sim-
ulation [MSJT08]. Its main attraction is its uncondi-
tional stability for very stiff equations and large time
steps. By implicit integration we usually mean the Im-
plicit Euler (IE) method, but other implicit integrators
were also employed, like BDF-2 [CK02], Implicit Mid-
point [OAW06] or Newmark [SSB13]. These integra-
tion methods offer better energy conservation and more
responsive simulation, in contrast to IE which artifi-
cially dampens out high frequency details in exchange
for stability. Other variations include approximations
made to the force Jacobian [HET01] or an implicit-
explicit (IMEX) approach [EEH00, BMF03]. Most ap-
proaches however use only one Newton solver itera-
tion. More recently a new view on IE as an optimization
problem was presented in [LBOK13].

A special class of integrators labeled variational can be
deduced directly from the discretization of the Euler-
Lagrange equations of motion [SD06]. They are also
symplectic integrators, i.e. they preserve area in phase
space, which also means they are closer to preserving
energy and momenta [HLW06]. Many of them are ex-
plicit methods (e.g. Symplectic Euler, Verlet, Leapfrog)
so care must be taken to the time step size. Varia-
tional implicit methods like Implicit Midpoint or New-
mark are more stable and can be converted to projection
schemes (e.g. through our constraint space transforma-
tion). This is why we used them as inspiration for our
energy conservation strategy.

A new alternative that is totally different from implicit
integration of elastic systems or our approach is ex-
ponential integration [MSW14] which relies on eval-
uating trigonometric matrices (in terms of exponential
functions).

1.2 Contributions
We present in this paper a constraint based simulator
that is able to reproduce fully the elastic properties of
cloth. We base our results on the fact that constraint
projection methods are in fact equivalent to implicit in-
tegration of stiff springs (Section 2). Our approach is
not entirely new as it is based on the idea of constraint
regularization [Lac07]. We chose to use a PBD method
instead as it corresponds to the nonlinear case [ST96]

and it handles fast deforming bodies more robustly.
Catto [Cat10] uses Baumgarte stabilization (ERP) and
CFM and relates them to the stiffness and damping of
an implicit harmonic oscillator. We give a more general
and accurate correspondence to elastic parameters.

In Section 3 we derive a simple implicit integration
solver based on the Variational Implicit Euler approach
in [LBOK13] and the Nonlinear Conjugate Gradient
method which is very similar to PBD. From it we obtain
the equations of regularized constraint projection (Sec-
tion 4). Using this transformation we derive a new pro-
jection method with better energy conservation (Sec-
tion 5). In Section 6 we present a novel and effective
way of adding more damping to PBD. Section 7 shows
how relaxation can be used for block solving and reg-
ularization and how to transform the Conjugate Gradi-
ent method into Conjugate Residuals. In Section 8 we
present constrained mass-spring systems for cloth and
how to prevent locking. In Section 9 we present a non-
linear Saint Vennant-Kirchoff (StVK) elasticity model
implemented through soft constraints. We take the area
and planar strain constraint from [SLM06] and derive
a method that takes into account the discretization and
elastic properties of cloth. The closest approach to our
method is [BKCW14] but they use energy as a con-
straint instead of a minimization objective. [BML*14]
is using the same energy objective as us but their nu-
merical method is different.

2 OPTIMIZATION EQUIVALENCE
In this section we would like to show that implicitly in-
tegrating stiff elastic forces is no different than using a
constraint based formulation with regularization. The
most general way to show this is by employing an op-
timization formulation for both methods. Let us start
with Implicit Euler:

M∆v = hf(x0 +∆x), (1)
∆x = h∆v (2)

where M is the mass matrix, x are positions, v are ve-
locities, h is the time step, x0 = x(n) + hv(n) and f(x)
are conservative forces, i.e. f(x) = −∇xU(x). We can
reformulate (1) as:

1
h2 M∆x =−∇xU(x0 +∆x), (3)

This is a nonlinear equation which is typically solved
using the Newton method, but it can also be regarded
as the optimality condition of an optimization problem:

minimize 1
2h2 ∆xT M∆x+U(x0 +∆x). (4)

It is shown in [GHF*07] that a similar formulation can
be used for a projection method using Lagrange multi-
pliers and implicit constraint directions:

min. 1
2h2 ∆xT M∆x−λ

T c(x0 +∆x)+Uext(x(n)), (5)
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where c(x) are the constraint functions that need to be
zero. Note that we modified the formulation so that
the external forces potential is included in the objec-
tive function. Note that the external forces are treated
explicitly, i.e. using the position at the beginning of the
frame, which is also the case for (4).

