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Abstract
This thesis deals with methods that could provide additional information for physicians

when deciding about the most appropriate treatment for patients with ischemic strokes.

The thesis proposes a method for automated infarction core delineation based on combina-

tion of angiography and non contract computed tomography examinations. Such perfused

blood volume mapping has advantage in whole brain coverage. The volume of the infarc-

tion core area is the crucial factor for thrombolytic treatment indication. Such information

is not yet available for physicians. Patients who exceed certain level of the infarction core

volume should not be indicated for thrombolytic treatment because of high risk of further

bleeding.

Keywords: automated infarction core delineation, perfused blood volume mapping, com-

puted tomography, infarction core volume, ischemic strokes
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Abstrakt
Tato práce se zabývá návrhem metody, která by mohla lékařům poskytnout dodatečné in-

formace při rozhodování o nejvhodnější léčbě pro pacienty s ischemickou cévní mozkovou

příhodou. Navrhovaná metoda je automatická a dokáže označit nekrotickou tkáň na sním-

cích, které vznikly kombinací angiografického a nekontrastního vyšetření počítačovou to-

mografií. Tato kombinace dokáže pokrýt oblast celého mozku. Objem nekrotické tkáně

je kritickým faktorem pro aplikaci trombolytické léčby. Takový parametr nemají lékaři

v současné době k dispozici. Lidem, kteří přesáhnou určitou hodnotu objemu nekrotické

tkáně, by neměla být aplikována trombolytická léčba, neboť je vysoké riziko dalšího krvá-

cení.

Klíčová slova: automatická detekce nekrotické tkáně, perfúzní objemové mapy, počítačová

tomografie, objem nekrotické tkáně, ischemické cévní mozkové příhody
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Chapter 1

Introduction

A healthy man has a thousand wishes, a sick man only one.

Indian saying

Human health is for everyone very important. We often realize this just after we get

sick or when some accident happens to us. Hand by hand with the time there come

improvements of the quality of the health care. Technological development brings new

instruments with more possibilities and better precisions. Nowadays instruments provide

such information that its correct evaluation and understanding is challenge of current

research.

1.1 Motivation

Acute ischemic strokes are the third leading cause of death [43] and the first leading cause

of disability in population over 60 years old. Early patient diagnosis significantly improves

the prognosis. Thrombolytical treatment can be applied only to patients who did not

exceed certain level of the necrotic tissue volume. There is still no satisfactory method

which is able to evaluate this volume. This work introduces automated method for this

purpose using commonly performed examinations. The proposed method can become as

another factor which can help physicians with treatment decisions.

1.2 Declaration

This work was created in cooperation with The University Hospital in Pilsen.
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1.3 Thesis structure

This document is divided into several chapters. The Chapter 2 mentions basic description

of strokes, possible instruments for their investigation and it also summarizes the generally

performed examination using the computed tomography. Next are described studies deal-

ing with the examination results processing and the method of perfusion blood volume

mapping is introduced. Next follows description of possible image processing methods

while some of them are used in the further chapters. The Chapter 3 specifies the objective

of the thesis and Chapter 4 describes the available material and its features. There are

presented also methods used for obtaining manual delineation patterns provided by two

physicians. The Chapter 5 is dedicated to segmentation adjustment step which prepares

the source images for further processing. The Chapter 6 uses several methods for infarc-

tion core detection and it also evaluates the matches according to physicians’ patterns.

It also shows that these methods are not strong enough to provide satisfactory results

using the perfused blood volume maps. The Chapter 7 proposes a method which is aimed

for the perfused blood volume maps and it is able to delineate the infarction core. In

the Chapter 8 the optimization process for the proposed method is described and the

optimal parameters are found. Results evaluation is presented and compared to other

methods and also to the mutual match between two physicians. In conclusion chapter

(Chapter 9) is summarized the proposed method and its advantages and disadvantages

are presented. Appendix A presents detailed tables covering individual matches of differ-

ent methods according to specific anonymized patients of the used material. There are

presented different characteristics like settings of the methods, match descriptions in a

form of sensitivity, specificity and Matthews correlation coefficient, delineated volumes,

its maximal values, etc. Appendix B contains figures depicting the individual matches of

different methods according to the two physicians’ manual delineations individually.
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Chapter 2

State of the art

2.1 Strokes

Stokes mean disorder of blood flow in brain. We can dived strokes into ischemic and

hemorrhagic. Ischemic strokes are caused by an obstacle which blocks the common blood

supply. Hemorrhagic strokes are caused by rupture of any of the brain vessels. The

ischemic strokes mean reduction of the blood flow, the hemorrhagic strokes mean leakage

of the blood. This work deals with the ischemic strokes.

2.2 Investigation instruments

There are several instruments which can be used for stroke diagnosis. There are Com-

puted Tomography (CT), Magnetic Resonance (MR) or Positron Emission Tomography

(PET). They all are imaging modalities providing images where value of each point of the

image corresponds to the tissue characteristic at the corresponding place. Only computed

tomography will be further used in this work.

2.2.1 Computed Tomography

Computed Tomography is radiological diagnostic method. It is provided by an instrument

called CT scanner. It is based on X-ray which comes out of the X-ray tube and it is

absorbed by a detectors. Number and position of the X-ray tubes and detectors depend

on the device. The most widely used, the spiral CT type, combine rotation of the X-ray

sources and detectors with moving of the table. The amount of the absorbed radiation

by detectors is connected with the density of tissue which it went through. Complex

mathematical calculations reconstruct final 2D images which all together give 3D volume.

Final images contain information about density in Hounsfield’s units [HU]. Further

more it contains also information like number of rows, number of columns, bits per one
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Object Density [HU]

Water 0

Gas -1000

Bones, iron +1000 till +2000

Calcification 60

Muscles +35 till +50

Gray matter +30 till +40

White matter +25 till +32

Table 2.1: Objects and their densities [HU] ([6])

sample of the density, position of the table, dimensions of one voxel, etc. DICOM format

allows to store all of these information together with the image.

Table 2.1 shows list of some materials and their densities [6].

2.2.2 Magnetic Resonance

Magnetic Resonance is currently considered to be the best imaging method. Its history

starts in 1952 and it has been clinically used since 1973. The principal is different from

computed tomography. Magnetic resonance monitors changes in behavior of nuclei of

atoms when they are exposed to magnetic field and activated by a high-frequency pulses.

There is measured voltage induced by radiofrequency coil. Detailed principle can be found

in [6]. There are acquired two relaxation times - T1 and T2. According to the preferred

relaxation time we distinguish between T1 and T2 weighted images. Final images contain

grayscale voxels. There is no exact mapping between voxel intensities and specific tissue

types. The intensity expresses ratio between water and fat. Magnetic resonance has good

distinction of soft tissues even without need of using contrast material. Also there is not

used any radiation and magnetic filed has not yet been proven to be harmful for human

being. Disadvantages of magnetic resonance is its high operating costs and limitation in

weight of patient, claustrophobia or longer acquisition time [6].

2.2.3 Contrast medium

CT examination uses injection of the contrast material when tracking of the blood-vessels

is intended. After injection of the contrast material the contrast medium is spread through

the blood-vessels. Acquired images indicate density change at the places with the contrast

material. This change depends on the type and the amount of the used contrast material.
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Figure 2.1: CT image sample

Figure 2.2: Comparison of CT and MR images [6]
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There can be used positive or negative contrast medias. The negative ones absorb less x-

ray radiation and the positive ones absorb more. Thus the change on the acquired images

is positive or negative. There are widely used only positive non-ionized contrast material

causing the positive enhancement of the measured density. Application of the contrast

media requires to use correct amount, concentration and flow and the acquisition to be

initiated at the right moment. All these factors reflect slope, duration of the increased

density and also the rate of the increase.

2.2.4 Partial Volume Effect

Some CT images can seem to contain incorrectly measured values. We call it artifacts and

it can be caused for example by movement of the patient, presence of metal objects, wrong

instrument settings, etc. We can minimize presence of some artifacts but with some of

them we must count. Partial volume effect is one the always present artifact. It is caused

by the limited resolution of the instrument. Every voxel of the image corresponds to area

which has some dimensions. Tissue inside this area can vary but the instrument can store

it just as one scalar value. It stores the density as an average density of the area. This

effect is most obvious on borders between two different density tissue types where the

density change is rapid and steep (like bones and soft tissues).

2.2.5 DICOM

DICOM means Digital Imaging and Communication in Medicine. It is an international

standard focused to medical area. It covers several domains like definition of communica-

tion between instruments and other systems like PACS Picture Archiving and Communi-

cation System, definition of data formats, security, etc.

Medical institution which uses the DICOM standard has advantages in new devices

incorporating. DICOM standard also supports visit planning which means that the instru-

ment get a list of planned patients, clinician just selects the correct one from the list and

the instrument automatically stores images to the correct person with no need of manual

identification filling which is often source of mistakes.

There are defined specifications how to exchange imaging documentation. DICOM

images can be stored to different medias and it has the same format for all modality types.

