
VISUALISING THE EXECUTION OF CONCURRENT OBJECT-
ORIENTED PROGRAMS DYNAMICALLY USING UML

Hugo Leroux and Chris Exton

School of Network Computing
Monash University, Mc Mahons Road,

Frankston 3199
Australia

Email: hugo.leroux@monash.edu.au , exton@monash.edu.au

ABSTRACT

Understanding the intricacies behind concurrency within object-oriented programming languages has
always been a challenge for undergraduate students. This is particularly true since both are complex
issues in their own rights. Visualisation, when used adequately, can be of tremendous assistance in
expediting comprehension of such complex issues. The aim of this paper is to discuss the potential of
UML, as a medium within visualisation, to assist the comprehension of the execution of a concurrent
object-oriented program. We thus investigate the qualities of UML as a language; discuss some of the
issues associated with concurrency and Java and finally discuss the design of our visualisation tool.

1. INTRODUCTION

Concurrent object-oriented programming is hard.
Object-oriented programming and design introduces
non-trivial concepts such as inheritance,
encapsulation, abstraction and polymorphism.
Concurrency, on the other hand, brings forth new
concepts such as deadlocks, safety and liveness
issues and interleaving concepts during different
executions of a program. Students often have
difficulty in grasping the different concepts when
concurrency and object-orientation are combined.
This is particularly so because many of the basic
mechanisms that are present in non-concurrent
programming do not migrate well in a concurrent
programming setting. Stepping through a source
code, for example, is insufficient a means to
understand the execution of a program, since the
actual sequence of events is highly dependent upon
the run-time scheduler.

When first exposed to a concurrent
program, the majority of students seem to have
problems understanding the interleaving of threads
during execution. Synchronisation is another
problematic issue. They very often find it
challenging to determine which data item should be
synchronised and which shouldn’t, with the result

that they either synchronise too much or too little.
As described in a detailed study of student’s
submission of multi-threaded programs, Choi and
Lewis [Choi00a] concluded that detecting an error in
a concurrent program is hard. In their study, they
found that 56 out of 180 submissions contained
errors although most of them produced correct
outputs. And, as they stated, many of these errors are
often undetected during the marking process due to
lack of time and the rarity of occurrence of the
errors. One implication of the latter is that due to
lack of feedback on the error, the student believes
that his code is correct. This can have a exponential
effect in later, more complex programs, where bugs
can be much harder to uncover.

When Dijkstra stated in 1968, that our
intellectual powers are rather geared to master
static relations and our powers to visualise
processes evolving in time are relatively poorly
developed [Dijks68a], he was indirectly advocating
for the integration of visualisation tools within
programming environment, to aid program
comprehension.

The main objective of this paper is to select
a suitable technique for representing an executing
concurrent program in an intuitive fashion that

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace at University of West Bohemia

https://core.ac.uk/display/295568395?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:hugo.leroux@monash.edu.au
mailto:exton@monash.edu.au

highlights the concurrent and dynamic aspects of
such program whilst retaining an appropriate level of
abstraction. The Unified Modelling Language
(UML) holds great promise in catering for our
objective. It is a simple, well-established and widely
available language. In this paper, we will
investigate the effectiveness of UML as a medium
for our visualisation tool and propose a design based
upon it.

The paper is organised as follows. Section 2
looks at justifications of UML as a suitable medium
for a visualisation tool. Section 3 discusses some of
the issues relating to concurrency and Java. And
finally, section 4 outlines the design of the
visualisation tool.

2. JUSTIFICATION OF UML

Our first motivation in the choice of UML as a
concept for dynamic visualisation of executing
concurrent programs is popularity. UML is widely
available and accepted as a mature language both by
the software industry and educators. Furthermore,
most of the students undertaking a concurrency
subject should already be familiar with the basic
concepts in UML, such as Use Case diagrams,
Sequence diagrams and Class diagrams. Should it
happen that the students are not familiar with it, we
believe that this subset of UML is fairly easy to
learn with a gentle learning curve.

Our second motivation is ease-of-use.
Typically students have to learn and understand
concurrency issues in a short period of time. As
such, they will not be naturally inclined into learning
any new concepts with regard to using a
visualisation tool. Furthermore, they will most
probably use UML during their analysis and design
stages, so it makes sense to maintain the same
interface for visual execution representation. This
should, we believe, improve acceptance of the tool
as a visual aid to program execution.