The potential term Uc = λ T c(x) gives us the internal
constraint forces. If we take the gradient of this con-
straint potential we get the principle of virtual work:

fc = ∇xc(x)λ = JT
λ . (6)

If we express the total potential in general as U =
Uint +Uext , then so far the objectives in (4) and (5) are
the same in the first (inertial) term and Uext . For Uint
we have an expression in the second case, but we have
not yet specified one for the implicit integration. And
we are not forced to provide one, but in reality, follow-
ing the approach in [BW98], this internal potential is
usually made up of quadratic elastic potentials with the
purpose of enforcing certain constraints [Lan70]:

Ue(x) = k
2‖c(x)‖

2. (7)

More generally we can replace stiffness k by a matrix:

Ue(x) = 1
2 c(x)T Ec(x),

which is extremely useful when dealing with different
stiffnesses in a mass-spring system or continuum based
constitutive laws.

The potential energy in (7) gives forces of the form:

fe(x) =−kJT c(x). (8)

By comparing (6) and (8) we can see that they act in the
same direction and by requiring that they have the same
magnitude we obtain the regularization condition:

c(x)+ ελ = 0, (9)

where ε = 1/k. We call this a soft constraint and by
enforcing it we basically set the internal potential en-
ergy in (5) to be the same as in (4), thus making the two
problems equivalent. It is clear now that when stiffness
k goes to infinity (ε→ 0) implicit integration of springs
becomes the constrained dynamics problem in (5). In
the general case ε gets replaced by E−1.

In conclusion, not only is constraint based dynamics a
limit case of implicit integration, but it can be made
equivalent by replacing the strict constraint condition
with a "softer" one. This permits us to solve a mass-
spring system or any other discretized elastic system by
casting the problem into the following form:

M∆x = h2
(

JT
λ −∇xUext(x(n))

)
,

0 = c(x0 +∆x)+ ελ

This equivalence opens up a whole range of opportu-
nities, especially for bringing results from implicit in-
tegration into the world of constraint based simulation.
This was not considered possible in the past, as projec-
tion methods were regarded as an approximation of true
elasticity based ones [Lac07, LBOK13].

3 NONLINEAR CONJUGATE GRADI-
ENT SOLVER

The most important analogy we make in this paper is
that between Implicit Euler integration and PBD. PBD
starts from a candidate position (that includes the effect
of external forces) and then runs an iterative process
that does not involve the second derivative of the con-
straint function. This process is actually a minimization
algorithm based on sequential quadratic programming
(SQP) [WN99] that involves solving a linear system at
every iteration, called fast projection [GHF*07]. This
process can be further optimized by employing an in-
exact one step SOR-Newton scheme [Jak01, MHHR07]
that reduces the cost of each iteration by running only
one relaxation step.

The same logic can be applied to the Implicit Euler
method expressed as the quadratic minimization prob-
lem in (4). If we choose the initial guess state to be one
that incorporates the external forces, i.e. positions and
velocities after an unconstrained step, we arrive at an
approach similar to fast projection. The only difference
is that the former works in configuration space, while
the latter works in constraint space.

If we consider the initial candidate state consisting of
ṽ = v(n) + hfext and x̃ = x(n) + hṽ we can rewrite (1)
using a first order Taylor expansion around x̃:

Mδv = h(f(x̃)+Kδx) , (10)

where K = ∇xf = − ∂ 2U
∂x2 is the tangential stiffness ma-

trix and δx= hδv. Most authors choose to solve the im-
plicit integration problem using only one Newton step,
meaning we only need to solve one single linear sys-
tem: Sδv = t. This works well in practice, but only
if K contains second derivatives of the constraint func-
tion. This is because these terms contain information
about the change of the constraint direction, so without
them we need an iterative algorithm that keeps updating
the constraint gradient. By dropping the second deriva-
tive term from K (see [BW98]) we get:

K =−kJT J. (11)

This is equivalent to linearizing the force in (8) as in
[EB08]. Using this formula at every Newton iteration
we get the series of linear systems we need to solve:

(M+h2kJT
i Ji)δvi+1 = hf(xi), (12)

where JT
i = ∇xc(xi) and xi+1 = xi +hδvi+1.
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Uncostrained step to x̃, ṽ
Compute Jacobian J and forces f using (8)
Compute residual r = d = hf and its square δ = r2

for iter = 1:maxIter do
Compute q = Sd = (M+h2kJT J)d
Compute impulse p = αd, where α = δ/qT d
Integrate: v← v+p, x← x+hp
Recompute Jacobian J and forces f
Compute residual r = hf and its square δ ′ = r2

Compute β = δ ′/δ and then δ ′← δ

Compute new search direction d = r+βd
Algorithm 1: NCG implicit solver

Nonlinear Conjugate Gradient (NCG) [She94] is a nat-
ural solution for solving the above problem, given its
linear version is very popular for solving the one New-
ton step approach. The only changes we need to make
to linear CG is to replace the system matrix at every
step with Si = M+ h2kJT

i Ji (the Hessian of the objec-
tive function) and the residual with ri = hf(xi). We use
a Fletcher-Reeves formula and perform the inner line
search in only one iteration - see Algorithm 1.

Note that the NCG method is not necessarily faster than
traditional CG linear implicit solvers (we found that it
takes roughly 40% more time without optimizations).
We can also add back the second derivative term if we
want. Also, visually there is no big difference between
the two methods. The only advantages you would get
with the NCG method are smaller spring elongations
and more stability for large time steps. But the main
reason for devising the scheme is the similarity with
PBD which we further exploit in the next section.

4 CONSTRAINT SPACE
Given that we already know that the regularized projec-
tion method is equivalent to implicit integration and that
the formulation in the previous section is already very
similar to PBD, we would like to transform the system
in (12) to one corresponding to fast projection. So by
multiplying (12) on the left-hand side by T = 1

hk A−1J,
where A = JM−1JT , we get:

(h2A+ εI)δλ + c(x) = 0, (13)

which is precisely the system we need to solve at ev-
ery iteration of fast projection for the regularized con-
straints in (9). In order to get this result we made the
substitution δv = hM−1JT λ which derives from the
optimality conditions of the constraint projection op-
timization problem. To back our claims you can see in
Figure 1 that NCG and PBD behave almost the same
and very closely to the exact and CG semi-implicit
solvers.

We call T a constraint space transformation from con-
figuration space and show that the inverse transform is
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Figure 1: The energy evolution over 500 frames of a
15x15 piece of cloth using NCG (green), PBD (purple)
and CG (red) and exact (blue) semi-implicit solvers.

also possible by multiplying (13) to the left hand side by
Q = hkM−1JT . Note that TQ = Im (m - number of con-
straints) and QT = In (n - degrees of freedom). We thus
found a quick way of switching from one interpretation
to the other. Also, by setting ε → 0 (infinite stiffness)
we recover the classic iterative projection formula:

h2Aδλ + c(x) = 0, (14)

Note though that not all implicit formulations can be
converted this way to a constraint based formulation
and that is because the methods are equivalent as opti-
mization problems but the numerical methods used may
differ in significant ways, e.g. the use of the second
derivative. Still their results converge towards the same
solution.

5 ENERGY CONSERVATION
Implicit methods in general suffer from artificial nu-
merical dissipation, whether they are used for an elas-
ticity based formulation or a constraint based one. This
is usually regarded as a good stability property and the
extra damping is considered beneficial by the computer
graphics community. Still in many cases like the exam-
ple of cloth, this integration technique acts like a low-
pass filter that removes high frequency motion and thus
prevents the formation of high-detail wrinkles and re-
sponsive folds.
In the projection methods literature there exist en-
ergy preserving solutions like symmetric projection
[HLW06] or the Velocity Verlet method proposed in
[Gol10]. Another popular integration method that
can conserve energy exactly is the Implicit Midpoint
method [OAW06]. There exist other explicit variational
integrators (e.g. Symplectic Euler) with very good
energy conservation properties but they suffer from the
same time step limitations as any other explicit method.
Given the fact that we are not able to solve the nonlinear
equations generated by implicit methods exactly, the
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accumulated errors will make Implicit Midpoint much
less stable than Implicit Euler. One could alleviate this
problem by using techniques suited for explicit meth-
ods, e.g. smaller/adaptive time steps or adding in a
damping term. Our solution is to employ an integra-
tion scheme taken from [Lac07] which gives us more
flexibility:

1
h M∆v = fext +(1−α)f(x(n))+αf(x(n+1)), (15)

1
h ∆x = (1−β )v(n)+βv(n+1), (16)

where α and β are between 0 and 1 and we can dis-
tinguish the following special cases: Explicit Euler
(α = β = 0), Implicit Euler (α = β = 1), Implict Mid-
point (α = β = 1

2 ), and Symplectic Euler (α = 0,β = 1
or α = 1,β = 0).