The format consists of attributes and values associated with the attributes. All possible

attributes and their grouping is specified in [24]. Attributes describe patient, institution,

modality and its settings and of course the acquired data.
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Figure 2.3: Intensity changes of a voxel on a perfusion CT [10]

2.3 Stroke investigation

2.3.1 Generally performed examination types

There are generally performed three types of examinations when a patient is admitted into

the hospital with the stroke suspicion. All of them are CT examinations.

Non Contrast CT - NCCT

It is acquired very quickly and it provides the prime information about the stroke location

and its extent. It covers area from the skull-base to the vertex. It contains generally about

30 images with 5 mm thickness.

Perfusion CT - CTP

The most precise tissue state information can be gained by the Perfusion CT examination

type. It uses a contrast material. There is repeatedly acquired the same area monitoring

the inflow of the contrast material, its spreading and outflow. Presence of the contrast

material causes proportional increase of the acquired intensities. For every voxel there

can be depicted the intensity curve mapping changes of intensity in time (Figure 2.3).

This type of examination provides large number of images and their further processing

follows. As an outcome of the perfusion examination there are volumetric maps mapping

characteristics like Cerebral Blood Volume (CBV), Cerebral Blood Flow (CBF), Time To

Peak (TTP), Mean Transmit Time (MTT), etc. The disadvantage of this examination type

is limited width of the scanned area depending on the instruments capabilities. Generally

only around 4 different slices can be acquired at one time. Recently there starts to appear

instruments which are capable of acquiring the whole brain area.
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Figure 2.4: Volumetric Reconstruction Technique (VRT) [10]

CT Angiography - CTA

This kind of examination is acquired after the perfusion one. There is also used contrast

material but instead of the perfusion one there is acquired whole brain area when the

contrast material is saturated in the brain. There are acquired images of around 1 mm

thickness from the vertex to the aortic arch. This type of examination is used for detection

of the blood barriers. The vessels located behind the barrier has a lack of contrast material,

so the intensities remain around the same as without using the contrast material. Images

of the CTA are often displayed as 3D reconstructions using Volume Rendering Technique

(VRT) where the vessels behind blood barrier are not shown at all and thus they are easily

visible for the physicians.

Volumetric reconstructions (Figure 2.4) are created on request of the physician re-

specting all settings like position, viewing angle, etc. Some other parameters specify

resulting image features. You can define density intervals and corresponding colors and

transparency in the resulting image. The user have to define what is desired to be shown

- bone structures, organs, vessel trees, etc. Lighting and shadowing can be also used for

the final image. Depending on the workstation user can further process resulting images

- crop area, subtract different structures, etc.

2.3.2 Changes of brain tissue during ischemic strokes

Acute ischemic strokes mean disturbance in blood supply to the brain. The change of the

blood supply affects the brain tissue. According to severity of the blood supply change we

can classify affected brain tissue into the three following categories [10].
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Figure 2.5: Comparison of the soft tissue window and the bone window [6]

• Olygemia - Reduced blood supply but the tissue still keeps its neuronal function.

• Penumbra - Savable tissue if the blood supply is restored. Neuronal function is
temporarily lost.

• Infarction Core - Necrotic tissue.

Penumbra and Infarction Core are two categories with the most valuable information

for the physicians. Using this information they can make decisions of the best suitable

treatment.

Correct identification of the categories for an ischemic stroke patient is a task for

medical imaging.

2.3.3 Windowing

CT images can contain different types of tissues having different range of Hounsfield’s

units (see Table 2.1). Common CT stores density in 12 bits format. It means about

4000 possible densities. Human eye is capable to recognize only 20 different levels of gray

color [6]. Windowing is displaying method allowing user to focus on the limited gray range

interval while displaying it using the full gray scale (from black to white). User must specify

Window Center - the center density of the interest. And the Window Width - this range

around the Center will be displayed using the full gray scale. Densities out of this window

will be displayed as black or white. Interactive windowing is a tool for physicians allowing

effective CT images interpretation. Complete description of the windowing method can

be found in [24].

For example for displaying bones we use wider windows with width about +1200 to

3000 HU. For soft tissues we must use thinner window like 150 - 500 HU.

2.3.4 Penumbra and Infarction Core identification using Computed To-

mography

In [19] is defined CT protocol for Acute Stroke with tips and tricks for general radiologists.

There are discussed different types of examinations separately. NCCT images should be
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reviewed twice, first with the window (Section 2.3.3) width and level settings approximately

40/20 HU and the second 20/32 HU. CTA images should be reviewed with various window

width and level settings around 25/35 HU but with respecting differences between different

CT scanners and patients. CTP maps can be used for marking penumbra and infarction

core regions using parameters MTT, CBF and CBV parameters. By [39] infarction core can

be marked as combination of elevated MTT, markedly decreased CBF, markedly decreased

CBV (< 2.0 ml·100g−1). However penumbra can be recognized as elevated MTT (> 145%),

decreased CBF and normal or mildly increased CBV. [19] also mentions that there is no

report analyzing usefulness and reliability of these maps in clinical setting.

Other studies [39], [23] evaluate group of patients for finding optimal thresholds and

specifies the most valuable perfusion parameters. [39] contains 130 patients with suspected

acute stroke. NCCT, CTP, CTA and follow-up NCCT and MRI examinations were per-

formed. Examinations were co-registered to each other and also interpolated to have the

same matrix size. MRI images were manually traced for the final infarct volume. ROC

analysis was evaluated for a set of threshold values on MTT maps, relative MTT, absolute

TTP, realitve TTP, absolute CBF, relative CBF, absolute CBV and relative CBV maps.

Relative maps are maps in percentage of the values in the contralateral normal hemi-

sphere. [39] concludes that infarction core and penumbra is optimally differentiated by

combination of relative MTT and absolute CBV parameters. Infarction core is described

as absolute CBV < 2 ml·100g−1 and penumbra is described as mismatch between abso-

lute CBV 2.0 ml·100g−1 and relative MTT with a threshold at 145%. [39] also says that

the larger infarction core (80 ml of the infarct volume) the higher is the absolute CBV

threshold (2.3 ml x 100g−1).

[23] investigated group of 30 patients. They acquired admission NCCT, CTA and

CTP and follow-up NCCT. There were manually outlined infarct ROI on follow-up NCCT

and superimposed on admission CTP images and also outlined contralateral area. Sta-

tistical analysis was performed with following results. CBF in infarction core 13.3±3.75
ml·100g−1·min−1, in penumbra 25.0±3.82 ml·100g−1·min−1. CBV in infarction core 1.12±0.37
ml·100g−1, CBV in penumbra 2.14±0.43 ml·100g−1 and CBV in contralateral area 1.78±0.30
ml·100g−1. [23] shows that CBF and CBV maps can be used for detection of the infarction

core.

2.4 Perfused Blood Volume Mapping

CTP technique is often limited by the instrument in the extent of the scanned area thus

perfusion maps show parameters only for the preselected locations of the brain. Subtrac-

tion of NCCT from CTA source image provides information about local enhancement.

This enhancement caused by contrast material depends on the actual cerebral blood vol-

ume and on quantity of the contrast material that reaches the tissue. That is why resulting

maps are called perfused blood volume maps (PBV) [33]. The CBV maps of the CTP ex-
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amination are constructed from a serie of source images tracking the spreading of the

contrast material while the PBV maps use only two values - density with and without the

contrast material.

Construction of the perfusion blood volume maps of the brain was introduced in [15]

on white rabbits. There were acquired NCCT and CTA images and their subtraction

was performed. Equation 2.1 defines formula for computing fractional voxel blood volume

which can be converted into absolute volume [ml·100g−1] by Equation 2.2.

%CBV = 100 · ∆HUbrain

∆HUblood

(2.1)

CBV =
∆HUbrain

∆HUblood

·Vvoxel·N (2.2)

For correct evaluation of the equations 2.1 and 2.2 we need to define ∆HUbrain,

∆HUblood, Vvoxel and N . Major intracranial vessels were carefully outlined and only inside

of this ROI was mean ∆HU calculated referring as ∆HUblood. Evaluation of the perfusion

blood volume maps is based on a voxel by voxel basis. Density change of the voxel which

belongs to the brain tissue and does not belong to any major intracranial vessel is referred

as ∆HUbrain. Voxel volume of 1.05 g·ml−1 was used and N is number expresses count of

voxels in 100 g of the tissue.

Some commercial softwares (like Siemens - syngo Neuro PBV ) are able to calculate

perfused blood volume maps. Study [40] on a group of 48 patients with acute ischemic

stroke evaluates the predictive value of perfused blood volume maps for finding perfu-

sion abnormalities. Perfusion blood volume maps abnormalities were visually found and

manually marked. CTP examination was also performed. On TTP maps was manually

outlined area of perfusion abnormalities and only this area was used in CBV maps for

infarction core delineation based on thresholds of study [39] (2.0 ml·100g−1). Study [40]

found a strong correlation between the extent of the perfusion abnormalities in perfusion

blood volume maps and the infarct core of CBV maps. Follow-up examination were not

assessed.

