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Abstract

PL-systems are a powerful and flexible technique for plant modeling. Unfortunately it is a hard
task to specify a@L-system,that generates desired plant.Especially the tuning of the
parameter values igme consuming and demandsla of experiencdrom the user. Inthis

paper we describeow toapply genetic algorithms t€SG-PL-systemswhich are a special
class of PL-systems. A decomposition of CSG-PL-systems is introdueattdotthoseparts,

which can serve as genotyp&lutation and mating.the two major operations of evolution
techniquesare applied tahis dataset. With the described method it isossible to findeasily
natural looking individuals out of a speci#sat is described in an abstrastay by the
underlying CSG-PL-system.
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1 Introduction

Genetic algorithms are a relialdad powerful search strategy to find sub-optimal solutions in
hugedataspacesThe principles ofvolution,namely reproduction,mutation and mating are
thereby applied to a greelass of problems, whichre frequentlyknown to beNP-complete
[GOLDA89]. Like in nature, genetic algorithms usually do not find the weetymal solution, but

one that satisfiescertain qualitativerequirements. This is a property they share wngural
networks. The notiongenetic algorithmwas firstintroduced by Bagley inBAGL67], who
used them to solve problems of gatheory. Rosenbergimulated the evolution of single cell
organisms [ROSEG67] texaminehow natureworks. Cavicchio introduced a genetic algorithm
in [CAVI70] to create an efficient machine for pattern recognition. Holland compared adaptation
in natural andartificial systems [HOLL75], and DeJoranalyzed alass ofgenetic algorithms
[JONG75] by comparing their efficiency féunction optimization. Irall casegshe principle of
evolution is applied to a set of data, which serves as genotypexdople a stream difits or
arithmetic expressionsThe evolving individuals are testédr their fitness to solve a given
problem. This is done bthe so calleditness function, which has to lmefined carefully to
obtain thedesiredresults.The complexity of thditness function depends dhe nature of the
problem to be solved.

In this paper we describe an approach to apgplyetic algorithms tdind PL-systemsthat
generate natural looking plants of a desspdcies. PL-systenae known to be a powerful

tool for plant modeling. They are an important extension to the clakssyatems, which were

firstly introduced bythe biologist Lindenmayr and are fully describedMRUS91]. Though
PL-systemsllow to simulate the development of plantsh high accuracy, but it is a well-
known fact, that it is a hard task to specify dim& generates thdesired plantThe reason for

that is called data base amplification by Smith [SMIT84] and characterizes the problem of tuning
a small dateset to obtain a complex object as result of a recursive feediackess. This
problem clearly belongs to a clagsit can easily bsolved by ageneticalgorithm.Real plants

are a product of evolution. Thus it is obvious to create them by using genetic algorithms.

In [SIMS91] evolution techniques were firstly applied to evolve several species of plants out of
a unigue and powerful moderhe underlying modelvas aproceduralone, much asthat
introduced in [DERES88], wher¢he development of a plamtepends on a set afpecific
parameters and probabilities. Thus this set of values is used as genotype. Hi dideméemnpl

a fitness function buet theuser decide, which dhe evolved individualshould be used for
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further reproduction. Within PL-systertise problemoccurs to definghe proper genotype. In
fact thewhole PL-system could beonceived as genotype ofsabclass of species but this
would not nake muchsense. Acareful selection of some dhe components of a species
description has to be made to guararite¢ evolutionconverges tahe user's goalsTherefore

we took only two ofthe components of a PL-system under consideration. In spite of this
restriction it is possible to release the user frone tonsumingparameter tuning and fod a
natural looking and proportional individual plant in a spedfibclass of species melatively
short time.

In the first part of this paper we give an introduction to the methods that were used in [SIMS91]
since we apply them BL-systems. A shortlescription ofCSG-PL-systems follows which
were introduced in [GERV95]. The remainder of this paper explains how genetic algorithms are
applied to components of these systems and we further discuss future research possibilities.