Our third motivation stems from the mixed
results that various algorithm animation and
visualisation tools in the literature have received.
Hendrix et al. [Hendr00a] concluded that effective
software visualisations can provide measurable
benefits in program comprehension. Indeed their
study showed that Control Structure Diagrams have
a positive effect on program comprehensibility. On
the other hand, Stasko et al. [Stask93a] and Byrne et
al. [Byrne96a] do not share the same view. Stasko et
al. believe that algorithm animation is not effective
unless accompanied by comprehensive motivational
instructions. They also advocate for an active
learning process where the student actually builds
an algorithm animation, as opposed to a passive
learning approach of watching the animation.

Fourthly, we aim at providing a tool that is
effective for use by students. In this respect, one of
the authors of this paper defines four overlapping
guidelines that need to be addressed: abstraction,
representation, emphasis and navigation
[Exton00a].

Abstraction refers to the inclusion or
exclusion of details from the underlying program to
expedite the student’s comprehension of it. By
changing the emphasis on the same data using the
same level of abstraction, we are able to highlight
some particular runtime scenarios in the execution.
How we present the data, thus representation,
directly impacts comprehension of the underlying
program and interest in the tool. In essence,
navigation is an amalgamation of the above three
guidelines, where there is a trade-off between
abstraction, emphasis and representation to form the
equation.

We have identified two components of
UML to serve the purpose of our visualisation tool.
These are the sequence and class state diagrams.
Before we commit to explaining how they both fit
into our model, we should elaborate further on some
problems relating to concurrency and Java, in
particular. This serves two purposes; firstly, it allows
us to identify what are the requirements of a
visualisation tool and the issues to be addressed;
secondly, it acts as a blueprint to evaluate the
correctness and effectiveness of our tool.

3. ISSUES WITH CONCURRENCY AND
JAVA

The migration from a sequential environment to a
concurrent one is not without its fair share of
problems. Choi and Lewis [Choi00a] have identified
many synchronisation problems in their study. We
analysed them and together with our own
understanding of concurrency issues, we have
established three broad categories of concurrent
errors and behaviours. These are safety, liveness and
concurrent object-oriented anomalies as discussed in
[Exton00b].

3.1 Safety

A safety property asserts that nothing bad ever
happens during execution. The simplest way to
achieve safety is to avoid changing the state of the
object during execution. However this seriously
limits the functionality of a program. The objective
is to have controlled state changes.

Safety is an issue that is not fully
comprehended by students. Choi and Lewis
[Choi00a] found that 23 out of 56 errors were data
race errors. These errors occur as a result of the

absence or improper use of locking mechanisms on
shared data. They uncovered eight different types of
data race errors. Data race errors may go undetected
on the student’s computer but may appear at the first
execution on a different platform. This is due to the
run-time scheduler on the student’s machine
generating a different sequence of interleaving of
threads as on the new platform.

3.2 Liveness

A liveness property states that something good
eventually happens. Liveness problems are often
harder to detect than safety problems. Lea [Lea97a]
identifies four interrelated senses in which one or
more threads can fail to be live: contention,
dormancy, deadlock and premature termination.

Contention or starvation occur when a
thread fails to run because other threads are
monopolising the processor. Dormancy occurs when
a non-runnable thread fails to become runnable. In
Java, dormancy is often the result of a wait() not
being followed by a notify(), thus blocking the
running of the thread during the entire program
execution. It has been noted [Exton00b] that the
unsuspecting student bypasses the error by forking a
new thread object each time that the operation is
required, thus achieving the correct output in a very
inefficient manner.

Deadlock occurs when two or more threads
block each other while trying to acquire a resource
that is locked by the opposing thread. Choi and
Lewis [Choi00a] found 11 occurrences of deadlocks
among the 56 incorrect submissions. Premature
termination is often undetected as other threads
continue executing, thus helping to hide the error.

3.3 Concurrency and Java

Inheritance is one of the most powerful constructs in
Java. As stressed in [Briot98a], it is natural to use
inheritance to specialise synchronisation
specifications associated with a class of objects.
However, the use of inheritance with
synchronisation can lead to a redefinition of non-
trivial classes. This phenomenon, named the
inheritance anomaly, was introduced by Matsuoka
and Yonezawa [Matsu93a].

Furthermore, as described in [Exton00b],
the result of interacting concurrency with exception
handling mechanisms can lead to complex problems
for the programmer. While the semantics of
exception handling are well defined and clearly
understood for sequential programs, such is not the
case in a concurrent environment. If an exception is
raised during the execution of a thread in Java and
the thread fails to handle the exception, then the

thread is abandoned without further notice. And
since it is a concurrent program, execution
continues, helping to mask the error. Unless the
student is very thorough in his/her design, this type
of error can go undetected.