Moving slightly away from the Implicit Midpoint
method and making it more implicit permits us to have
low artificial numeric dissipation while still being able
to solve the system approximately and obtain a stable,
yet responsive simulation. Using the constraint space
transformation , i.e. multiplying (15) and (16) on the
left hand side by T, we obtain the following regularized
projection:

(h2
αβAi + εI)δλ i+1 +αc(xi) = 0, (17)

where xi+1 = xi+βhM−1δ fi+1, vi+1 = vi+hM−1δ fi+1
and δ fi+1 = JT

i δλ i+1. Also the integration of the can-
didate state changes to:

x̃ = x(n)+hv(n)+h2g+h2
β (1−α)M−1JT

λ
(n),

ṽ = v(n)+hg+h(1−α)M−1JT
λ
(n),

where we replaced external force by gravity for brevity
and the Jacobian J is computed at position x(n).
At the limit ε → 0 this whole procedure is of course
equivalent to projecting the candidate positions using
the same system (14) as in fast projection and PBD. The
difference appears only in the regularization term which
gets replaced by εα−1β−1. The above formulation is
also good when stepping both positions and velocities
at the same time. Alternatively we could estimate the
new velocity only at the end using equation (16):

βv(n+1) = 1
h (x

(n+1)−x(n))− (1−β )v(n)

We could have reached a similar result using the fast
projection formalism in [Gol10] but our constraint
space transformation method ensures that we also
obtain the correct regularization term. For example,
we can apply the same technique to obtain the BDF-2
based projection method presented in [EB08] and
find that the new regularization term is 9

4 ε . Still we
prefer our method as we do not need to store previous
positions and velocities and, being a one step scheme,

it is better suited for non-smoothness. Actually more
related to ours is the Newmark scheme [SSB13]
for which we can use the same projection method
regularized with ε/β , using the Newmark β factor
between 0 and 1/2.

6 DAMPING
Now that we have reduced the amount of artificial
damping, we can add back some real damping. Our
method will be based on the damping force expres-
sion used in [BW98] which is also a special case of
the widely used method of Rayleigh damping [SSB13].
In order to extend (10) to contain the damping force
we need to consider the total force as f(x,v) = fe(x)+
fd(v), i.e. sum of elastic and damping forces:

(M−h2K−hD)δv = hf(x̃),

where D = ∂ f
∂v = ∇vf. This is equivalent to having a

damping force:

fd = d∇xc(x)ċ(x) = dJT Jv,

where d is the damping coefficient and ċ(x) = Jv.
Rayleigh damping makes the approximation D= ζ M+
γK, but we will only be using the second term as it
makes the derivations simpler and it is only damp-
ing along the constraints we are interested in (we can
achieve drag friction in other ways). The implicit inte-
gration formula (10) now becomes:

(M−h(h+ γ)K)δv = hf(x̃). (18)

If using the approximation in (11) we notice that fd =
γKv, where γ = d/k is the ratio between the damping
and the stiffness coefficients.
We can incorporate this damping force into the opti-
mization formulation using Rayleigh dissipation func-
tions [Lac07]. So we transform (18) to constraint space
and get the following projection:

h(h+ γ)Aδλ i+1 + ei = 0, (19)

where ei = c(xi) + γJvi; the second term is nothing
more than the relative velocity along the constraint
times γ . So this is a simple way to add more damping
along the constraint directions which looks more natu-
ral than plain viscous drag in all directions. The down-
side is that you may have to pay the price of more it-
erations in order to keep the same amount of constraint
violation as before damping. The final formula after
adding regularization and energy preservation is:

(hα(h+ γ)Ai + εI)δλ i+1 +αei = 0. (20)

