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ABSTRACT 
 

This paper presents the relationship between the Recursive Arbitrary Topology Splines (RATS) method, 
derived by the authors, and the Catmull and Clark recursive B-Spline method. Both methods are capable 
of defining surfaces of any arbitrary topology of control points. They "fill -in" n-sided regions with four- 
sided patches. The Catmull & Clark method is derived from the midpoint subdivision of B-splines 
whereas the RATS method is derived from the midpoint subdivision of Bézier splines. RATS generates an 
additional set of patches defining the border of the surface but the RATS inner surface is identical to the 
Catmull and Clark surface. This paper ill ustrates this relationship between the two methods. 
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1.  INTRODUCTION 
 
The generation of a curve from a polygon by 
successively refining the polygon with the addition 
of new vertices and edges was introduced by 
Chaikin [Chaik74] in 1974. A few years later, in 
1978, Catmull & Clark [Catmu78] and Doo and 
Sabin [Doo78] generalized the idea to surfaces. 
Both methods were extended in defining surfaces 
with arbitrary topology of control points. They 
refine, or subdivide, an irregular mesh by creating a 
new mesh, with more faces and vertices, that 
approximates the old. By repeating the process by a 
number of subdivisions a smooth surface is formed. 

The Doo and Sabin method generates biquadratic 
B-spines, and the Catmull and Clark method 
generates bicubic B-splines. A more recent method 
that generalizes quartic triangular B-splines was 

developed by Loop and De Rose [Loop90]. 
However, due to the popularity of bicubic patches 
more researchers and modellers have given a lot of 
emphasis on the Catmull and Clark method. Even 
until today it could be considered as the most 
popular method for describing surfaces among those 
methods that are based on recursive algorithms. 

A large amount of research carried out is based on 
the Catmull and Clark splines, including, Ball and 
Story [Ball88], and Doo and Sabin [Doo78] who 
studied the behaviour of the surface at the 
extraordinary points. Also, Halstead, Kass and 
DeRose [Halst93] derived a Catmull and Clark 
surface that interpolates the control points, and Nasri 
[Nasri87] treated the problem of shrinking of 
boundaries. 
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Like the Catmull and Clark method, the RATS 
(Recursive Arbitrary Topology Splines) method, 
which is derived by Savva [Savva98, Savva00], 
describes bicubic surfaces that are defined by an 
arbitrary topology of control points. The RATS 
method is derived from a standard bicubic Bézier 
patch and is based on a recursive patch midpoint 
subdivision algorithm on a rectangular framework 
of control points, which is then generalized to 
arbitrary nets of control points. 

The Catmull and Clark method is an approximation 
to the control points defining the surface. The 
RATS surface is also an approximation to the 
control points but interpolates the corner control 
points. In fact, it generates an additional set of 
patches at the border of the surface. This paper 
demonstrates the relationship of the two methods. 
The Catmull and Clark surface is identical to the 
RATS inner surface. The inner surface is defined as 
the RATS surface without the patches at its border. 

In section 2 the two methods are introduced. 
Section 3 derives the relationship between them and 
section 4 summarizes and concludes. 
 
 
2.  THE METHODS 
 
Both methods are based on recursion and at each 
step they construct a new set of points with more 
vertices and smaller faces than the original set of 
points. After a number of iterations the result is a 
smooth surface. As the methods are based on 
recursion, the points that are generated are called 
"new points", while the points defining the control 
polygon at each iteration are called "old points". 

In Fig.2 the RATS new points, which are generated 
from the old points given in Fig.1, are ill ustrated. 
Fig.3 shows the Catmull and Clark new-points that 
are also generated from the old points given in 
Fig.1. Fig.4 and Fig.5 ill ustrate the difference 
between a RATS surface and a Catmull and Clark 
surface. Both surfaces were generated from the 
same control points. The additional patches 
generated by RATS are clearly noted in these 
figures. 

The Catmull and Clark new points are divided into 
three types: (1) new vertex points – new points 
corresponding to the old vertices, (2) new edge 
points – new points corresponding to old edges, and 
(3) new face points – new points lying in the centre 
of the squares of the original mesh. On the other 
hand, the RATS new points are divided into ten 
types: These consists of 3 subtypes of new vertex 
points, 4 subtypes of new edge points, and 3 
subtypes of new face points. The RATS new points 

are listed below and ill ustrated in Fig.6. The new 
points are represented by Os whereas the old points 
are represented by Xs. 

