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ABSTRACT

This paper presents the relationship between the Reaursive Arbitrary Topdogy Splines (RATS) method,
derived by the authors, and the Catmull and Clark reaursive B-Spline method. Both methods are cgable
of defining surfaces of any arbitrary topdogy of control points. They "fill -in" n-sided regions with four-
sided patches. The Catmull & Clark method is derived from the midpant subdivision of B-splines
whereas the RATS method is derived from the midpant subdivision of Bézer splines. RATS generates an
additional set of patches defining the border of the surfacebut the RATS inner surfaceis identicd to the
Catmull and Clark surface This paper ill ustrates this relationship between the two methods.
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1. INTRODUCTION

The generation of a arrve from a polygon by
successvely refining the palygon with the aldition
of new vertices and edges was introduced by
Chaikin [Chaik74] in 1974 A few yeas later, in
1978 Catmull & Clark [Catmu78] and Doo and
Sabin [Doo78 generalized the idea to surfaces.
Both methods were extended in defining surfaces
with arbitrary topdogy of control points. They
refine, or subdivide, an irregular mesh by credaing a
new mesh, with more faces and vertices, that
approximates the old. By repeding the processby a
number of subdivisions a smooth surfaceis formed.

The Doo and Sabin method generates biquadratic
B-spines, and the Catmull and Clark method

generates bicubic B-splines. A more recent method
that generalizes quartic trianguar B-splines was

developed by Loop and De Rose [Loop9(q.
However, due to the popularity of bicubic patches
more reseachers and modellers have given a lot of
emphasis on the Catmull and Clark method. Even
urtil today it could be mnsidered as the most
popular method for describing surfaces among those
methods that are based on reaursive dgorithms.

A large anount of research caried out is based on
the Catmull and Clark splines, including, Ball and
Story [Ball88], and Doo and Sabin [Doo7§ who
studied the behaviour of the surface & the
extraordinary points. Also, Hastead, Kass and
DeRose [Halst93] derived a Catmull and Clark
surfacethat interpolates the control points, and Nasri
[Nasri87] treded the problem of shrinking of
boundaries.
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Like the Catmull and Clark method, the RATS
(Reaursive Arbitrary Topdogy Splines) method,
which is derived by Savva [Savva98, Savva0(],
describes bicubic surfaces that are defined by an
arbitrary topdogy of control points. The RATS
method is derived from a standard hicubic Bézer
patch and is based on a reaursive patch midpant
subdivision algorithm on a redanguar framework
of control points, which is then generalized to
arbitrary nets of control paints.

The Catmull and Clark method is an approximation
to the ntrol points defining the surface The
RATS surface is aso an approximation to the
control points but interpolates the rner control
points. In fad, it generates an additional set of
patches at the border of the surface This paper
demonstrates the relationship of the two methods.
The Catmull and Clark surfaceis identicd to the
RATS inner surface The inner surfaceis defined as
the RATS surfacewithout the patches at its border.

In sedion 2 the two methods are introduced.
Sedion 3 derives the relationship between them and
sedion 4 summarizes and concludes.

2. THEMETHODS

Both methods are based on reaursion and at eadh
step they construct a new set of points with more
vertices and smaller faces than the origina set of
points. After a number of iterations the result is a
smooth surface As the methods are based on
reaursion, the points that are generated are cdled
"new points*, while the points defining the control
polygon at each iteration are cdled "old points’.

In Fig.2 the RATS new points, which are generated
from the old pdnts given in Fig.1, are ill ustrated.
Fig.3 shows the Catmull and Clark new-paints that
are dso generated from the old pdnts given in
Fig.1l. Fig.4 and Fig.5 illustrate the difference
between a RATS surface ad a Catmull and Clark
surface Both surfaces were generated from the
same ontrol points. The aditional patches
generated by RATS are dealy noted in these
figures.

The Catmull and Clark new points are divided into
three types. (1) new vertex points — new points
corresponding to the old vertices, (2) new edge
points — new points corresponding to ad edges, and
(3) new facepoaints — new points lying in the centre
of the sguares of the origina mesh. On the other
hand, the RATS new poaints are divided into ten
types: These mnsists of 3 subtypes of new vertex
points, 4 subtypes of new edge points, and 3
subtypes of new facepoints. The RATS new paints

are listed below and illustrated in Fig.6. The new
points are represented by Os whereas the old pdnts
are represented by Xs.

Fig.1 Theold pdnts
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Fig.2 The RATS new paints

Fig.3 The Catmull and Clark new points

(1) new vertex points Vy — new points
corresponding to the old vertices which are &
the @rners of the surface

(2) new vertex points Vg — new paints
corresponding to dd vertices which are on the
border but not on the crners of the surface

(3) new vertex points V, — new pants
corresponding to dd vertices which are not on
the border of the surface

(4) new edge points E, — new points corresponding
to edges on the border of the surfacewhere &
least one of the vertices saringthe edgeisat a
corner of the surface

(5) new edge points Ez — new points corresponding
to edges on the border of the surface where
none of the vertices dharing the alge is at any
corner of the surface
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Fig.5 A Catmull & Clark surface

new edge points E, — new points
corresponding to edges which are not on the
border of the surface but at least one of the
vertices aringthe elge is on the border,

new edge points Es — new points
corresponding to edges where none of the
vertices daring the elge is on the border of
the surface

new face points Fy — new points lying in the
centre of the faces of the original mesh where
at leest one of the vertices defining the faceis
at a wrner of the surface

new face points Fg — new paints lying in the
centre of the faces of the origina mesh where
a least one of its edgesis on the border of the
surface &d none of the vertices defining the
faceis at a crner of the surface and

new face points F, — new paints lying in the
centre of the faces of the original mesh where
none of its edges is on the border of the
surface
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Fig.6 The new pointsin resped to the old pants