Study [17] can be classified also as a perfused blood volume mapping since all mea-

surements are based on analysis of NCCT and CTA examinations. On the follow-up

examinations of group of 28 thrombolysed patients were manually outlined infarcted ar-

eas. These areas were transferred to the NCCT and CTA examinations and the boundaries

parrallel to the follow-up NCCT infarction area in the distance of 5 mm were drawn re-

sulting in three boundaries - core infarction, inner and outer boundary. Areas of the

infarct core and the inner band were also reflected about the midline to the contralateral

nonischemic hemisphere. Contrast enhancement between NCCT and CTA was reported

in each area and it was expressed as a percentage of ischemic enhancement according to

the contralateral enhancement referring as normalized pCBV. Statistical analysis shown

following values: 24.5%± 2.3 (infarction core), 36.3%± 2.4 (inner band), and 72.1%± 2.4

(outer band).
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Figure 2.6: Example of a histogram

2.5 Image processing

Medical images acquired on a CT device are stored as a raster images using mostly DICOM

format. One examination consists of many 2D source images were also descriptive features

of the examination are stored. Whole examination can be considered as a 3-dimensional

matrix with predefined origin, axes orientations and a spacing definition. Dimensions of

the matrix depend on the instrument capabilities. Typical dimensions of one 2D image

are 512x512 and the third dimension depends on the examination type and instrument

settings. There are typically stored gray-scale values using 12 bit depth.

Image processing deals with processing of images in order to satisfy specific purpose.

Depends on the purpose and input images we can choose suitable methods for the pro-

cessing.

2.5.1 Histogram

One of the basic image processing method is a histogram calculation. The histogram of

the image expresses frequencies of intensities in the image. It is often depicted in a chart

where the horizontal axis means intensity and the vertical axis means frequency (counts).

We can define the histogram as a vector of the frequencies of the corresponding intensities.

We can display histogram for example as shown in the Figure 2.6.

2.5.2 Thresholding

Thresholding is another basic method identifying the image intensities according to a

threshold value. Depends on our needs we can be interested only in intensities lower than

a threshold or upper than a threshold value. Combining these two approaches we can also

identify intensities between two threshold values. If i is an intensity of the image and T
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Figure 2.7: Prewitt’s operator

is a threshold value then the thresholding can be described by Equation 2.3 [42] where L

means values equal or below the threshold and H means higher values.

i′ =















L, when i < T

H, when i ≥ T

(2.3)

2.5.3 Convolution

Convolution is a special combination of two functions. We can define image as a function

I(x). Another function h(x) is a convolution kernel and the convolution is expressed as

Ii,j ∗ hi,j . We can consider just a discrete way of convolution since the image is divided
into pixels (or voxels) which is not a continuous signal. The goal of the convolution is to

take the convolution kernel, move it step by step over all pixels (or voxels) of the image

and evaluate resulting value for every pixel (voxel) as a sum of multiplications of all the

corresponding pixels (or voxels) of the image with the corresponding kernel function value

as shows Equation 2.4 [42].

I ′i,j = Ii,j ∗ hi,j =
k
∑

x=−k

k
∑

y=−k

Ii+x,j+yhi+x,j+y (2.4)

The example of a convolution kernel can be Prewitt’s operator (Figure 2.5.3) for edge

detection. It evaluates derivation in a vertical direction. Edge is defined as a high value

of the derivation.

2.5.4 Noise reduction

Images often contain some level of noise which makes the image processing more difficult.

Such noise can be characterized by sudden intensity change and it can be interpreted by

different kind of methods incorrectly like edges. The noise reduction methods are often

used for pre-processing the images in order to reduce the noise and prepare the image for

the following processing.
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Figure 2.8: The example of mean smoothing, evaluation of the mean value from the

neighborhood. [18]

Figure 2.9: The example of median smoothing, evaluation of the median value from the

neighborhood. [18]

Mean filtering

Mean filtering reduces the noise which can be characterized by sudden change of intensity

by using average value of its neighborhood. For this method we must define the dimensions

of the neighborhood and then on a voxel by voxel basis we can evaluate the average value

of the neighborhood for all voxels and consider these mean values as a resulting image

with the reduced noise.

Median filtering

Median filtering is a method for noise reduction similar to the Mean filtering. It also uses

the neighborhood voxels but instead of evaluating the mean values it looks for the median

values. The advantage of this approach is that it is not sensitive to extreme values which

could influence the mean values.

The disadvantage of the median filtering is that with growing dimensions of the neigh-

borhood it grows also the processing time because of the required sorting of the neighbor-

hood values for each voxel.

Gaussian filtering

Gaussian filtering in opposite of previous methods tends to prioritize the nearer voxels. The

method uses again the local neighborhood but all of the voxels in the local neighborhood

gets a weight. The closer the voxel is to the central voxel the higher weight it has. The

exact weight mapping is given by the Gaussian function which with the mean value µ=0

and optional variance σ2 looks like:
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f(x) =
1

σ
√
2π

e−
x2

2σ2 (2.5)

The size of the required nearest neighborhood is proportional to the used variance σ2

and for the implementation purposes it can be reduced by setting maximum kernel width.

This kind of smoothing can be also performed using the convolution method.

Edge preserving smoothing

All previous methods are based on processing of the local neighborhood and the resulting

(smoothed) values are computed as mean, median or using the gaussian function weighted

values. All these methods are not edge preserving because when the edge is present, these

methods make the edge thinner or thicker because the steep change of the intensity at the

edge is blurred. Using the meaning method this significant change is averaged with the

normal neighborhood values.

Another approach was introduced by Perona and Malik in [26]. Anisotropic diffusion is

connected with the heat equation which single slice solution is Gaussian smoothed image

while the original image is taken as the initial condition [18]. The heat equation looks like

[18].

∂g(x, y, t)

∂t
= ∇ · ∇g(x, y, t) (2.6)

The original image to be denoised is expressed by g(x, y, 0) and the g(x, y, t) is a

convolution of the original image with the gaussian function with the standard deviation

σ =
√
2 · t.

The anisotropic diffusion introduces conductance (function c(x)) which limits the

changes at edges by reducing the smoothing influence on the high gradient magnitudes.

∇ · ∇g(x, y, t) = ∇ · c(|∇g(x, y, t)|)∇g(x, y, t) (2.7)

Method called Gradient Anisotropic Diffusion defines the conductance as [18]:

c(x) = e−(
||∇U(x)||

K
)2 (2.8)

This equation reduces the smoothing at places with the higher magnitude of the gra-

dient at each voxel which can be adjusted by the parameter K.

The numerical solution of the differential equation requires three parameters: conduc-

tance, time step and number of iterations. Typical values differ for 2D and 3D images.

For 2D images - time step: 0.25, number of iterations: 5. And for 3D images - time step:

0.125, number of iterations: 5. The conductance parameter has typically values between

0.5 and 2.0. The lower the parameter is the stronger edges are preserved and vice versa.
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In [18] we can find another similar method called Curvature Anisotropic Diffusion

which we can express as:

∇ · ∇g(x, y, t) = |∇g(x, y, t)|∇ · c(|∇g(x, y, t)|) ∇g(x, y, t)|∇g(x, y, t)| (2.9)

The gradient anisotropic diffusion could in some cases even enhance the edges (negative

diffusion). The advantage of the curvature anisotropic diffusion is that it provides only

the positive diffusion and the conductance parameter influences only the strength of the

diffusion. Usually used parameters for the curvature anisotropic diffusion are by [18] for

2D images - time step: 0.125, number of iterations: 5, conductance: 3.0. And for 3D

images - time step: 0.0625, number of iterations: 5, conductance: 3.0.

2.6 Registration methods

Medical images are provided by different modalities like CT, MR, PET, etc. Each modality

is based on different technology and acquired images differ in meaning of contained infor-

mation. Images can differ in spatial resolution, color or bit depth and other features. Each

modality has its advantages against the others and of course also disadvantages against

the others. Registration methods allow fusion of different examination gaining some added

value. For example MR is very good at displaying soft tissue and CT is better in bones

mapping. By fusion of CT and MR we can get such images which have both of these

advantages. For the fusion the registration process is necessary.

Another fusion example can be taken from Section 2.4. There is described study

[15] processing CTA and NCCT examination. There must be taken into account only

corresponding voxels. This correspondence can be achieved by the process of registration

of both examinations.

The process of registration deals with finding the best fit of one image over the other.

In the other words registration process finds the best transformation which transforms co-

ordination system of one examination into the other maximizing correspondence of trans-

formed voxels. Registration process can be also understand as finding of the common

coordination system of both examinations.

Registration methods can be described by following criteria [1].

1. Dimensionality

• 2D-2D - e.g. registration of single CT images
• 2D-3D - e.g. x-ray image with CT examination
• 3D-3D - e.g. CT with MR

We can also register a time serie images, like source perfusion CT images which track

the spreading of the contrast material. There is repeatedly scanned the same place

during time. Each time serie can be also described as 2D or 3D.
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2. Nature of registration basis

• Extrinsic – based on artificial objects simplifying the registration process.
– Invasive.