As you can see now the projection formula includes
both a stiffness parameter (ε = 1/k) and a damping pa-
rameter (γ = d/k) and so the method is fully equivalent
to the implicit integration of a damped elastic system.
Note that even in the case of infinite stiffness, the damp-
ing parameter can remain finite and we get (19).
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7 ITERATIVE SOLVERS
As we already mentioned, the most popular methods for
solving PBD are nonlinear relaxation methods: Jacobi,
Gauss-Seidel or Successive Over Relaxation (SOR).
Jacobi for instance has the following update formula:
δλ i+1 = δλ i +µri, where µ j = ω/A j j, ω < 1 and A j j
comes from the diagonal of A. What these methods ac-
tually do is they solve each equation and its correspond-
ing unknown separately (local solve) and iterate over all
equations for a number of times in order to refine the so-
lution. The local solve formula for one constraint c in
the PBD method is:

h2
∇c(x)T M∇c(x)δλ + c(x) = 0, (21)

where M and x correspond to the s ≥ 1 particles in-
volved in the constraint. We could also solve for more
than one constraints simultaneously and we would ob-
tain a system Lδλ +c(x) = 0 that we could solve using
direct matrix inversion or a direct solver.
Looking more closely at the equation (13) we notice
that it is not that different from (14). We can re-
gard the change to the diagonal of the system matrix
as a scaling through a relaxation factor as in [Jak01].
As noted in [MHHR07] this factor is highly nonlin-
ear and we are now able to express this exact non-
linear relationship to the linear spring stiffness value:
ω j = (1+(h2k jA j j)

−1)−1 < 1, where k j is the stiffness
of spring j. On the other hand, if we use ω > 1 we ob-
tain SOR which may converge faster and produce better
inextensibility, i.e. stiffer cloth for less iterations.
Another application of the equivalence between im-
plicit integration and regularized PBD is to see what
happens to the Conjugate Gradient method when we
transform from configuration to constraint space. Let
us start with the update formula for Steepest Descent:

δvi+1 = δvi +αiρ i,

where ρ i is the residual of the system in (12) which is
related to the residual ri by ρ i = Tri and ri = Qρ i, and

αi =
ρT

i ρ i

ρT
i Sρ i

.

We would like to see how the constraint space transfor-
mation affects the update formula in constraint space.
So we write αi in terms of ri:

αi =
rT

i QT Qri

rT
i QT SQri

.

For the nominator we find that QT Q = h2k2Ã, where
Ã = JM−2JT and the denominator is QT SQ = h2k3AS.
By using the properties of matrices T and Q we get
that µi = kαi and by considering infinite stiffness, i.e.
S→ h2A when ε → 0, we get:

µi =
rT

i (h
2Ã)ri

rT
i (h2A)2ri

.

If we ignore the tilde (or all the masses are 1) we see
that we have obtained the formula for the Minimum
Residual method which was used in [FM14]. It may
be that the method breaks when M−1 is far different
from its square and the correct formula needs to be
used. Still we think this derivation is a strong argument
for why CG does not work in constraint based methods
and we need to transform it to a method that looks more
like a minimum residual version of CG, e.g. Conjugate
Residuals (CR) [Saa03].

8 CLOTH MODEL
The most straightforward application of the presented
methods to cloth is through the use of a model made
of particles and springs or rigid links connecting them.
Such links correspond to a constraint function like
c(xi,x j) = ‖xi − x j‖− li j, where li j is the initial rest
length of the link and i and j are the indices of the
two particles. Using three types of links for stretching,
shearing and bending, one can obtain a full model of
cloth. Details on how to build such links for quad
meshes are given in many papers [Pro96, OAW06].
The main advantage of our method of soft constraints
is that the stiffness of each constraint can now be
expressed naturally as an elastic parameter (related
to Young’s modulus) instead of using non-linear
attenuation factors like in [Jak01] and [MHHR07].

Figure 2: Simulation of a cloth model consisting of
6910 vertices and 13674 triangles using soft constraints

For irregular triangle meshes, one can also build bend-
ing links [Erl05], but one cannot distinguish between
stretching and shearing links anymore. For quad
meshes shearing is simple to express and is usually
less stiff than stretching. Using the same stiffness
coefficient for shearing as for stretching (infinite in the
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case of PBD) leads to locking artifacts, as the cloth
does not have enough degrees of freedom to move
naturally. Lowering the stiffness value may help with
the locking problem, but this causes stretching, which
must be avoided at all cost for cloth.