Given an nxm mesh of old pdnts, V;;, for 1<i<n
and 1<j<m, the new points that will be generated
by the two methods are given in sedion 2.1 and 2.2. It
must be noted that the Catmull and Clark method
generates (2n-3)x(2m-3) new points, whereas the
RATS method generates (2n-1)x(2m1) new points.
Thus, the RATS method produces 4(n+m-2) more
new points than the Catmull and Clark method at
every iteration. These alditional points describe the
patches that are generated by RATS at the border of
the surface

21. THECATMULL AND CLARK SURFACE

The (2n-3)x(2m-3) new points, P;;, for 1<i<2n-3
and 1<j<2m3, that are generated by the Catmull
and Clark method [Catmu78], [Savva96] are given
by Eq.1 - Eg4.

New Face Points

P _ Vigja tVig +Vi 1 tVi)
2i-32]3 =

D

N

<n
<m

i
j

IN N

for g

New Edge Points

1{A+B) Mz +Vi)
Poiszj2 = EEK 5 + J2 L (28)
[R<i<n
for )
%s j€m-1
and
10B+C) , Vya*Vyy) O
P .. .== FRARSL ! 2b
2i-2,2j-3 2% > > E (2b)
R<is<n-1
for .
<j<m
where
gtV +V LV
A=Py303= Miaja "1~J4 i Vi)
itV TV Vo
B= P2i-3,2j-2 = (V"Ll iLi 14 1) 1) l)
I A/ VIV AV
C= P2i—2,2j.3 - (Vlvl-l i 4'I 1,j-1 i :LJ)

New Vertex Points

+E+Vii'j for 2
2 4 %

Pyi22j2 = 2

where



1OV, #V ., Vi +V, VL VY,
:_D’ . + = =

i ij+1 + i

4 2 2 2 2

E

£ _(A+B+C+D)
4

A, B, C are & defined above, and

(Vi,j +Vi,j+1 +Vi+1,j +Vi+1,j+1)
4

D=Py2 =

2.2. THE RATSSURFACE

The (2n-1)x(2m-1) new poaints, P;j, for 1<i<2n-1
and 1<j<2ml, that are generated by the RATS
method [Savva9g], [Savval(] are given by Eq.4 —
Eq19 Fig.7 ill ustrates two RATS surfaces.
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Fig.7 Two RATS surfaces

It must be noted that:

i =
4
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3. RELATION OF RATSTO B-SPLINES

Let a surface be defined by n x m control points Vj,
for 1<i<n and 1<js<m, and let E; for
1<i<nland1l<j<m, bethe midpoint of the
edge Vij Viiijs E for 1<si<nand 1<j<ml,
be the midpoint of the edge Vi; Vi1, and Fyj, for
1<i<nland 1<j <ml, be the average of the
face defined by Vi,jv Vi,j+1a Vi+l,j Vi+l,j+1- This is
shown in Fig.8 where n=m=4.
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Fig.8 Representation of points defininga RATS
surface

In Savwva and Clapworthy [Savva98] and Savva
[Savva0(] it is sown that in the RATS method, the
new face points F, are the average of al the new
vertex points V, corresponding to the old pdnts
defining the face and the new edge points E; are the
midpants of the two new vertex points V
corresponding to the old vertices defining the alge,
as can be seen in Fig.2. Wireframe models are
therefore better visualised if the F, and Es points are
not displayed, as iown in the two surfaces displayed
in Fig.7. Comparing Eq.4 — Eq.19 with the example
given in this sdion and shown in Fig.8, it can be
seen that the points defined in this sdion represent a
RATS set of new paints.

Since Ejj and Ej; are the midpaints of the edges,
the RATS new vertex paints corresponding to them
will represent the Catmull and Clark new edge
points. Similarly, the RATS new vertex points for F;;
correspond to the Catmull and Clark new face points.
This is illustrated in Fig.8. Caculating these points
for Bz, Fp2 and V,, that are of type Fy, Es, and V,
points respedively, yields the equations that foll ow.
Note that the E and E' points are treged identicaly
sincethey are the same type of points.
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From the definition gven in the beginning of this
sedion, it is known that
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Substituting the &ove eguations in Eq.20 — Eq.22
resultsin Eq.23 - Eq.25.
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Comparing Eq.24 — Eq.26 to Eq.1 — EQ.3 it can be
sea that the resulting new face, new edge and new
vertexpoints are the same ain the Catmull & Clark
B-spline reaursive method. Therefore, the inner
surfaceproduced by RATS isidenticd to aB-spline
surface However, RATS produces an additional set
of patches at the border of the surface comparingto
the Catmull and Clark method.

4. SUMMARY AND CONCLUSIONS

The RATS (Reaursive Arbitrary Topdogy Splines)
method defines surfaces with an arbitrary topdogy
of control points. It is areaursive spline method and
is derived from the midpant subdivision of Bézer
splines.

The Catmull and Clark method is the most popular
reaursive spline method for defining surfaces based
on an arbitrary topdogy of control paints. The two
methods are in fad related. This paper derives this

relationship: The Catmull and Clark surface is
identical to the inner RATS surface

However, the RATS method generates an additi onal
set of patches describing the border of the surface
Thus, the RATS surfaceisfitted nearer to the @ntrol
mesh border than the Catmull & Clark surface
giving a better definition of the control mesh.
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