– Non-invasive.

• Intrinsic – no artificial objects, registration is based only on the acquired images.
– Landmark-based – there is often required user interaction. It uses locating

of the morphological points, geometrical features, etc.

– Segmentation-based – the registration process is based on anatomical fea-

tures which are segmented from the original images (bones, skin, etc.).

– Voxel property based – methods like Principal Component Analysis (PCA)

when coordination system is found only using the voxels property.

• Non-image-based registration – requires calibrated instruments.

3. Nature of the transformation

• Rigid – only rotations and translation.
• Affine – preserves parallelism.
• Projective – preserves lines.
• Curved – transforms lines to curves.

4. Domain of the transformation

• Global – one transformation for entire image.
• Local – image is divided into parts where each part can have own transforma-
tion.

5. Interaction

• Automatic – no user interaction required.
• Semi-Automatic – user interaction is required.
• Interactive – registration is made by the user.

6. Optimization procedure

• Parameters computed – like PCA method, by mathematical formulas we get
the final registration parameters.

• Parameters are searched for – like finding extremes of a cost-function.

7. Modalities involved

• Monomodal – CT-CT, MR-MR, etc.
• Multimodal – CT-MR, CT-PET, etc.
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Figure 2.10: Typical registration framework [18]

• Modality to model – registration with mathematical model.
• Patient to modality – manipulate the patient for a modality.

8. Subject

• Intrasubject – involved examinations belong to one subject.
• Intersubject – involved examinations belong to different patient.
• Atlas – registration of an examination according to an atlas.

9. Object

• Head.
• Thorax.
• Abdomen.
• Pelvis and perineum.
• Limbs.
• Spine and vertebrae.

2.6.1 Registration framework

Typical registration framework is shown in the Figure 2.10. It consists of the source

images called Fixed and Moving image. The fixed image is during the registration process

without any change. The moving image is transformed by a transform function using a

set of parameters and interpolated. Resulting image is compared with the Fixed image

and the accuracy is evaluated using a metric. Optimizer is responsible for choosing next

iteration parameters.
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2.6.2 Registration methods assessment

Registration methods assessment is not simple. It always depends on the method and

its accuracy criteria. Mostly used registration methods are based on minimization of

cost-function. The cost-function is responsible for evaluation of the precision. As the final

transformation parameters are chosen those which belong to the best cost-function results.

We can not find the only recipe how to globally compare accuracy of the registration

methods.

Study [3] summarizes the methods for registration accuracy measurements. As a first

example we can mention a method measuring the degree of imprecision using metrical units

like millimeters. We can evaluate such values using Root Mean Square (RMS) method

where the distances of the incorrectly registered voxels are measured. Registration methods

capable of such accuracy measuring are for example based on Chamfer Matching principle

[4]. Study [3] mentions that accuracy of 2 mm is generally supposed to be sufficient but it

always depends on a purpose of the registration which can require higher or lower accuracy.

Simple form of registration accuracy measurement can be visual evaluation by a human

eye. [3] mentions that human eye is able to detect imprecision of translation from 2 mm

and imprecision of rotations from 2 degrees. It takes a short time for a human to make

such evaluation.

RMS methods can be used also for registration accuracy measurement based on sig-

nificant points. These points must be easily detectable on both registered images. RMS

method can evaluate the degree of imprecision in absolute values.

Registration methods can be assessed also by a sensitivity for initial parameters which

express the first estimate of the transformation parameters. The other criteria can be a

noise sensitivity.

2.6.3 Maximization of the mutual information metric

The metric method of maximization of the mutual information is capable of multi-modal

registration. The resulting transformation provides the maximal mutual information.

Evaluation of the mutual information is based on information theory and it processes

density histograms of both images.

Lets denote fixed image (reference) as r and moving image as f (floating volume).

Then r(t) and f(s) express the density at the coordinations t and s. The aim of the

registration is to find the parameters α∗ of the transformation T :

α∗ = arg max
α

M(f(s), r(Tαs)) (2.10)

where M expresses the rate of the mutual information which can be expressed as:

I(A,B) ≡ h(A) + h(B)− h(A,B) (2.11)

19



h(A) and h(B) are entropies A and B and h(A,B) is the mutual entropy. Entropy is

defined as:

h(A) = −
∫

p(a)ln p(a) da (2.12)

h(B) = −
∫

p(b)ln p(b) db (2.13)

h(A,B) = −
∫

p(a, b)ln p(a, b) da db (2.14)

The formula for the mutual information can be for discrete cases expressed as:

I(A,B) =
∑

a,b

p(a, b) ∗ log p(a, b)

p(a)p(b)
(2.15)

To evaluate the rate of probability of density a or b, we must make the density his-

togram of both images. p(a) and p(b) correspond to the occurrence probability of the

density a or b in the image A or B. The mutual probability of p(a, b) correspond to the

density a occurrence probability in image A while at the transformed position in the image

B is located the density b.

2.6.4 Optimization

Duration of the registration process depends on several factors. One of the main factors is

the optimization process. When we use iterative registration methods, like minimization of

a cost-function, we must go through all possible combinations of transformation parameters

to find the best one. Optimization can limit this space of all possible combination by

algorithms choosing combination for the next iteration. Such methods uses first or second

order derivative or other geometrical features. Well known optimization methods are for

example methods of the gradient descent. Other methods like Powell’s method [27] can

be also used.

2.7 ROC Analysis

ROC analysis is a method allowing to visualize and tune the classifier performance. The

task of a general classifier is to process input information and make decision on which class

the input belongs to. Classifiers often rely on parameters which have to be carefully set

to make the classifier working correctly. For tuning the parameters we often have a set

of learning data where we exactly know which input should belong to which output class.

Using this set of learning data we can find the most suitable parameters which have the

best precision in classifying. Unfortunately there is often no possibility to set the classifier

parameters to ensure that all learning data will correspond to their class. Since we are

aware that the classifier will not be ideal we must choose those parameters with the best

possible results on the learning set. If we consider the only two-class classifier (yes/no),

we can define confusion matrix and a set of equations as shown in Figure 2.11.
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Figure 2.11: Confusion matrix and metrics definitions [9]

Confusion matrix is formed by the learning-set and results of the classifier with the

actual set of parameters. One confusion matrix is per one set of parameters. The matrix

expresses counts of:

• True positive (TP) - classified correctly as positives.

• True negative (TN) - classified correctly as negative.

• False positive (FP) - classified incorrectly as positive.

• False negative (FN) - classified incorrectly as negative.

Using the counts of TP, TN, FP and FN we can define sensitivity, specificity and also

Matthews correlation coefficient:

sensitivity = tp rate =
TP

TP + FN
(2.16)

fp rate =
FP

TN + FP
(2.17)

specificity = 1− fprate =
TN

TN + FP
(2.18)

Matthews correlation coefficient =
(TP · TN)− (FP · FN)

√

(TP + FP )(TP + TN)(TN + FP )(TN + FN)
(2.19)

ROC graph is a graph where y-axis is a true positive rate (sensitivity) and x-axis is a

false positive rate. ROC graph expresses the performance of the classifier. If we want to

find the best settings for the classifier we have to evaluate tp-rate and fp-rate for different

parameters. If we plot tp-rates and fp-rates for a set of parameters, we can get ROC graph

for example like in Figure 2.12.

When the ROC graph is available for a set of parameters, we can choose the best

one as the best for classifier. The choice should express balance between the tp-rate and
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Figure 2.12: Example of ROC graph [18]

the fp-rate (in other words the balance between sensitivity and specificity). The decision

always depends on use of the classifier. There must be taken into account consequences of

false positives and also consequences of false negatives.

Another criteria how to assess classifier performance is the Area Under Curve (AUC).

This value can be calculated from the ROC graph and the value is always between 0.0 and

1.0. More details about ROC analysis can be found in [9].

Matthews correlation coefficient is a correlation coefficient evaluating a performance

between two classifications. The advantage of this coefficient is that it uses all four numbers

TP, TN, FP, FN providing a better summary of performance than other coefficients like

sensitivity, specificity or Hamming and LP distances which are based only on two from

the four numbers.

2.8 Automatization of ischemic stroke detection

Study [36] introduces an automated method for ischemic stroke detection in NCCT images.

The presumption is that the stroke region is a complex but smooth 3D shape. [36] deals

with processing of 7 people’s NCCT of the head containing 16 slices of 8 mm slice thickness

and dimensions 512x512. The whole process of the method presented in [36] can be

described in following points.

• CT image pre-processing - selection of gray levels containing useful information,
removal of ”non-interesting” parts

• Investigation of local means and standard deviations, shown in Figure 2.13. There
was used sliding window of 21x21 pixels. Depicted numeric labels are divided by

100.

• Definition of lower and upper limits of the mean and standard deviation aiming to
define stroke areas.
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Figure 2.13: Local means and variations occurrences in NCCT image by [36], black color

indicates stroke region [36]

• Post-processing - selection of the largest continuous area, forming a 3D shape of the
stroke.

