
1

Using Genetic Algorithms to Improve the Visual Quality of

Fractal Plants Generated with CSG-PL-Systems

Christoph Traxler and Michael Gervautz

Institute of Computer Graphics
Vienna University of Technology, Austria

e-mail: traxler|gervautz @cg.tuwien.ac.at - http://www.cg.tuwien.ac.at

Abstract
PL-systems are a powerful and flexible technique for plant modeling. Unfortunately it is a hard
task to specify a PL-system, that generates a desired plant. Especially the tuning of the
parameter values is time consuming and demands a lot of experience from the user. In this
paper we describe how to apply genetic algorithms to CSG-PL-systems, which are a special
class of PL-systems. A decomposition of CSG-PL-systems is introduced to extract those parts,
which can serve as genotype. Mutation and mating, the two major operations of evolution
techniques, are applied to this data set. With the described method it is possible to find easily
natural looking individuals out of a species that is described in an abstract way by the
underlying CSG-PL-system.

Key Words: genetic algorithms, artificial evolution, CSG-PL-systems, natural phenomena

1 Introduction
Genetic algorithms are a reliable and powerful search strategy to find sub-optimal solutions in
huge data spaces. The principles of evolution, namely reproduction, mutation and mating are
thereby applied to a great class of problems, which are frequently known to be NP-complete
[GOLD89]. Like in nature, genetic algorithms usually do not find the very optimal solution, but
one that satisfies certain qualitative requirements. This is a property they share with neural
networks. The notion genetic algorithm was first introduced by Bagley in [BAGL67], who
used them to solve problems of game theory. Rosenberg simulated the evolution of single cell
organisms [ROSE67] to examine how nature works. Cavicchio introduced a genetic algorithm
in [CAVI70] to create an efficient machine for pattern recognition. Holland compared adaptation
in natural and artificial systems [HOLL75], and DeJong analyzed a class of genetic algorithms
[JONG75] by comparing their efficiency for function optimization. In all cases the principle of
evolution is applied to a set of data, which serves as genotype, for example a stream of bits or
arithmetic expressions. The evolving individuals are tested for their fitness to solve a given
problem. This is done by the so called fitness function, which has to be defined carefully to
obtain the desired results. The complexity of the fitness function depends on the nature of the
problem to be solved.

In this paper we describe an approach to apply genetic algorithms to find PL-systems that
generate natural looking plants of a desired species. PL-systems are known to be a powerful
tool for plant modeling. They are an important extension to the classical L-systems, which were
firstly introduced by the biologist Lindenmayr and are fully described in [PRUS91]. Though
PL-systems allow to simulate the development of plants with high accuracy, but it is a well-
known fact, that it is a hard task to specify one that generates the desired plant. The reason for
that is called data base amplification by Smith [SMIT84] and characterizes the problem of tuning
a small data set to obtain a complex object as result of a recursive feedback process. This
problem clearly belongs to a class that can easily be solved by a genetic algorithm. Real plants
are a product of evolution. Thus it is obvious to create them by using genetic algorithms.

In [SIMS91] evolution techniques were firstly applied to evolve several species of plants out of
a unique and powerful model. The underlying model was a procedural one, much as that
introduced in [DERE88], where the development of a plant depends on a set of specific
parameters and probabilities. Thus this set of values is used as genotype. Hi did not implement
a fitness function but let the user decide, which of the evolved individuals should be used for

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace at University of West Bohemia

https://core.ac.uk/display/295568887?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2

further reproduction. Within PL-systems the problem occurs to define the proper genotype. In
fact the whole PL-system could be conceived as genotype of a subclass of species but this
would not make much sense. A careful selection of some of the components of a species
description has to be made to guarantee that evolution converges to the user's goals. Therefore
we took only two of the components of a PL-system under consideration. In spite of this
restriction it is possible to release the user from time consuming parameter tuning and to find a
natural looking and proportional individual plant in a specific subclass of species in relatively
short time.

In the first part of this paper we give an introduction to the methods that were used in [SIMS91]
since we apply them to PL-systems. A short description of CSG-PL-systems follows which
were introduced in [GERV95]. The remainder of this paper explains how genetic algorithms are
applied to components of these systems and we further discuss future research possibilities.