As we have outlined above, in addition to
traditional safety and liveness issues, concurrency in
Java brings forth new challenging concepts to the
student. It is our belief that ignoring these issues in
the design of a visualisation system is a serious
lacking.

4. DESIGN OF OUR VISUALISATION TOOL

Exton and Kolling [Exton00b] mention two aspects
that need to be addressed when designing a software
system: the purpose of the system and its intended
user group. Similar to them, our purpose is
educational and our target group are students.

As mentioned in section 2, our main aims
for the visualisation tools are simplicity, ease-of-use
and effectiveness due to the fact that students have
limited time to learn new concepts and will most
probably lose faith in our tool, if we impose a steep
learning curve on them to get familiar with the tool.

UML addresses the first two concepts, and
it is our belief that it can also address the third one.
We begin by observing the properties of sequence
diagrams and we illustrate our discussion with an
example.

4.1 Sequence Diagram

Sequence diagrams show the explicit sequence of
interaction between objects. They also show the
sequence of messages by means of which the objects
communicate. In particular the time dimension is
emphasized. However, they do not show the
associations among the objects.

A sequence diagram has two dimensions:
1. the vertical dimension represents time, and,
2. the horizontal dimension represents the

different objects.

Time proceeds from top to bottom and if
desired, the axes can be interchanged.

The description that follows has been
adapted from [OMG99a, Emme00a]. Objects in the
sequence diagram are shown as rectangles. The
annotation in the rectangle consists of an optional
object name and a type identifier, separated by a
colon. To differentiate the objects from the classes,
which are also represented as rectangles in UML, the
annotation of objects is underlined. Objects are
shown as a vertical dashed line called the “lifeline”

Sequence diagram of Ornamental Garden
Figure 1

that indicates their lifetime. If the object ceases to
exist, then the destruction point is shown by an “X”
at the bottom of the lifeline.

Messages sent from one object to the next
are shown as horizontal arrows. There are various
flavours of arrows depending on the type of
communication. An arrow with a filled solid
arrowhead shows a local message implemented as
procedure call. An arrow with a stich arrowhead
shows a synchronous message. An arrow with a
half stick arrowhead indicates an asynchronous
communication between the two objects. A dashed
arrow with a stick arrowhead indicates a return
from a procedure call. Messages are ordered in
time. In a concurrent system, a full arrowhead
shows the yielding of a thread of control and a half
arrowhead shows the sending of a message without
yielding control.

A rectangular stripe along the lifeline
represents the activation of an object. Activation
corresponds to a period when the object performs
an action, either directly or by sending a message to
another object. The top of the stripe indicates the
beginning of activation, while the bottom shows
when the object is deactivated.

Screen caption of Ornamental Garden
Figure 2

Fig. 1 depicts the Sequence diagram for
the Ornamental Garden program [Magee99a] (see
Fig. 2). This program is useful in demonstrating
the interleaving of events and modelling mutual
exclusion. As described above, the rectangles show
the objects executing in the program. We have
omitted the calls to the AWT library, so as not to
blind the reader with too much unnecessary detail.

A sequence diagram, as described above,
can be used during program execution to show the
interleaving of events in the program. Deadlocks
and livelocks can be identified by analysing the
time sequencing of messages between objects and
following the responses.

Premature termination of a thread together
with its cause can be detected by keeping track of
the messages that lead up to the scene of the crime.
It should also prove useful in the preliminary
detection of data race condition by following the
sequence of actions that are being performed on an
object. However, it is our belief that data race
conditions are much better handled by state
diagrams.

4.2 State Diagrams

State diagrams model the dynamic behaviour of
objects. They describe the possible sequence of
states and actions through which the object can
proceed during its lifetime as a result of reacting to
discrete events. A state is defined as a condition
during the life of an object during which it satisfies
some condition, performs some action or waits for
some event.

State diagram for the Ornamental Garden program.
Figure 3

State diagrams are represented in UML as
rounded rectangles (to represent the states) and
directed edges (to represent the transitions between
states). The annotation for the transition has two
optional parts separated by a slash, as shown below.

Action-label ‘/’ action-expression

The action-label specifies a condition that
must be met in order for the transition to be
performed. The action-expression defines the
operation to be executed during the transition.

UML specifies two types of states: simple
state and composite state. A composite state
comprises of two or more sub states, which may be
sequential or concurrent. There are no restrictions
with regard to the number of nested component
states within the state diagram.