 

Fig.1 The old points 

 

Fig.2  The RATS new points 

 
Fig.3 The Catmull and Clark new points 

(1) new vertex points Vα – new points 
corresponding to the old vertices which are at 
the corners of the surface, 

(2) new vertex points Vβ – new points 
corresponding to old vertices which are on the 
border but not on the corners of the surface, 

(3) new vertex points Vγ – new points 
corresponding to old vertices which are not on 
the border of the surface, 

(4) new edge points Eα – new points corresponding 
to edges on the border of the surface where at 
least one of the vertices sharing the edge is at a 
corner of the surface, 

(5) new edge points Eβ – new points corresponding 
to edges on the border of the surface where 
none of the vertices sharing the edge is at any 
corner of the surface, 



 

 

Fig.4  A RATS surface 

 

Fig.5  A Catmull & Clark surface 

(6) new edge points Eγ – new points 
corresponding to edges which are not on the 
border of the surface, but at least one of the 
vertices sharing the edge is on the border, 

(7) new edge points Eδ – new points 
corresponding to edges where none of the 
vertices sharing the edge is on the border of 
the surface, 

(8) new face points Fα – new points lying in the 
centre of the faces of the original mesh where 
at least one of the vertices defining the face is 
at a corner of the surface, 

(9) new face points Fβ – new points lying in the 
centre of the faces of the original mesh where 
at least one of its edges is on the border of the 
surface and none of the vertices defining the 
face is at a corner of the surface, and 

(10) new face points Fγ – new points lying in the 
centre of the faces of the original mesh where 
none of its edges is on the border of the 
surface. 
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Fig.6  The new points in respect to the old points 

Given an n×m mesh of old points, Vi,j, for 1 ≤ i ≤ n 
and 1 ≤ j ≤ m,  the new points that will be generated 
by the two methods are given in section 2.1 and 2.2. It 
must be noted that the Catmull and Clark method 
generates (2n-3)×(2m-3) new points, whereas the 
RATS method generates (2n-1)×(2m-1) new points. 
Thus, the RATS method produces 4(n+m-2) more 
new points than the Catmull and Clark method at 
every iteration. These additional points describe the 
patches that are generated by RATS at the border of 
the surface. 
 
 
2.1. THE CATMULL AND CLARK SURFACE 
 
The (2n-3)×(2m-3) new points, Pi,j, for 1 ≤ i ≤ 2n-3 
and 1 ≤ j ≤ 2m-3, that are generated by the Catmull 
and Clark method [Catmu78], [Savva96] are given 
by Eq.1 – Eq4. 
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2.2. THE RATS SURFACE 
 
The (2n-1)×(2m-1) new points, Pi,j, for 1 ≤ i ≤ 2n-1 
and 1 ≤ j ≤ 2m-1, that are generated by the RATS 
method [Savva98], [Savva00] are given by Eq.4 – 
Eq19. Fig.7 ill ustrates two RATS surfaces. 

     

Fig.7  Two RATS surfaces 

It must be noted that: 
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3.  RELATION OF RATS TO B-SPLINES 
 
Let a surface be defined by n × m control points Vi,j, 
for 1 ≤ i ≤ n and 1 ≤ j ≤ m, and let Ei,j, for 
1 ≤ i ≤ n-1 and 1 ≤ j ≤ m, be the midpoint of the 
edge Vi,j Vi+1,j, jiE ,′ , for 1 ≤ i ≤ n and 1 ≤ j ≤ m-1, 
be the midpoint of the edge Vi,j Vi,j+1, and Fi,j, for 
1 ≤ i ≤ n-1 and 1≤ j ≤ m-1, be the average of the 
face defined by Vi,j, Vi,j+1, Vi+1,j Vi+1,j+1. This is 
shown in Fig.8 where n=m=4. 
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Fig.8  Representation of points defining a RATS 
surface 

In Savva and Clapworthy [Savva98] and Savva 
[Savva00] it is shown that in the RATS method, the 
new face points Fγ are the average of all the new 
vertex points Vγ corresponding to the old points 
defining the face, and the new edge points Eδ are the 
midpoints of the two new vertex points Vγ 
corresponding to the old vertices defining the edge, 
as can be seen in Fig.2. Wireframe models are 
therefore better visualised if the Fγ and Eδ points are 
not displayed, as shown in the two surfaces displayed 
in Fig.7. Comparing Eq.4 – Eq.19 with the example 
given in this section and shown in Fig.8, it can be 
seen that the points defined in this section represent a 
RATS set of new points. 