2. Genetic algorithms for the evolution of plants
Genetic algorithms can be divided into two operations, mating and mutation. Two or more
parents are selected out of a given or already evolved population to derive a new one. For that
purpose the genotypes of the parents are reproduced and mated. Mutation guarantees variations
within the new generation, so that the new population is not simply a mixture of inherited
characters. The fittest individuals of the new generation are selected for further reproductions.

Karl Sims was the first, who applied genetic algorithms to evolve a variety of plant species
[SIMS91]. Some of his results can be seen in his animation “Panspermia”. For the plant model
he used a similar model as those introduced by deReffye [DERE88]. The plants are generated
procedurally and their final shape depends on a set of parameter values and probabilities. These
values control the activity of buds, which either generate branches with new buds, flowers, or
simply die. The probabilities are modified with respect to the hierarchical position of a segment
during growth. The geometric aspects of plants like branching angles and scaling factors
depend also on parameter values. Sims used a set of only 21 parameter values as genotype. The
selection of the fittest completely relies to the human user, so that a selection function is not
necessary.

Mutation is done by adding random values out of a certain interval to each element of the value
set with a mutation probability. Thus the effects of mutation can be adjusted for each gene of the
genotype. If the mutation of a particular value is not intended, its mutation probability is set to
zero. The intervals for the random numbers are chosen with respect to the valid range of each
parameter value. A Gaussian distribution is used to make small changes more likelihood than
large ones. The mutation rates and amounts are usually higher than in natural systems to
accelerate evolution and allow a greater spread of different individuals in each generation.

For the mating of parameter value sets, Sims suggested four methods. After the selection of two
individuals of a certain population as parents for a new generation, their genotypes can be
reproduced and mated in the following ways:

1) Genes are taken from both parents alternately with a constant frequency f. The new
genotype is thus an interleaved mixture of the parent genotypes, where f genes of the first
parent are concatenated with f genes of the second parent in an iterative way as long as
there are genes left. This method is called crossover and has the advantage, that adjacent
genes of both genotypes are concatenated with each other.

2) Each gene of the new genotype is taken randomly from one of the parents. Here the genes
are combined independently from each other. This was the method Sims preferred for his
artificial evolution, maybe because the genotypes of the new generation are spread widely
enough among the possible combinations of two initial genotypes.

3) The new genotype is a linear interpolation between the corresponding parent genotypes.
The resulting genes are taken randomly from the line connecting the parent genes. This is
achieved by the linear equation: new gene = p • gene of 1st parent + (1-p) • gene of 2nd

parent, where p is a random value out of [0,1]. For all genes the same random number p
is taken in contrary to the next method.



3

4) Each new gene is a random value between the values of the corresponding parent genes
independently of each other. This is the method, which causes the widest spread among
the value ranges of both parent genotypes.

We exactly used these methods to tune parameter values of CSG-PL-systems. Before we
explain how to apply Sims methods to CSG-PL-systems in greater detail, we give a short
description of these systems in the next chapter.

3. CSG-PL-systems and their components
CSG-PL-systems [GERV95] are an adaptation of the classical PL-systems as described in
[PRUS91] to the concept of Constructive Solid Geometry (CSG). The combination of this two
powerful modeling schemes allows the description of a wide range of natural phenomena like
plants, objects defined by IFS, Fractal terrain in a single unified way.

CSG is a well-known object representation, which can be rendered efficiently using ray tracing.
Complex objects are constructed by the binary combination of properly transformed primitive
objects, like cube, sphere, cone, cylinder and so on. The primitives are represented
procedurally by their volumes and can be combined by the three Boolean operations (union (∪ ),

intersection (∩) and subtraction (/)). The desired object is thus specified by a binary expression.

Since PL-systems operate on parametric strings, i.e., strings consisting of symbols with
associated parameters, they could also generate CSG-expressions. The formal language of such
PL-systems is a subset of the formal language of all valid CSG-expressions. In CSG-PL-
systems the symbols are distinguished between variables and terminals. Only the variables are
substituted in parallel during a derivation step. The terminals are syntactic elements of a valid
CSG expression and are kept in the string. This implies, that for each variable at least one
production must exist, which substitutes it with terminals to obtain a valid CSG-expression as
final string. Such a production is called terminating production, whereas one that defines a
recursive derivation is called generating production.