The algorithm described in [36] searches for the ischemic stroke areas slice by slice

separately. The value ranges of means and variances are found for each slice separately

and on each slice are selected areas satisfying the limits. Some of these areas are false

positive and the rule that the true stroke area comes through several adjacent slices is

used. Another feature is used. Lower and upper limits for each slice are approximated

through all slices by polynomial approximation of the 3rd degree.

Study [14] presents a method for finding symmetry plane in NCCT images and [13]

uses the symmetry plane in combination with the [36] method for the ischemic stroke

detection and it describes the optimization of the whole process.

Recently there was also introduced semi-automated program for stroke-analysis [8] with

the first results on 5 stroke patients [11]. The program processes CBF, CBV and MTT

CT perfusion maps and on a voxel by voxel basis divides the voxels into 4 categories.

• N-Match - normal tissue.

• D-Match - necrotic tissue (dead).

• Mismatch - area of penumbra.

• Undefined - used criteria is not able to assign category above.

The program uses thresholds which can be adjusted by neurologists. There were used

thresholds for CBF 20 ml·100g−1·min−1 (±10), CBV 2.5 ml·100g−1 (±1.5) and for MTT
7.5 sec (±4.5).

Based on these thresholds were counted voxels belonging to the previously mentioned

group. The program calculates percentage of the areas as division of the count of voxels in
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Figure 2.14: Interface of the simulation program for specifying ischemic stroke area [11]

the area and count of voxels in the whole brain. There are also compared counts of voxels

in the left and right hemisphere and the one with the more N-Match voxels is considered

as normal and the second one is considered as the side with the ischemic stroke area. The

program interface shows Figure 2.14.
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Chapter 3

Objective of the thesis

3.1 Infarction core delineation

Acute ischemic strokes are world-wide spread and are one of the leading cause of death

and disability in population over 60 years old (Section 1.1). Thrombolytical treatment is

not applicable for all patients since it depends on the volume of the infarction core in the

whole brain. The objective of the thesis is to find an automated way of the infarction core

delineation to allow measuring of the volume and to serve as another tool for physicians

helping them with the thrombolytical treatment indication decisions.

Perfused blood volume mapping technique (Section 2.4) is used because it combines

CTA and NCCT examinations (both generally performed and with the whole-brain cov-

erage). The CTP examinations with the generated volumetric maps give detailed infor-

mation about the tissue state but the coverage area is often limited.

3.2 Objective discussion

Detection of the infarction core is in most cases based on study [39] where the optimal CBV

threshold was found as 2 ml·100g−1 using only CBV maps of the CTP examination. There

was also mentioned that the larger infarction core has higher threshold (2.3 ml·100g−1).

Study [23] on a set of 30 patients found the mean values of infarction core areas 1.12±0.37
ml·100g−1. Lower values than in [39] are discussed as caused by exclusion of voxels with

specific properties by used algorithm. Anyway let me cite one sentence from [7] (page

431):

Several studies developed different definitions of infarct core based on PCT

with CBV thresholds and the ”gold standard” for the identification of the

infarct core in acute ischemic stroke is still a matter of debate.

25



Figure 3.1: Marked infarction core on follow-up NCCT (left), simple thresholding on a

source PBV image with 2 ml·100g−1 (right).

The citation is from article from year 2002 and there already exist some newer studies

with the leading [39] containing probably the largest group of 130 patients. However

semiautomated software presented by [8], [11] show requirements of adjusting threshold

values by physicians since the threshold vary from patient to patient.

Recent studies confirm that CBV maps are suitable for infarction core detection. Most

of the studies are based on manual tracking of ischemic area on follow-up images, super-

imposing this area to the source maps (CBV, PBV) and evaluating thresholds or mean

values only inside this area. Figure 3.1 shows follow-up NCCT with marked infarction core

(on the left) and simple thresholding of the corresponding admission PBV map showing

only areas below or equal to threshold 2 ml·100g−1 (on the right). We can see that simple

thresholding can depict the infarction core but together with it also portion of non infarc-

tion core area superimposed to the real core and also elsewhere. Using simple thresholding

for evaluation of the infarction core volume by counting the thresholded voxels over whole

examination and multiplying it by one voxel volume would lead to increasing the real

infarction core volume by those false positive voxels. May be this can be the reason why

several studies are concerned only to manually tracked areas identified on follow-up exam-

ination or why the semi-automated software [11] still requires the physician’s adjustment

of thresholds.

We would like to find a fully automated method capable of infarction core delineation

while delineating only the infarction core area and minimizing the presence of false-positive

areas.
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Chapter 4

Method introduction

4.1 Presumptions

This work is based on several presumptions.

1. The infarction-core is a continuous area.

2. There is only one infarction-core area in the brain.

3. The values inside the infarction core areas are supposed to be low and it can vary from

patient to patient with consideration of the generally accepted threshold 2 ml·100g−1.

4.2 Verification

Since the automated method of the infarction core delineation is to be developed, there

must be clearly verified findings of the proposed automated method according to some

independent expert opinion. For this reason we asked two physicians to manually mark

which areas should the method in ideal case delineate, in other words which areas are by

their best opinion the real infarction core.

4.3 Material

In the cooperation with the University Hospital in Pilsen and after anonymisation process

we had available admission CT examinations of 12 patients. Since the proposed method

is supposed to process PBV maps which should be in a way analogous to CBV maps of

the CTP examination, we received also the CBV perfusion maps for these 12 patients. All

examinations were aquisited on dual-source CT (Somatom Definition, Siemens Healthcare,

Forchheim, Germany). Since the cooperation with the University Hospital allowed also

to obtain perfusion blood volume maps of these 12 patients we did not have to process
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Map type Units Resolution Thickness [mm] Spacing [mm]

PBV ml · l−1 1024x1024 5 3

CBV ml · l−1 512x512 5 3

Table 4.1: Source images properties

admission NCCT and CTA to produce the perfusion blood volume maps and instead we

could use those generated by the commercial software Siemens syngo Neuro PBV. All

maps are stored in a series of DICOM files. PBV and CBV maps contain 44 source images

and stored values are in ml·l−1 units. We can use formula 4.1 to convert [ml·l−1] into

[ml·100g−1] using the density of the brain tissue 1.05 g·ml−1 [31].

x [ml · l−1] = (10, 5 ∗ x) [ml · 100g−1] (4.1)

To sum up in this study we used anonymised source images of 12 patients of following

CT perfusion map types:

• PBV

• CBV

4.4 Image Representation

All images were available in DICOM format. Each map consists of a series of 2D axial

source images as displayed in Figure 4.1. Indexation can be introduced, the first image at

the top-left corner has image index 0, the next one on the right has image index 1 and the

last image at the bottom-right of the Figure 4.1 has the maximum image index number.

Both map types store voxel values as 12 bit integer and other features are shown in Table

4.1.

4.5 Image orientation

Map consists of serie of 2D images. Figure 4.3 shows commonly used kind of views of the

map. 2D source images are the axial ones. Sagittal and coronal views are created by using

all the 2D images using only specific voxels.

The map consists of voxels. For indexing them we can use three coordinations x,

y, z. The coordinations x and y are used for positionoing in axial images where the x

coordination corresponds to the horizontal axis and the y coordination corresponds to the

vertical axis. The origin [0,0] is in the upper-left corner. The z coordination is used for

indexing the axial slices. The axial image with z = 0 corresponds to the most bottom
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Figure 4.1: Example of serie of 2D axial source images (image generated by [29]).

Figure 4.2: PBV (left) and CBV (right) source images displayed in a color scale using

windowing technique with the center 6.5 and width 14 ml·100g−1.
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Figure 4.3: Different map views.

Figure 4.4: Axial images according to their z-coordination. From the left z coordiations

are: 0, 19, 32, 40.

image of the map. Increasing the z coordination means going up in the map’s images

towards the top of the head as shown in Figure 4.4.

4.6 PBV and CBV segmentation

PBV and CBV maps are produced by Siemens device which performs segmentation step.

At this step only the brain tissue should be preserved and other parts like bones or ears

and other objects should be removed. Some other brain structures which are not a brain

tissue are segmented in a way that all voxels belonging to these structures are exchanged

by value -1024 which is the background value. Further more only in CBV maps there

are some anatomical structures replaced by a constant value. Details of mapping between

the structures and their constant values were not available. It is available probably in

some detailed device documentation which we could not access. On the other hand these

constant values are numbers like -500 or -1000 and thus are out of the range of infarction

core suspicion. Visualization of the CBV maps device segmentation can be seen in the

Figure 4.5.
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Figure 4.5: Device segmentation in CBV images, blue color corresponds to value -800 and

violet color to -1000.

Skull segmentation in PBV images must be considered. PBV images are created by

subtraction of NCCT from CTA examination. Mutual registration is performed and then

the subtraction on voxel by voxel basis is performed. The borders between brain tissue

and skull suffer by partial volume effect and also by fine misalignment of the registration

process. This causes subtraction of the voxels with higher density of bones and voxels

with lower density of the brain tissue. The difference between these two densities can be

significant. The segmentation process does not remove these areas and they are left in the

image as shown in the Figure 4.6.