Transition to and from concurrent states
may have multiple source and target states. The
default state of a composite state is depicted as an
unlabelled transition originating from a filled circle.

Figure 3 shows the state diagram for the
Counter state. The Counter object can transit from
one of three states: reading, incrementing and
writing. The two threads executing inside the
counter object could either be reading or
incrementing the value. Eventually, they will write
the value on screen, although in the unsynchronised
version, the exact sequence of these events is
unknown, resulting in the scenario in Fig. 2.

The state diagram provides an alternative
view to the sequence diagram, while maintaining
the same level of abstraction. By analysing the
transitions that the states of the respective objects
go through, one can appreciate the nature of the

problem, should a deadlock or live lock occur
inside the program. We don’t believe that state
diagrams are very efficient at describing the
interleaving of events since there is no notion of
time sequencing mentioned. However, we believe
that data race conditions can be detected by
analysing the state of the object and its attributes
prior to a transition being executed on the object.

5 CONCLUSION

The introduction of concurrency and object-
orientation into the undergraduate curriculum has
been regarded, by many researchers, as challenging.
Students face the overwhelming task of learning
and understanding the complex issues associated
with both concepts in a very short period of time.

Research in visualisation aims at reducing
their burden by providing effective and efficient
tools to assist and interact with them to expedite
their understanding of these concepts. However,
there has been mixed success from existing tools in
achieving this goal.

In this paper, we have presented research
in the design of a visualisation tool based on UML
to assist students. We have also outlined some
issues related to the learning and teaching of
concurrent object-oriented languages, such as Java.
Work is currently under way to implement our
visualisation tool. The main objective of this tool is
to provide a simple, yet powerful tool to
dynamically represent the execution of concurrent
object-oriented programs.

REFERENCES

[Briot98a] J-P. Briot, R. Guerraoui, K-P. Lohr,
Concurrency and Distribution in Object-Oriented

Programming in ACM Computing Surveys, Vol.
30, No. 3, September 1998.

[Byrne96a] M. D. Byrne, R. Catrambone and J. T.
Stasko, Do Algorithm Animations Aid Learning?,
Georgia Institute of Technology, Technical Report
GIT-GVU-96-18, August 1996.

[Choi00a] S.-E. Choi and E.C. Lewis, A study of
Common Pitfalls in Simple Multi-Threaded
Programs, in SIGCSE 2000 Proceedings, ACM,
Austin, Texas, pp. 325-329, March 2000.

[Dijks68a] E. W. Dijkstra, GO TO statement
considered harmful, Communications of the ACM,
Vol. 11 No. 3, pp. 147-148, March 1968.

[Emme00a] W. Emmerich, Engineering Distributed
Objects, John Wiley & Sons, pp. 35-42, 2000.

[Exton00a] C. Exton, Dynamic Visualisation of
Concurrent Object-Oriented systems, in
Proceedings of the IEEE International Workshop
on Advanced Learning Technologies
(IWALT2000), New Zealand, December 2000, pp
294-295.

[Exton00b] C. Exton and M. Kolling, Concurrency,
objects and visualisation, in Proceedings of ACM
SIGCSE Fourth Australian Computing Education
Conference (ACE2000), Melbourne, December
2000, pp 109-115.

[Hendr00a] T. D Hendrix, J. H. Cross, S.
Maghsoodloo and M. L. McKinney, Do
Visualizations Improve Program
Comprehensibility? Experiments With Control
Structure Diagrams for Java, in SIGCSE 2000
Proceedings, ACM, Austin Texas, pp. 382-386,
March 2000.

[Lea97a] D. Lea, Concurrent Programming in
Java: Design principles and patterns, 2nd Edition,
Addison-Wesley, 1999.

[Magee99a] J. Magee and J. Kramer, Concurrency:
State Models & Java Programs, John Wiley &
Sons, pp. 64-76, 1999.

[Matsu93a] S. Matsuoka and A. Yonezawa,
Analysis of Inheritance Anomaly in Object-
Oriented Concurrent Programming Languages, in
Research Directions in Concurrent Object-
Oriented Programming, MIT Press, pp. 107-150,
1993.

[OMG99a] Object Management Group, UML
Notation Guide Version 1.3.

[Stask93a] J. Stasko, A. Badre and C. Lewis, Do
Algorithm Animations Assist Learning? An
Empirical Study and Analysis, in Proceedings of
INTERCHI’93 Conference on Human Factors in
Computer Systems, Amsterdam, pp. 61-66, April
1993.

	Hugo Leroux and Chris Exton
	ABSTRACT