Productions in CSG-PL-systems are controlled by parameters. Parameters can be used to
describe some geometric properties like branching angles or proportions of the system or to
influence the topology of the described object.  CSG-PL-systems can be decomposed into three
components. The most important part are the productions themselves, which define, how the
objects are constructed recursively in the feedback system, that is called derivation. A variable
and a set of corresponding productions are called selection. Selections are denoted in a selection
statement, and allow to obtain a particular production during derivation. Selections are usually
controlled by parameters.

Linear transformations are used in the productions to consider geometric aspects. Changing
transformations by parameters during derivation allows to modify not only the topology but
also the geometry of plants as a result of growth. Transformations can be conceived as an
extension to binary CSG-expressions by unary operators. In the following we will denote
transformations as a sequence of atomic linear transformations like scaling, rotation, and
translation that are applied one after the other.

Calculations are used to modify parameters during derivation and to initialize them before the
derivation. Each calculation or initialization is denoted as a sequence of calculation statements,
which can be seen as unary operators in the productions scheme.

To make this decomposition of CSG-PL-systems clear, we illustrate it on an example. The
following system is capable to generate different branching structures and can be conceived as
implementation of a small subset of deReffye’s plant model [DERE88].



4

Calculation C_initialize // Definition of a calculation
{

cntbush = 8; // age (order) of the plant
1st_phase = 2; // time of first growing phase
trunk_phase = 4; // phase of trunk growing
brtyp1 = 0.6; // probability for pattern 1 vs. 2
brtyp2 = 0.4; // probability for bend vs. pattern 2
beta_br = 44.0; // branching angle

}
Transformation T_branch // Definition of a Transformation
{

trans 0.0 0.0 1.99;
rotz 80.0;
roty beta_br;
scale 0.8 0.8 0.8;

}
PL-system bush // Specification of the PL-system
{

Initialization by C_initialize;
Selection bush // The selection statement
{

if (cntbush > 1st_phase)
if (cntbush > trunk_phase) // build up trunk

production no 2
else if (brtyp1 < 0.5) // build up monopodial pattern

production no 3
else // build up sympodial pattern

production no 4
else if (cntbush > 0)

if (brtyp2 < 0.5) // bent segment without branches
production no 5

else // build up sympodial pattern
production no 4

else // terminate with a cone
production no 1

}
Production section // Specification of productions
{

1: bush  -> T_cone Cone; // terminating production
// generating productions

2: bush -> T_cyl Cylinder + C_bush T_trunk bush ;
3: bush -> T_cyl Cylinder + C_bush (T_trunk bush  + T_branch bush );
4: bush -> T_cyl Cylinder + C_bush T_1branch bush  +

 C_bush T_2branch bush ;
5: bush -> T_cyl Cylinder + C_bush T_bend bush ;

}
}

Fig. 1 A CSG-PL-system describing a general branching structure for a bush or tree.

In fig. 1 the three parts of a CSG-PL-system (calculations, transformations, and selections) can
be seen. In the selection’s part the plant is built up with only one variable (Bush) and 5
corresponding productions. The first production terminates a segment with a cone, if the
counter cntbush is equal to zero. All other productions are generating productions. The second
production builds up the trunk in the first phase of growth (cntbush greater than trunk_phase).
Furthermore there are two possible branching patterns that are selected with respect to the
parameter brtyp1. A monopodial and a sympodial branching structure are built up by the
productions 3 and 4 respectively. If cntbush gets less than 1st_phase the second phase of
growth is induced. Here the parameter brtyp2 determines if branches are generated with
sympodial branching (production number 4) or if only a bent segment is built up by the fifth
production. In the transformations’ part an example for the definition of the transformation
T_branch, which scales, rotates and translates a segment, that is connected as a branch by
production 3 is given. The notation of the definition of all other transformations has been



5

omitted to keep the example short. A couple of parameters is initialized in the calculation
C_Initialize, which determine essentially the topology of the final plant. Only one parameter,
namely beta_br, is used as branching angle in the transformation T_branch and therefore
influences the geometry. The other parameters are used in the selection statement Bush and
control the selection of the branching pattern. Again because of simplicity the description of
other calculations has been omitted. This example is only a very limited subset of deReffye’s
model translated into the notation of CSG-PL-systems, but it is a good test-grammar to examine
the application of genetic algorithms to those systems.