Many other solutions have been proposed for locking
[EB08], but we chose to use the model presented in
[BW98] which separates out the stretching components
(warp and weft) from shearing for each triangle. In
general a constraint involving a number of particles im-
plies calculating gradients corresponding to each parti-
cle ∇ic(x) = ∂c(x)

∂xi
. Then we can solve that constraint

independently using (21):

δλ =− c(x)
∑

s
i=1 m−1

i ‖∇ic(x)‖2
=−c(x)

ξ
. (22)

The action of the bending links is dependent on stretch-
ing so we might want to use other measures for the
curvature of the cloth. We could use directly the con-
straint between two triangles (4 vertices) defined in
[MHHR07], as it expresses the same dihedral angle as
in [BW98]. Still we chose to derive our own formulas
using (22) and the assumption made in [BW98] that the
lengths of the normals remain constant.

9 FINITE ELEMENT METHOD
The continuum formulation in [BW98] is actually a
special treatment of the finite element method. The
three constraints correspond to the strain components
εuu, εvv and εuv that make up the planar symmetric
Green-Lagrange strain tensor:

ε(x) = 1
2 (∇w∇wT − I), (23)

where w : R2→ R3 is a mapping from an undeformed
mesh parametrization (u,v coordinates) to deformed
vertex positions. Then the actual components are:

εuu =
1
2 (w

T
u wu−1), (24)

εvv =
1
2 (w

T
v wv−1), (25)

εuv = εvu = wT
u wv, (26)

where by the subscript of w we signify partial derivation
with respect to to u and v. By considering strain con-
stant over a triangle (linear FEM) we can derive simple
formulas for wu and wv like in [BW98] or [VMTF09].

The integral of the strain energy over a triangle is:

Ufem = a
2 ε̂(x)T Eε̂(x), (27)

where a is the area of the triangle, ε̂
T = (εuu,εvv,εuv)

and E is a matrix that depends on the Young modulus E
and the Poisson ratio ν (or equivalently on the Lamé co-
efficients) like the one given in [VMTF09] or [TWS07].

Note that the former expresses isotropic elasticity while
the latter expresses orthotropic elasticity, i.e. different
stiffness along warp and weft directions.

We use (27) to derive the true constraint function using
the regularization framework as in [SLM06]:

c(x) = a
1
2 ε̂(x). (28)

The resulting three constraints (cu,cv,cs) are are similar
to the ones in [BW98] and their gradients form the Ja-
cobian Jfem = (∇cT

u ,∇cT
v ,∇cT

s ). Note that in the most
rigorous approach the area of the triangle a(x) is also
varying and its derivative should also be considered.
We chose not to do so in our computations, but alter-
natively we could add an extra area constraint. Some
authors use area and volume constraints together with
edge constraints to improve on mass-spring soft body
models [THMG04].

Now we can formulate the regularization condition:

a
1
2 ε̂(x)+E−1

λ = 0. (29)

In the end we can apply the block local solve formula
from Section 7, which is equivalent to other StVK linear
FEM approaches like the one in [VMTF09]. We choose
to apply this block approach only for the stretch compo-
nents together, as the shear stress component is related
only through a diagonal term to strain, and thus decou-
pled from the normal directions. The resulting 2x2 local
linear system for the two stretching constraints is:

(h2A+ Ẽ−1)δλ + ε̂(x) = 0,

where in the case of isotropic materials

Ẽ−1 =
1

E
√

a

(
1 ν

−ν 1

)
.

Notice that we divided equation (29) by the constant
area term a1/2 and obtained a CFM matrix that con-
tains all the relevant continuous material parameters:
Young’s modulus, Poisson ratio and the triangle area
(discretization measure). We can also add damping
through the Rayleigh damping technique presented in
Section 6 or the projection in Section 5 for better en-
ergy conservation. In the end we obtain a very accurate
(iterations permitting) and physically correct model for
simulating thin nonlinear elastic materials like the one
in [VMTF09] based only on constraints (Figure 3).

10 RESULTS
We implemented a cloth simulator solely on a modu-
lar constraints architecture using C++ (single threaded).
Depending on the level of accuracy or performance the
user can choose between different constraint types, e.g.
links or FEM triangles for stretching and shearing, dif-
ferent types of bending constraints, static collision or
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Figure 3: Two snapshots of a side by side real-time simulation of two 40x40 cloth pieces with the same Young’s
modulus E: regularized FEM constraints (left) and soft links (right); superimposed in purple is the strain map.
FEM offers more realistic folds and the strain is better distributed throughout the cloth.

self collision constraints etc. Note that all these con-
straints are treated in the same solver loop. Regular-
ization was implemented by modifying the diagonal of
the system matrix using equation (13) or as described in
Section 7. The resulting scheme can be modified to use
the projection in Section 5 or we could add more damp-
ing (Section 6). These options can be added depending
on the needs of the simulator and we denote them col-
lectively as soft constraint methods for enhancing PBD.
This also is why we do not provide any pseudo-code
and hope that the readers will assemble themselves the
simulator of choice.