4.7 Typical PBV and CBV histograms

Histogram represents frequencies of values contained in the examination (map). Figure 4.7

shows comparison between the PBV and CBV map histograms. We can see that the PBV

histogram is wider than the CBV one. The next observation is that the PBV maps contain

negative values while there are no negative values in CBV maps. The only negative values

in CBV maps are those used for device segmentation purposes but which are not displayed

in the figure since it is out of the used range. Figure 4.8 shows typical CBV histogram

focused only to values between 0 and 150 ml·l−1. The CBV map does not contain negative

values but the frequency of the value 0 ml·l−1 is considerably increased.
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Figure 4.6: Device segmentation in PBV images focused on skull segmentation, depiction

of values [−600; 0] in a color scale.

4.8 Infarction core analysis in PBV and CBV images

Figure 4.9 shows the supposed area of infarction in PBV map but only the values in

interval from -35 to 0 are shown. The values are in ml·l−1 units but at these places it

contains negative values. It means that the subtraction process faced to lower density of

the CTA examination and higher density of the corresponding voxel in the NCCT image.

The negative blood volume is theoretically not possible but the perfused blood volume is

influenced also by quantity of the contrast material that reaches the tissue and also by the

quality of the registration process and by the influence of the partial volume effect. Here

must be considered that the infarction core areas in PBV images may reach also negative

values. In the CBV images the lowest stored value corresponds to 0 ml·l−1 (excluding the

device segmentation constants).

4.9 Maps registration

To simplify methods of future results comparison between different map types, registration

process was performed. The registration was performed in the MedInria software using

Block Matching Method algorithm [25] with linear interpolation and rigid transformation.

Resulting PBV and CBV maps are spatially registered and have common coordination

system. Only the registered images were used for the manual tracking by physicians and
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Figure 4.7: Example of typical histograms of PBV (up) and CBV (bottom) maps. Dis-

played are only values from -499 to 150 ml·l−1.

33



Figure 4.8: Example of typical CBV histogram. Displayed are only values from -10 to

150 ml·l−1.

Figure 4.9: Depiction of the supposed area of the infarction core in a PBV image using

color scale with values [−35; 0].
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also automatically processed by the proposing method. The pixel spacing after registration

was in 9 cases 0.3926 mm, in 2 cases 0.3770 mm and in one case 0.4180 mm. Slice thickness

was 5 mm with 3 mm image spacing.

4.10 Manual tracking by physicians

As the visual evaluation of the CT examinations depends on experience and can be also

subjectively influenced, we decided to ask two physicians for the manual tracking on the

same dataset. Thus we have available two individual opinions for each map. The first one

”Physician 1” is a radiologist, the second one ”Physician 2” is a neurologist. Both were

asked by their best opinion to delineate infarction core on the PBV and CBV maps. For

the delineating purposes was developed a plugin for Fiji software.

4.10.1 Fiji software

Fiji is an open source image processing project. It is ImageJ software enriched by a set of

plugins. It supports a lot of actual formats including DICOM format. Detailed information

including download can be found at http://fiji.sc/. User can create another plugin which

uses the built in image processing functions and also the user can create (or record) macros

which automatically process stored commands. The main advantage is that the software

is not required to be installed and thus it can be run also on computers with privilege

restrictions. The user interface is simple and the main focus is pointed into depiction of

the image as you can see in Figure 4.10.

4.10.2 Developed plugin

The developed plugin is placed at the bottom part of the opened examination window. It

allows interactive windowing which can be adjusted by mouse or by direct input of the

window width and window level settings. The actual mouse position coordinations in the

image are displayed in the main window of the Fiji together with the corresponding value

of the actual position in the image. For the region of interest selection can be used a brush

tool which has a circular shape with adjustable radius. The selection is made by mouse

while holding the mouse button. If some selection already exists and the user continues

with selecting the selected area can be enlarged or reduced. Moving between all images

of the map is made by slider or by mouse wheel. Another possibility of the area selection

is based on the windowing technique together with selection of the boundary area where

to detect the infarction core. By pressing Delineate the selected area is reduced only to

places which have black color so those have the values at the bottom of the current window

setting. The described selection is just temporary and must be confirmed.

The button Mark must be pressed to confirm the selected area as necrotic tissue area.

It fills the selected area with the values easily detectable by further processing. This
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Figure 4.10: Example of manual tracking using the developed Fiji plugin.

filling is made by putting values of +2048 and -2048 which are not present in the original

image. These values creates a criss-cross grid of black and white color since it is out

of the generally used window and thus are also easily visible for the physicians and are

well distinguishable from other tissue. This kind of selection and confirmation must be

made on all images containing the infarction core separately while the previous selection

is transfered to other images helping to track the intra-image variations.

4.10.3 Mutual comparison between the manual tracking of the physi-

cians

We evaluated match between the two physicians’ manual tracking in a Matthews corre-

lation coefficient form. The Matthews correlation coefficient was evaluated for each pair

of a map delineations (by Physician1 and Physician2) and finally were these values aver-

aged from all the maps of specific type (CBV, PBV). The physician 2 at one patient did

not mark any area meaning no infarction core area in both PBV and CBV maps. This

mismatch was not counted into the averaged values and was recorded as a mismatch as

shown in Table 4.2.

The example of manual infarction core delineations by both physicians using CBV

maps are shown in Figure 4.11 and using PBV maps in figure 4.12.
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Map type Average Matthews coefficient [%] Mismatch

PBV 56.90 1/12

CBV 62.09 1/12

Table 4.2: Mutual match evaluation between manual delineations of the infarction core

between physicians.

Figure 4.11: Example of different patients’ (different rows) manual infarction core de-

lineations (red color) in PBV maps by physician 1 (left column) and physician 2 (right

column).
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Figure 4.12: Example of different patients’ (different rows) manual infarction core de-

lineations (red color) in CBV maps by physician 1 (left column) and physician 2 (right

column).
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Figure 4.13: Different views of PBV image thresholded by 2 ml·100 g−1. Marked areas

show areas with high ratio of false-positive voxels.

4.11 Initial analysis

We used software [21] for material images analysis. One of the presumptions was that the

infarction core has very low values. Simple thresholding with the threshold 2 ml·100g−1

showed that the CBV and PBV images contain more information than only the infarction

core area after the thresholding. We can divide it to:

1. False positive infarction core.

2. Rests of non-ideal segmentation or caused by partial volume effect.

The rests of non-ideal segmentation are well visible in the bottom parts of the maps as

shown in Figure 4.13.
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Chapter 5

Segmentation Adjustment

5.1 Motivation

This study deals with automated infarction core delineation and uses source images ac-

quired on the CT Somatom Definition instrument. PBV images are provided by the

Siemens syngo Neuro PBV software. Despite of the instrument or the software automated

segmentation, there still appear non-brain areas which would influence the proposing auto-

mated process. Therefore segmentation adjustment step is performed before the infarction

core delineation process begins.

5.2 Description

To prepare images for the automated infarction core delineation we process simple but

effective segmentation adjustment step. All axial source images are processed one by one

and one of them is selected as a divider by Algorithm 5.2.1. Only the images from the

top to the divider are further processed and the rest from the divider to the last image

are ignored. The example is shown in the Figure 5.1 and the corresponding count of inner

voxels Cin and count of outter voxels Cout of each slice are depicted as a graph with the

image index as x-axis and
Cinj

Coutj

as y-axis. The y-axis is highlighted at position of the

divider threshold(for CBV 2.0 and for PBV 1.0). The first image from the left (meaning

from the bottom of the head towards the top) with the same or higher value than the

divider threshold becomes the divider image. Only the divider image and all the images

above it (towards the top of head) are used for the following automated infarction core

delineation. The chart for a sample PBV map is shown in Figure 5.2 and for a sample

CBV map in Figure 5.3.
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Algorithm 5.2.1 Segmentation adjustment
1: for all 2D source images Si of the map X do

2: Cini
← Count of voxels with value > 0

3: Couti ← Count of voxels with value ≤ 0 (ignore outer values -1024).

4: end for

5: j ← 0 - number first image (belonging to the most bottom image)
6: while

Cinj

Coutj

< (2.0 for CBV, 1.0 for PBV) do

7: j ← j + 1 (going up in the direction to the top of the head)
8: end while

9: return dividerImageIndex ← j

Figure 5.1: Example of PBV (upper image) and CBV (bottom image) segmentation dis-

played as sagittal views - source images on the left, segmented areas on the right. Only

intervals between 0 and 150 ml·l−1 are shown using a color scale.
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Figure 5.2: PBV segmentation adjustment - values of sample map provided by Algorithm

5.2.1.

Figure 5.3: CBV segmentation adjustment - values of sample map provided by Algorithm

5.2.1.
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Map type Successful Percent

PBV 11/12 92%

CBV 12/12 100%

Table 5.1: Successfulness of the segmentation adjustment step in a set of 12 maps per

type.