4 Applying genetic algorithms to CSG-PL-systems
It is not trivial to find a useful genotype for CSG-PL-systems. Obviously all components
contribute to the final shape of a plant. Therefore the naive approach would be to use the whole
system description as genotype. Nevertheless it is difficult to define the operations of mutation
or mating for productions. We must guarantee that they will still produce valid CSG-
expressions. On the other hand we have to deal with the sensitivity of CSG-PL-systems
towards the starting conditions. They are dynamic systems, which often react with great
deviations on small changes. Even a slight modification of a production can destroy the initial
shape of a plant due to its recursive amplification. The same is true for arithmetic expressions in
calculations and the ordering of transformations. For a very selective fitness function the
approach to take the whole PL-system as genotype might be of use, but such fitness functions
are very hard to define. In our approach the user should be able to select individuals out of a
generated population. So we need small populations with also small variations among the
individuals. To achieve this, only some signified parts of the PL-system can form the genotype.

Thus we apply genetic algorithms to only the numerical components of a CSG-PL-system.
These are the initial values of parameters and the arguments of transformations. That means our
genotype consists of the numerical parts of calculations and transformations. With this
restriction it is easy to use the same methods like Sims. Mutation is done by adding a random
value out of a given interval to each parameter or transformation argument with a certain
probability. For mating the genotypes of two parents have to be compared. In the general case
the underlying CSG-PL-system will be the same for both parents. Therefore it is simple to mate
corresponding transformation arguments and parameter initializations. Beside that, we wanted
to allow the more general case of two different CSG-PL-systems for the two parents. Therefore
we need a scheme to match equivalent structures in the two systems. In different CSG-PL-
systems only adjacent group of genes can be mated to make sure that the topological and
geometrical semantic of a parameter or a transformation is preserved. We use the simple
approach to identify similarities by  name. For that purpose a list of all parameters in initializing
calculations and a list of all transformations is built up and sorted by name. Now the subsets of
all parameters and transformations, which have the same name in both parent systems are taken
under consideration. The subsets of parameters can be mated with one of Sims’ methods
directly to reproduce a new one as described in section 2. Transformations are usually built up
by a sequence of atomic linear transformations and the structure of the two parent sequences
could be different. Therefore an additional comparison is necessary. Two corresponding
transformations are searched for equal combinations of atomic transformations, because only
the arguments of those transformations can be mated. The following example shows how this is
done:



6

First Parent: Second parent:
Transformation T_branch Transformation T_branch
{ {

trans 0.0 0.0 1.99 trans 0.0 0.2 1.32
rotz 80.0 rotz 40.0
rotx alpha_br; roty beta_br;
scale 0.8 0.8 0.8 scale 0.3 0.3 0.3

flipxy
} }
Reproduced Transformation:
Transformation T_branch
{

trans 0.0 0.2 1.99
rotz 60.0
roty beta_br;
scale 0.3 0.3 0.8
flipxy

}

Fig. 2 Mating of two transformations -- the left parent is defined as dominator

Figure 2 shows the mating of two parent transformations consisting of different atoms. The
atoms trans, rotz and scale are the equal parts of both transformations and are mated. For
illustration different mating methods were used within this transformation. The translation is
mated by crossover, the rotation by linear interpolation and the scaling by random selection.
Those parts of the combination, which do not coincide are taken without any changes from the
parent that is defined as dominating.  In the example  the left parent is the dominant one and
thus the roty-gene survives instead of the rotx-gene. For the same reason the flipxy-gene is
added to the reproduced transformation. In our system the dominant parent can either be
selected randomly or by the user.

As we learned out of some tests, it depends strongly on the capability of the underlying CSG-
PL-system to generate a wide range of different species or only a few related ones or just one
particular. The CSG-PL-system introduced in the last section can create closely related species
of tree or bush like structures. Out of that example we can see that much of the success of a
genetic algorithm applied to CSG-PL-systems depends on the formulation of the CSG-PL-
system itself. If the system is designed to cover a broad range of structures, the evolution will
take longer time but the variance of the resulting models will be richer. So this is more a design
problem than an algorithmic problem. To design richer CSG-PL-systems two general
observations can be made: If we define the structure of the system representing the topology of
the plant as general as possible we need just a few different systems to cover many different
species. We have to carefully select only relevant parameters for the evolution process. It does
not make sense to allow the absolute value of the scaling factor of leafs to be altered, for
example, because leafs have to keep their size proportional to the rest of the tree or bush.
Following these two ideas, the definition of Fractal plants can be done in an interactive way
with non experienced users.