Since Ei,j and jiE ,′  are the midpoints of the edges, 
the RATS new vertex points corresponding to them 
will represent the Catmull and Clark new edge 
points. Similarly, the RATS new vertex points for Fi,j 
correspond to the Catmull and Clark new face points. 
This is ill ustrated in Fig.8. Calculating these points 
for E2,2, F2,2 and V2,2 that are of type Fγ, Eδ, and Vγ 
points respectively, yields the equations that follow. 
Note that the E and E ′  points are treated identically 
since they are the same type of points. 
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From the definition given in the beginning of this 
section, it is known that 
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Substituting the above equations in Eq.20 – Eq.22 
results in Eq.23 – Eq.25. 
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Comparing Eq.24 – Eq.26 to Eq.1 – Eq.3 it can be 
seen that the resulting new face, new edge and new 
vertex points are the same as in the Catmull & Clark 
B-spline recursive method. Therefore, the inner 
surface produced by RATS is identical to a B-spline 
surface. However, RATS produces an additional set 
of patches at the border of the surface, comparing to 
the Catmull and Clark method. 
 
 
4.  SUMMARY AND CONCLUSIONS 
 
The RATS (Recursive Arbitrary Topology Splines) 
method defines surfaces with an arbitrary topology 
of control points. It is a recursive spline method and 
is derived from the midpoint subdivision of Bézier 
splines. 

The Catmull and Clark method is the most popular 
recursive spline method for defining surfaces based 
on an arbitrary topology of control points. The two 
methods are in fact related. This paper derives this 

relationship: The Catmull and Clark surface is 
identical to the inner RATS surface. 

However, the RATS method generates an additional 
set of patches describing the border of the surface. 
Thus, the RATS surface is fitted nearer to the control 
mesh border than the Catmull & Clark surface, 
giving a better definition of the control mesh. 
 

REFERENCES 

[Ball88] Ball A.A. and Storry J.T. Conditions for 
tangent plane continuity over recursively 
defined B-spline surfaces. ACM Transactions 
on Computer Graphics, Vol.7, No.2, pp.83-
102, 1988 

[Catmu78] Catmull E. and Clark J. Recursively 
generated B-spline surfaces on arbitrary 
topological meshes. Computer Aided Design, 
Vol.10, No.6, pp.350-355, 1978 

[Chaik74] Chaikin G. An algorithm for high speed 
curve generation. Computer Graphics and 
Image Processing, Vol.3, pp.346-349, 1974 

[Doo78] Doo D. and Sabin M. Behaviour of 
recursive division surfaces near extraordinary 
points. Computer Aided Design, Vol.10, 
No.6, pp.356-360, 1978 

[Halst93] Halstead M., Kass M. and DeRose T. 
Eff icient, fair interpolation using Catmull -
Clark surfaces, SIGRAPH, Proc Computer 
Graphics, 1993, 36-44  

[Loop90] Loop C.T. and De Rose T. Generalized B-
spline surfaces of arbitrary topology. Proc 
SIGGRAPH’90, Computer Graphics, Vol.24, 
No.4, pp.347-355, 1990 

[Nasri87] Nasri A.H. Polyhedral subdivision 
methods for free-form surfaces, ACM 
Transactions on Graphics, Vol.6, pp.29-73, 
1987 

[Savva96] Savva A. Modelli ng articulated figures on 
arbitrary meshes of control points, PhD 
Dissertation, Univ. of North London, 1996. 

[Savva98] Savva A. and Clapworthy G.J. A 
Recursive Approach to Parametric Surfaces 
Containing Non-rectangular Patches, 
International Conference on Information 
Visualisation, IEEE Press, pp.300-306, 
London, July 1998 

[Savva00] Savva A. and Clapworthy G.J. A Spline 
Method for Figure Modelli ng, IASTED Inter. 
Conference in Modelli ng and Simulation, 
pp.179-183, Pittsburgh, USA, May 2000 

 