2. Genetic algorithms for the evolution of plants

Genetic algorithms can be divided intwo operationsmating andmutation. Two ormore
parents are selected out of a given or already evolved population to degvwe ane. Fothat
purpose the genotypes of the parents are reproduced and Matation guarantees variations
within the new generation, sthat thenew population is not simply a mixture of inherited
characters. The fittest individuals of the new generation are selected for further reproductions.

Karl Sims waghe first, who applied genetic algorithms to evolve a variety of plspecies
[SIMS91]. Some of his results can be seen irahisation“Panspermia”. Fothe plant model

he used aimilar model aghose introduced by deReffye [DERE88he plants are generated
procedurally and their final shape depends on a set of parameter valygslzatallities. These

values control the activity dfuds, which either generatbranches with new his, flowers, or

simply die. The probabilities are modified with respect to the hierarghisition of a segment

during growth. The geometricaspects of plantike branching angles and scaling factors
depend also on parameter values. Sims used a set of only 21 parameter values as genotype. The
selection of the fittest completely relies to the hurnaer, sothat a selectiorfunction is not
necessary.

Mutation is done by adding random values out oéain interval to each element of the value

set with a mutation probability. Thus the effects of mutation can be adjusted for each gene of the
genotype. If the mutation of a particular value is int#énded, itamutation probability is set to

zero. The interval$or the randormumbersare chosen with respect the valid range oéach
parametervalue. A Gaussian distribution is used taka smalichanges more likelihoothan

large ones. The mutation rates andmountsare usually higher than in naturaystems to
accelerate evolution and allow a greater spread of different individuals in each generation.

For the mating of parameter value sets, Sims suggested four methods. After the selection of two
individuals of a certain population g&rents for a new generatiotheir genotypescan be
reproduced and mated in the following ways:

1) Genesare takenfrom both parentsalternatelywith a constant frequencl The new
genotype is thus an interleaved mixture of the parent genotypes,fvgeres othe first
parent are concatenatedth f genes othe second parent in aterativeway as long as
there are genes left. This methodc#led crossoverand haghe advantagethat adjacent
genes of both genotypes are concatenated with each other.

2) Each gene of the new genotype is taken randomly from one of the parenthe-ignees
are combined independently from each other. This was the m8thnedpreferred for his
artificial evolution, maybe because the genotypes of the new generatispread widely
enough among the possible combinations of two initial genotypes.

3) Thenewgenotype is a linear interpolation between ¢baresponding parergenotypes.
The resulting genes are taken randomly from the line connecting the ganestThis is

achieved by the linear equatiamew gene = p- gene of %t parent +(1-p) - gene of X
parent wherep is a random value out ¢@,1]. Forall genesthe same random number
Is taken in contrary to the next method.



4) Eachnewgene is a random value between the values ofdhesponding parent genes
independently okachother. This ighe method, which causeabe widest spread among
the value ranges of both parent genotypes.

We exactlyusedthese methods to tungarameter values o€SG-PL-systemsBefore we
explain how to apply Sims methods t€€SG-PL-systems igreater detail, we give ahort
description of these systems in the next chapter.

3. CSG-PL-systems and their components

CSG-PL-systems [GERV94re an adaptation of the classil-systems as described in
[PRUS91] to the concept of Constructive Solid Geom@Dr$G). The combination ofhis two
powerful modeling schemes allovike description of avide range of natural phenomena like
plants, objects defined by IFS, Fractal terrain in a single unified way.

CSG is a well-known object representation, which can be rendered efficiently using ray tracing.
Complex objects are constructed by the binary combinatiqgeragerly transformegbrimitive
objects, like cube, sphere, conegylinder and so on. The primitives are represented

procedurally by their volumes and can be combined by the three Boolean operationsC{yinion (
intersection () and subtraction (/)). The desired object is thus specified by a binary expression.