Figure 5.4: Depiction of the one unsuccessful segmentation adjustment clipping also area

where the infarction core is present, both PBV maps are presented as maximum intensity

projection (MIP) reconstructions, on the left in red color is manually traced infarction core

by Physician 2 and on the right is clipped source images used for the automated infarction

core detection method.

5.3 Evaluation

We can evaluate segmentation adjustment step according to the physicians’ manual in-

farction core tracking. The source images for the manual tracking are the same as those

for the automated detection. We can say that the segmentation adjustment is successful

when the whole area of the manually tracked infarction core is not clipped by the adjust-

ment step. It means that we consider the segmentatino adjustment step successful when

it leaves enough brain matter to be possible to detect the whole infarction core marked by

the physicians. Table 5.1 summarizes the successfulness of the method.

The only one unsuccessful case is in PBV map type and it is shown in Figure 5.4. Here

is clipped also one source image which according to Physician 2 also contains infarction

core. This one image contains 3.71% of the whole infarction core volume traced by the

Physician 2. It means that the proposed automated method, after this one unsuccessful

case of the segmentation adjustment step, still can find 96.29% of the supposed infarction

core area.
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5.4 Discussion

Presented segmentation adjustment step is used in this study. For the wider use it should

be more consulted with the physicians whether the clipping process is not too strict lim-

itation of the searched area. In general there can also appear patients with significantly

rotated head in the examination which would affect this segmentation adjustment step and

thus it would require another pre-processing step dealing with graphical transformation

rotating the head into straight position.

The advantage of this segmentation adjustment step is its simplicity and efficiency. For

available set of maps it is successful in 23 cases from 24. And the only one unsuccessful case

means that the clipped area provides enough brain tissue to find 96.29% of the infarction

core voxels manually marked by the physicians. Other cases are large enough to find 100%

of the infarction core found by physicians.
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Chapter 6

Infarction core detections using

the edge preserving smoothing

In this section we will focus to the study [39] where the optimal threshold for infarction

core detection was found as 2 ml·100g−1. We will focus to the obtained specificity and we

will try to improve the specificity results by our presumptions about the infarction core.

All following methods processes only the area provided by the segmentation adjustment

step in order to avoid detections also in bottom parts of the head where the machine

segmentation fails and where are present also other non-brain tissue parts and where

would be high risk of false indications of the infarction core.

We can try to interpret our presumptions from Section 4.1:

• The infarction-core is a continuous area and there is only one infarction-core area
in the brain: we will look for the largest continuous area satisfying criteria of the

thresholding.

• The values inside the infarction core areas are supposed to be low and it can vary from
patient to patient with consideration of the generally accepted threshold 2 ml·100g−1:

we will try to find the best thresholds suitable for our material and we can compare

it with the supposed value 2 ml·100 g−1.

6.1 Match evaluation

We are about to evaluate matches of different methods according to physicians’ manual

tracking. But how to evaluate the match? We use labeling of each voxel as TP, FP,

TN or FN (see Section 2.7) where the physicians’ tracking are taken as a base and each

method findings are evaluated according to it. It means when the method voxel is marked

as infarction core but the corresponding physician’s voxel is not marked as infarction core

then the count of FP is increased by 1. If the physician’s voxel would be marked also as
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infarction core then TP would be increased by 1. Similarly are counted numbers of FN

and TN.

6.1.1 Sensitivity, specificity, Matthews correlation coefficient

Using numbers of TP, FP, TN and FN we can evaluate sensitivity (Equation 2.16), speci-

ficity (Equation 2.18) and also Matthews correlation coefficient (Equation 2.19). The

sensitivity expresses how many percents from all infarction core voxels identified by man-

ual tracking of physician were found by the rated method. The specificity expresses how

many percents from all non-infarction core voxels of the manual tracking by physician were

correctly marked as non-infarction core by the rated method.

Since the sensitivity and the specificity are two numbers for a quick evaluation of the

match there can be used also Matthews correlation coefficient. It can be evaluated by

Equation 2.19 and it provides only one number while using all four TP, FP, TN and FN

counts.

We want to find the threshold for several methods so we must define how we want

to compare different thresholds matches. If we use only the sensitivity we would not

be interested in false positives of the rated method. It means that we can reach 100%

sensitivity but also in that cases when the method would mark all voxels of the map as

infarction core. Such match evaluation would be unusable and this is the reason why the

sensitivity itself can not be used for the match evaluation.

Similar case is with the specificity itself. Here we would reach 100% specifity also in

cases when the method selects no voxel as infarction core.

The best match evaluation seems to be Matthews correlation coefficient but we must

consider FP voxels. Matthews correlation coefficient is such a balance between sensitivity

and specificity. But the method application must be considered. False positive voxels can

in final increase the detected infarction core volume and thus it can provide information

against thrombolytical treatment. The same way low number of TP voxels can lead for

underestimation of the real infarction core and thus allowing thrombolytical treatment

where it is not desired.

In further results we will present all three values - sensitivity, specificity and Matthews

correlation coefficient. Our focus will be tend to specificity since it is the factor having

high influence on the detected infarction core volume.

6.1.2 Incorrect detections

We can define incorrect detection (ID) as a no match with the manual tracking. It means

the case when the method delineate infarction core area but the physician marked different

area with no overlay.

46



Match type Threshold

[ml·l−1]

Sensitivity

[%]

Specificity

[%]

Matthews

[%]

Incorrect

detections

CBV-Ph1 6 67.28 99.05 30.44 0/12

CBV-Ph1 8 43.50 99.96 57.67 2/12

Table 6.1: Imaginary example of method evaluation records.

6.1.3 Match evaluation model

Our material contains 12 patient having PBV and CBV maps and also for both types we

have manual infarction core tracking by 2 physicians. We can label different match types

as:

• CBV-Ph1: Automated method on CBV map versus Physician 1.

• CBV-Ph2: Automated method on CBV map versus Physician 2.

• PBV-Ph1: Automated method on PBV map versus Physician 1.

• PBV-Ph2: Automated method on PBV map versus Physician 2.

Each match type can have own best threshold. We used a range of thresholds from

which we found the optimal one. Each threshold value was evaluated on all match types

separately and always on all 12 patients’ maps. We evaluated summary sensitivity, speci-

ficity and Matthews correlation coefficient values from the 12 patients as an average values

from the 12 sensitivities, 12 specificities and 12 Matthews correlation coefficients. If there

was an incorrect detection then the corresponding sensitivity, specificity and Matthews

correlation coefficient were not used for the summary averaging and instead of it the count

of incorrect detections was increased.

Example of the method evaluation description is shown in Table 6.1.

6.1.4 Specificity expectations

Physicians and also the automated methods have available PBV and CBV maps having

dimensions 512x512 containing 44 images. Lets take as an example average size of infarc-

tion core by Physician 1 on PBV maps. The average infarction core has 28603 voxels. It

means that in average 11505733 voxels are non-infarction core. Specificity is 100% when

all of these 11505733 voxels are marked by automated method also as non-infarction core.

This would be an ideal case but in real we will face to worse specificity. Lets assumes that

the automated method selected 3 times larger infarction core area but fully overlaying the

manually marked one. Now the specificity is:

47



specificity =
TN

TN + FP
=

512 · 512 · 44− 3 · 28603
512 · 512 · 44− 3 · 28603 + 2 · 28603 = 0.995 (6.1)

Specificity corresponds to ability of the automated method to mark non-infarction core

as non-infarction according to the manual tracking by physicians. Even if the automated

method mark 3 times larger area than the physician, the specificity is still 99.5%. It is

because the huge number of the whole map voxels. If the area would not be 3 times larger

but only 2 times larger we get the specificity 99.75% and if the area would be only half

larger than by physician the specificity would be 99.88%.

At this example we showed that the values of the specificity are supposed to be very

high also in bad match cases and that the attention should be focused on a comparison of

specificities reaching almost 100%.

6.2 Edge preserving filtering followed by thresholding

Study [39] found the best threshold value at 2 ml·100 g−1 (21 ml·l−1). Now we will

reproduce the procedure of [39] on our dataset. The difference will be that we use the

whole brain coverage while [39] is limited to 4x10 mm. We had available slices of 5 mm

thickness with 3 mm image spacing. We used meaning of 3 slices to get an image covering

area of 11 mm. Using these slices we performed the edge preserving smoothing. Details

of the used edge preserving smoothing in [39] are not described. We used Curvature

Anisotropic Diffusion smoothing (Section 2.5.4) with the usually used parameters for 3D

medical images from [18]. It means:

• Time step: 0.0625

• Iterations: 5

• Conductance: 3

Using the smoothed images we can perform thresholding to obtain the ROC curves.

We will use exactly the same value ranges as in [39]. It means from 0.5 (5.25) to 3.5

(36.75) ml·100 g−1 (ml·l−1) with increment 0.3 ml·100 g−1 (3.15 ml·l−1).