Given our simulator is fully constraint based our colli-
sion response techniques are the same as the ones used
in [Jak01, MHHR07] and for self collision we adapted
the methods in [BFA02]. Friction is treated more ac-
curately by being solved at every contact iteration in a
similar fashion to cone complementarity programming
[TA10]. We implemented cloth-mesh collisions by test-
ing for triangle-point and edge-edge intersections be-
tween two triangles. For acceleration we used AABB
trees for both the static mesh (pre-computed) and the
cloth (rebuilt at every frame). A similar approach was
used for accelerating self-collisions too.

We tested simulations mostly visually looking for ob-
vious artifacts like jittering or instability. Our most
common test scenario was a piece of cloth hanging by
two corners, falling from a horizontal or vertical posi-
tion, with different parameters or tessellation. Given the
multitude of methods used and the differences between
them it is hard to find a metric that measures well the
quality of the simulation. We opted to measure the total
energy - kinetic and potential (gravitational and elastic)
and no damping, and chart its evolution in time (Figure
4). The NCG solver behaves well and has good conver-
gence, but decays non-monotonically. The regularized
PBD method is smoother, dissipates energy slower, but
the Gauss-Seidel solver is less accurate. Energy pre-
serving projection with α = β = 0.6 offers even slower
energy decay while the higher energy line is due to the

kinetic energy of the oscillation. This is a good energy
preserving property but it looks jittery and unnatural
and we may need to add extra (non-artificial) damp-
ing. The closer we get to α = β = 0.5 the more hor-
izontal the graph becomes, i.e. full energy conserva-
tion, but this is dangerous territory for stability. We get
the same results with a Symplectic Euler integrator with
very small time steps and a small damping factor.
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Figure 4: Total energy evolution in time for the sim-
ulation of a 10x10 rubber cloth (k = 2 N/m, 25 itera-
tions) using NCG implicit integration (blue), regular-
ized PBD (red) and regularized energy preserving pro-
jection (green).

For our damping method we measured the total energy
minus the elastic potential in order to give a clearer pic-
ture of the velocity reduction (Figure 5). As you can see
a damping factor of γ = 10h gives a significant energy
dissipation compared to soft projection (or PBD just as
well). Reaching this level of dissipation so quickly is
not possible using the method we compared against,
i.e. reducing the relative velocity along the constraint
direction (basically velocity projection). We set for the
energy preserving projector α = β = 0.55 and γ = h
in order to obtain as little artificial damping as possible
while at same time damping the simulation just a bit
less than PBD would normally do.

All simulations were performed in real time at 60 Hz,
i.e. under 16 ms of computation time depending on
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Figure 5: Damping response for the simulation of a
40x40 piece of cloth (k = 2000 N/m, 25 iterations) using
regularized PBD (blue), aggressive damping (red) and
slightly damped energy preserving projection (green).

cloth size, and with lower framerate for the dress in Fig-
ure 2 (up to 20 ms or more for the solver only).

11 CONCLUSIONS
We have shown that implicit integration of elastic sys-
tems is equivalent as an optimization problem to fast
projection. Based on the analogy to PBD we derived a
Nonlinear Conjugate Gradient implicit solver. Its draw-
back is that it is using an approximated force Jacobian
but this is compensated by running more than one inex-
act Newton iterations.

After developing a method of switching between
the two representations (configuration and constraint
space) we proved that the regularized PBD method
(soft constraints) replicates elastic behavior. We also
showed how to preserve energy better or how to
dissipate more when solving constraints. Note though
that the viscous drag term of the Rayleigh damping
matrix cannot be treated implicitly in this framework.
Also, one can use a parallel version of the Conjugate
Residuals algorithm to speed up the simulation. Finally
we showed that accurate FEM simulation of cloth
using constraints is possible and is no different from
implicit integration. We believe that these are new and
useful results for PBD.

We hope to use the Kawabata evaluation system in the
future for real fabric modeling like in [VMTF09]. We
also intend to optimize our simulator using parallel al-
gorithms for multi-core and GPGPU.
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