Since PL-systemsoperate on parametristrings, i.e., strings consisting of symbols with
associated parameters, they could also generate CSG-expressions. The formal largpucge of
PL-systems is a subset tife formal language oéll valid CSGexpressions. In CSG-PL-
systems the symbobredistinguished betweevariablesandterminals Only the variables are
substituted imparallelduring a derivatiorstep. The terminals are syntactic elements of a valid
CSG expressiomand are kept in thetring. This implies,that for each variable at least one
production must exist, which substitutes it wilhminals to obtain a vali@SG-expression as
final string. Such gproduction iscalled terminating production whereas ond¢hat defines a
recursive derivation is callegenerating production

Productions in CSG-PL-systenae controlled byparameters. Parametetan beused to
describe somgeometricpropertieslike branching angles or proportions thle system or to
influence the topology of the described object. CSG-PL-systems can be decompo#edanto
componentsThe most important parare theproductions themselves, which define, how the
objects are constructed recursively in the feedisgskem,that is calledderivation. Avariable
and a set of corresponding productions are caldgttion Selections are denoted in a selection
statement, and allow to obtain a particular produdtionng derivation. Selectiorare usually
controlled by parameters.

Linear transformationsare used inthe productions to considegeometricaspects. Changing
transformations by parameters during derivation allows to modify nottbalfopology but
alsothe geometry of plants as a resultgsgbwth. Transformationscan be conceived as an
extension to binanfCSG-expressions by unary operators.the following we will denote
transformations as a sequenceatdmic lineartransformationslike scaling, rotation, and
translation that are applied one after the other.

Calculations areised to modifyparameters during derivation anditdtialize thembefore the
derivation. Eacltalculation or initialization is denoted aseqguence of calculaticstatements,
which can be seen as unary operators in the productions scheme.

To makethis decomposition 0€SG-PL-systems clear, wlustrate it on an example. The
following system iscapable to generate differdmtanching structures ar@n be conceived as
implementation of a small subset of deReffye’s plant model [DERESS].



Calculation C_initialize /I Definition of a calculation

{
cntbush = 8; /I age (order) of the plant
1st phase = 2; I time of first growing phase
trunk_phase = 4; I/l phase of trunk growing
brtypl = 0.6; /I probability for pattern 1 vs. 2
brtyp2 = 0.4, // probability for bend vs. pattern 2
beta_br = 44.0; /l branching angle
}
Transformation T_branch /I Definition of a Transformation
{
trans 0.0 0.0 1.99;
rotz 80.0;
roty beta_br;
scale 0.8 0.8 0.8;
}
PL-system bush /I Specification of the PL-system
{
Initialization by C_initialize;
Selection bush /I The selection statement
if (cntbush > 1st_phase)
if (cntbush > trunk_phase)  // build up trunk
production no 2
else if (brtypl < 0.5) // build up monopodial pattern
production no 3
else // build up sympodial pattern
production no 4
else if (cntbush > 0)
if (brtyp2 < 0.5) I/l bent segment without branches
production no 5
else // build up sympodial pattern
production no 4
else /[ terminate with a cone
production no 1
}
Production section /I Specification of productions
{
1: bush -> T_cone Cone; // terminating production
/I generating productions
2: bush ->T_cyl Cylinder + C_bush T_trunk bush ;
3: bush ->T_cyl Cylinder + C_bush (T_trunk bush + T_branch bush);
4: bush ->T_cyl Cylinder + C_bush T_1branch bush +
C_bush T_2branch bush;
5: bush -> T_cyl Cylinder + C_bush T_bend bush ;
}
}

Fig. 1 A CSG-PL-system describing a general branching structure for a bush or tree.