In our tests an amount of 20 individuals has been reproduced for each new generation out of
those selected by the user. For the example of figure 1 it was sufficient to calculate not more
than 15-20 generations to satisfy the users' ideas. Picture 1 shows some results of the last 3
generations of this CSG-PL-system. Picture 2 is the result of an evolution of a conifer tree. The
underlying CSG-PL-system for that kind of tree is much more complicated, because a lot more
parameters, transformations and selections are needed to describe the geometry and topology of
such a tree.



7

Two individuals of the last evolved population

Some individuals selected from the new generation

Selected parents of a young generation

Picture 1: The last 3 generations evolved out of the CSG-PL-system depicted in figure 1.



8

Two individuals of the last evolved population

Some individuals of the next population

Selected parents of a young generation

Picture 2: The last 3 generations of a CSG-PL-system that generates conifer trees

5 Conclusion and future work
Genetic algorithms are an efficient method to generate new plants by just selecting individuals
rather than tuning parameters of CSG-PL-systems tediously by hand. Specifying a CSG-PL-
system that describes the common structure of a desired species in an abstract way and then
using genetic algorithms to obtain a concrete individual out of this species is an efficient way to
specify plants. To define productions that build up some kind of conifer tree for example is not
difficult, but it is hard to set all parameters and transformation arguments accordingly to obtain a
natural looking tree. We apply the evolution techniques of Sims to only the parameter sets and
the transformation arguments of our CSG-PL-systems. This restriction avoids a great spread



9

among the infinite class of plants, that can be generated with that kind of systems. In this way,
we are able to generate individuals from a subclass of species. Like in nature, only closely
related species can be mated to produce new ones. It is a topic of our future research to define a
very general CSG-PL-system to obtain out of one system a large range of different species.

We will try to translate deReffye’s model into the notation of CSG-PL-systems completely
although this is not an easy task loosing major advantages of CSG-PL-systems. In this way the
final shape of a plant will only depend on parameter values and probabilities. Thus we can
apply genetic algorithms as explained in the last section hopefully with fast convergence to the
users' ideas..

Acknowledgments
This work is supported by the “Fond zur Förderung der wissenschaftlichen Forschung
(FWF)”, Austria, (project number: P09818). We would like to thank Ferdinand Rödlich for
doing the implementation of the genetic algorithms.

References
[BAGL67] Bagley: The behavior of adaptive systems which employ genetic and correlation algorithms,

Doctoral Dissertation, University of Michigan, Dissertation Abstracts International 28(12)

[CAVI70] Cavicchio: Adaptive search using simulated evolution, Unpublished doctoral dissertation,
University of Michigan, Ann Arbor

[DERE88] DeReffye, Edelin, Francon, Jaeger,. Puech: Plant Models faithful to botanical structure and
development, ACM Computer Graphics SIGGRAPH Proc., Vol 22(4), (1988)

[GERV95] Gervautz, Traxler: Representation and Realistic Rendering of Natural Scenes with Cyclic CSG
graphs, accepted for publication in Visual Computer, 1995

[GOLD89] Goldberg,D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning, 1989,
Addison-Wesley Publishing Co.

[HOLL75] Holland: Adaptation in Natural and Artificial Systems, Ann Arbor, Mi: University of Michigan
Press, 1975

[JONG75] De Jong: An Analysis of the behavior of a class of genetic adaptive systems, Doctoral
Dissertation, University of Michigan, Dissertation Abstracts International 36(10)

[PRUS90] Prusinkiewicz, Lindenmayer: The algorithmic beauty of plants, Springer Verlag, New York,
1990

[ROSE67] Rosenberg: Simulation of genetic populations with biochemical properties, Doctoral
Dissertation, University of Michigan, Dissertation Abstracts International 28(7)

[SIMS91] Sims: Artificial Evolution for Computer Graphics, ACM Computer Graphics SIGGRAPH
Proc., Vol 25(4), (1991)

[SMIT84] Smith: Plants, fractals and formal lanquages, ACM Computer Graphics SIGGRAPH Proc.,
Vol 18(3), (1984)