In fig. 1 the three parts of a CSG-PL-system (calculations, transformations, and selections) can
be seen. Irthe selection’s part the plant is built wgth only onevariable Bush) and 5
corresponding productiong.he first productionterminates a segment with aone, if the
countercntbushis equal to zerdAll other productionsre generatingroductions.The second
production builds up the trunk the first phase of growthchtbushgreater tharunk_phasg
Furthermore therare two possible branchingatternsthat are selectedvith respect to the
parameteibrtypl A monopodial and a sympodial branching structure are built up by the
productions 3 and 4 respectively. ditbushgets lessthan 1st_phasethe second phase of
growth is induced. Her¢he parametebrtyp2 determines if brancheare generated with
sympodial branching (production number 4) or if only a bent segment is built thee fth
production. Inthe transformations’ part aexamplefor the definition of the transformation
T_branch which scales, rates and translatessegmentthat is connected as laranch by
production 3 is givenThe notation of the definition odll other transformationdas been
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omitted to keep the exampkhort. A couple of parameters is initialized in the calculation
C_Initialize which determine essentially thepology of the final plant. Only one parameter,
namely beta_ by is used as branchingngle in the transformatiom_branch and therefore
influences thegeometry.The other parameters ansed inthe selection statemeBush and
control the selection of the branchipgttern. Ayain because of simplicity the description of
other calculationkiasbeen omitted. Thigxample isonly a verylimited subset of deReffye’s
model translated into the notation of CSG-PL-systems, but it is a good test-granexamioe
the application of genetic algorithms to those systems.

4 Applying genetic algorithms to CSG-PL-systems

It is nottrivial to find a useful genotypdéor CSG-PL-systemsObviously all components
contribute to the final shape of a plant. Therefore the naive approach would behewkele
system description as genotype. Neverthelesgdiffisult to define theoperations omutation

or mating for productions. We musguarantee that they will stilproduce valid CSG-
expressions. Onhe otherhand we have taleal with the sensitivity of CSG-PL-systems
towardsthe startingconditions. They are dynamisystems,which often react with great
deviations on smatthangesEven a slight modification of a production cd@stroythe initial
shape of a plant due to its recursive amplification. The same is trastfoneticexpressions in
calculations and therdering of transformations. For a vesglectivefitness function the
approach to take the whole PL-system as genotyghtrbe ofuse, but such fithess functions
arevery hard to define. In owapproach theiser should bable to selecindividuals out of a
generatedoopulation. So weneed small populations with also small variations among the
individuals. To achieve this, only some signified parts of the PL-system can form the genotype.

Thus weapply genetic algorithms tonly the numericalcomponents of &SG-PL-system.
These are the initial values of parameters and the arguments of transfornfdtainaeans our
genotype consists ofthe numericalparts of calculations andtransformations.With this
restriction it is easy tasethe samanethoddike Sims. Mutation islone by adding a random
value out of a given interval teach parameter dransformation argument with eertain
probability. For mating the genotypes of two pardrage to becompared. Irthe general case
the underlying CSG-PL-system will be the same for both parents. Therefore it is simyate to
corresponding transformation arguments pathmeter initializations. Besideat, wewanted
to allow the more general case of two different CSG-PL-systems for the two patertfore
we need a scheme to match equivaknictures inthe two systems. Irdifferent CSG-PL-
systems onlyadjacentgroup of genesan be mated to maksure that the topological and
geometrical semantic of a parameter ofransformation ispreserved. We usthe simple
approach to identify similarities by name. For that purpose a lat pArameters in initializing
calculations and a list of all transformations is built up and sorted by iNoaethe subsets of
all parameters and transformations, which have the same name in botlspsiemisare taken
under consideratioriThe subsets ofparameters can be matadth one of Sims’ methods
directly to reproduce a new one as described in section 2. Transformaagassially built up
by a sequence @tomic lineartransformations anthe structure of théwo parent sequences
could be different. Therefore aadditional comparison isiecessary. Two corresponding
transformationsare searchetbr equal combinations adfitomic transformations, because only
the arguments of those transformations can be mated. The following example shows how this is
done:



First Parent: Second parent:

Transformation T_branch Transformation T_branch
{ {
trans 0.0 0.0 1.99 trans 0.0 0.2 1.32
rotz 80.0 rotz 40.0
rotx alpha_br; roty beta_br;
scale 0.8 0.8 0.8 scale 0.3 0.3 0.3
flipxy
}

Reproduced Transformation:
Transformation T_branch

{
trans 0.0 0.2 1.99
rotz 60.0
roty beta_br;
scale 0.3 0.3 0.8
flipxy

}

Fig. 2 Mating of two transformations -- the left parent is defined as dominator

Figure 2showsthe mating oftwo parent transformations consisting of differaoms. The
atomstrans rotz and scaleare the equabarts of both transformations arsde mated. For
illustration different matingnethods were used within this transformati®he translation is
mated bycrossoverthe rotation by linear interpolation and the scaling by randelaction.
Those parts of the combination, which do nonhcule are taken without arghanges from the
parent that is defined akminating. Inthe example the left parent is the dominant one and
thusthe roty-gene survivesnstead of theotx-gene. Forthe samereasonthe flipxy-gene is
added to thereproduced transformation. In our systéine dominant parent can either be
selected randomly or by the user.

As we learned out of sontests, it depends strongly dime capability of theinderlyingCSG-
PL-system to generate a wide range of different species or dely i@latedones or just one
particular. The CSG-PL-system introducedhe last section cacreateclosely relatedspecies
of tree orbushlike structuresOut of that example we caeethat much of thesuccess of a
genetic algorithm applied t€SG-PL-systems depends thre formulation of theCSG-PL-
system itself. If the system is designed to cover a broad rangeuofuresthe evolution will
take longer time but the variance of the resulting models will be richer. So this is more a design
problem than an algorithmigroblem. To designricher CSG-PL-systems twogeneral
observations can be made: If we define the structure afystem representintpe topology of
the plant as general aessible weneed just dew different systems tacover many different
species. We have to carefully seleaty relevant parameteffsr the evolutionprocess. It does
not make sense taallow the absolute value of the scaling factor of leafs taalbered, for
example, because leafs have to keep their size proportiotiad test of the tree orbush.
Following thesawo ideas,the definition of Fractal plants can bene in aninteractive way
with non experienced users.

In our tests ammount of 20 individualsasbeen reproducefibr eachnew generation out of
thoseselected by theser. Forthe example ofigure 1 itwas sufficient to calculatenot more
than15-20 generations to satistiye users' ideasPicture 1showssome results othe last 3
generations of this CSG-PL-system. Picture 2 is the result of an evolution of a treeiféfhe
underlying CSG-PL-system for that kind of tree is much more complicated, becatisecae
parameters, transformations and selections are needed to describe the geometry and topology of
such a tree.
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Picture 1: The last 3 generations evolved out of the CSG-PL-system depicted in figure 1.
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Picture 2: The last 3 generations of a CSG-PL-system that generates conifer trees

5 Conclusion and future work

Genetic algorithms are an efficient method to generewe plants by jusselecting individuals

rather than tuning parameters@6G-PL-systems$ediously byhand. Specifying aCSG-PL-
systemthat describegshe common structure of desired species in an abstracty andthen

using genetic algorithms to obtain a concrete individual out of this speciesfficeamt way to

specify plants. To define productions that build up some kind of cdrgfefor example is not
difficult, but it is hard to set all parameters and transformation arguments accordingly to obtain a
natural looking tree. We apply the evolution techniqueSiofs to onlythe parametesets and

the transformation arguments @fir CSG-PL-systemsThis restriction avoids greatspread



among the infinite class of plants, that can be generatedhaitkind of systems. Irthis way,

we are able to generatedividuals from asubclass of specie&ike in nature, onlyclosely

related species can be mated to produce new ones. It is a topic of our future research to define a
very general CSG-PL-system to obtain out of one system a large range of different species.

We will try to translate deReffye’s edel into the notation oCSG-PL-systemsompletely
although this is not an easy task loosing major advantages of CSG-PL-systems. In this way the
final shape of glant will only depend orparameter values arurobabilities. Thus we can

apply genetic algorithms as explained in the last section hopefitiiyfast convergence to the
users' ideas..
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