6.2.1 Results and discussion

This method is an analogy to study [39] and thus we evaluated also the optimal thresh-

olds (Table 6.2.1). We can see that we received almost the same values as presumed

2 ml·100 g−1 by [39]. Corresponding specificities (lowest was 94.9389%) were even better

than in study [39] where we can assess from the study ROC graph of the group of patients

with admission diffusion-weighted imaging (DWI) as 80% with 90% of sensitivity. Our
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Figure 6.1: ROC curves provided by edge preserving smoothing performed before thresh-

olding method using interval from 0.5 to 3.5 ml·100 g−1 with 1 ml·100 g−1 (analogy to

study [39]).

Type Threshold

[ml·100 g−1]

(ml·l−1)

Sensit.[%] Specif.[%] Matthews [%]

PBV-Ph1 2.0 (21.00) 89.39 94.9389 19.19

PBV-Ph2 1.7 (17.85) 87.20 95.5162 23.22

CBV-Ph1 1.7 (17.85) 90.45 95.8762 20.14

CBV-Ph2 1.7 (17.85) 83.05 95.8020 22.58

Table 6.2: Optimal threshold values for automated infarction core detection by threshold-

ing method with edge preserving smoothing
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Type Threshold

[ml·100 g−1]

(ml·l−1)

Sensit.[%] Specif.[%] Matthews [%]

PBV-Ph1 0.5 (5.25) 64.99 97.6009 18.18

PBV-Ph2 0.5 (5.25) 60.54 97.6037 20.07

CBV-Ph1 0.5 (5.25) 33.12 98.4730 14.20

CBV-Ph2 0.5 (5.25) 28.14 98.4081 13.87

Table 6.3: Best specificity threshold values for automated infarction core detection by

thresholding method with edge preserving smoothing

higher specificity is provided by the larger coverage and thus by the higher number of true

negative voxels.

Our focus is given to the specificity which using the optimal values is still relatively

low according to our expectations (Section 6.1.4). The best specificities are reached for the

lowest tested threshold values 0.5 ml·100 g−1 (5.25 ml·l−1) where the average specificity

values according to the both physicians’ manual delineations are 97.6023% for PBV and

98.4406% for CBV maps. Figure illustrating behavior of different thresholds can be seen

in Figure 6.2.

6.3 Edge preserving filtering followed by thresholding and

selection of the largest continuous area

If we apply the presumption that the infarction core is the largest continuous area then

we can expect higher specificity because we can discard all detected areas except the

largest one leading to lower number of false positives. We will use the same method as

in Section 6.2) with the same edge preserving smoothing and the same thresholding using

thresholds from 0.5 to 3.5 ml·100 g−1 with increment 0.3 ml·100 g−1. The difference is that

after the thresholding only the largest continuous area (in the sense of 6-neighborhood) is

marked as an infarction core. All other areas are discarded and are supposed to contain

normal tissue even it satisfies the threshold criteria.

6.3.1 Results

The best specificity results can be found in Table 6.4 and in all cases the best specificity is

reached for the lowest tested threshold value 0.5 ml·100 g−1. We can see that the best PBV

specificities (in average to both physicians 98.6709%) are still very low while the CBV best

specificities (in average 99.9766%) are already almost ideal. The selection of the largest
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continuous area as infarction core brings the risk of possible incorrect detections (Section

6.1.2). If we focus on the count of the incorrect detections and corresponding the highest

specificity we get results shown in Table 6.4. We can see that the number of incorrect

detections decreases with increasing threshold. It is because the found areas satisfying the

threshold grows with the threshold and it can also merge together as you can see also in

Figure 6.2.

We can see that PBV results are still not good enough in the specificity but in the case

of CBV we can discuss about the optimal threshold for our material. The best specificity

(average 99.9766%) may be too strict, it makes also the count of incorrect detections higher.

As optimal threshold for CBV could be used in case of CBV-Ph1 threshold 0.8 ml·100 g−1

(8.4 ml·l−1) with specificity 99.9148%, sensitivity 54.86% and count of incorrect matches

2/12. In the case of CBV-Ph2 we can choose the same threshold as optimal with specificity

99.9215%, sensitivity 49.38% and count of incorrect detections 3/12.

If we look in detail into two incorrect detections of CBV-Ph1 map with threshold

0.8 ml·100 g−1 we can see that the incorrect detections are caused by presence of different

larger continuous area which also satisfies the threshold criteria (Figure 6.3). The area

marked by the physician would need higher threshold to be more compact but with the

higher threshold it would grow also the incorrectly marked area.

6.4 Discussion

Study [39] balances the sensitivity and specificity values only using the thresholding tech-

nique. If we focus in study [39] to group of patients with admission diffusion-weighted imag-

ing (DWI) we can see that the optimal threshold was found as 2.0 ml/100 g (21 ml·l−1).

From the study figure containing corresponding ROC graph we can assess the CBV thresh-

old sensitivity as 90% and specificity as 80%. The total number of used voxels was 5911234.

Even if we consider the fact that we use the whole brain coverage against 40 mm used

by the study, we can see that the specificity 80% is relatively low. We can expect that

such specificity is provided because high number of FP voxels which also means that the

threshold condition is satisfied for higher number of voxels than marked in the pattern.

In other word we can find values satisfying the threshold also in other places (mostly in

white brain matter) than only in the real infarction core.

The step of selection as infarction core only the largest continuous area satisfying

the threshold criteria improved specificity but only in case of CBV maps we determined

optimal threshold as 0.8 ml·100 g−1 with corresponding specificity in average to both

physicians 99.9182%. With higher thresholds there appear such number of FP voxels that

the specificity decreases. The selection of the largest continuous area focuses the detected

infarction core only to the place where it was marked also by physicians but with higher

thresholds the detected area is larger - floods the neighborhood or connects with other low

valued areas which decreases the specificity.
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Match type Threshold

[ml·100 g−1]

(ml·l−1)

Sensitivity

[%]

Specificity

[%]

Matthews

[%]

Incorrect

detections

PBV-Ph1 1.10 (11.55) 76.38 98.0196 29.96 0/12

PBV-Ph1 0.80 (8.40) 77.11 98.4279 33.91 1/12

PBV-Ph1 0.50 (5.25) 76.41 98.6447 35.18 3/12

PBV-Ph2 1.10 (11.55) 74.42 98.0206 34.28 1/12

PBV-Ph2 0.80 (8.40) 73.92 98.4366 38.47 2/12

PBV-Ph2 0.50 (5.25) 70.83 98.6970 37.15 3/12

CBV-Ph1 2.00 (21.00) 94.24 96.5523 22.54 0/12

CBV-Ph1 1.70 (17.85) 89.45 97.8927 29.01 1/12

CBV-Ph1 0.80 (8.40) 54.86 99.9148 59.42 2/12

CBV-Ph1 0.50 (5.25) 37.34 99.9771 53.88 3/12

CBV-Ph2 2.00 (21.00) 89.21 96.5185 26.09 1/12

CBV-Ph2 1.70 (17.85) 83.45 97.8117 31.07 2/12

CBV-Ph2 0.80 (8.40) 49.38 99.9216 58.68 3/12

CBV-Ph2 0.50 (5.25) 34.78 99.9760 52.62 4/12

Table 6.4: Results of the edge preserving smoothing with thresholding and selecting the

largest continuous area. Each row corresponds to best specificity results corresponding

to the numbers of incorrect detections (up to 4 where available). Used thresholds were

between 0.5 and 3.5 ml·100 g−1 with 0.3 ml·100 g−1 increment.
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Figure 6.2: Example of infarction core detections (red color) using different threshold

values. Upper part shows CBV-Ph1 match and bottom PBV-Ph1 match. In each area the

first row means edge preserving smoothing with following thresholding while the second

row in additional considers only the largest continuous area as infarction core. Columns

express different thresholds. From left 5.25, 8.40, 11.55, 14.70, 17.85 ml·l−1. The last

column expresses corresponding manual delineations by physician 1.
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Match type Threshold

[ml·100 g−1]

(ml·l−1)

Sensitivity

[%]

Specificity

[%]

Matthews

[%]

Incorrect

detections

CBV-Ph1 0.80 (8.40) 54.86 99.9148 59.42 2/12

CBV-Ph2 0.80 (8.40) 49.38 99.9216 58.68 3/12

Table 6.5: Optimal thresholds for the automated infarction core detection in CBV maps

using edge preserving smoothing method with selection of the largest continuous area as

infarction core (described in Section 6.3).

Figure 6.3: Example of incorrect detection of infarction core findings (red color) on CBV

map using the edge preserving smoothing with selection of the largest continuous area on

the left (details in Section 6.3) and manual delineation by Physician 1 on the right.

In case of PBV we found (in both methods) the best specificity threshold 0.5 ml·l−1

which was the lowest tested value in order to reproduce the procedure used by study [39].

These low values could be explained by steep changes in stored values. For example the

values inside the infarction core can be negative while the lower limit is not specified.

Automated segmentation by instrument was perfect to segment high density values of

bones but in case of chambers there still persist values which rapidly changes from positive

to high negative values. Such rapid changes are also present at the boundaries between

brain tissue and segmented bones. Edge preserving filtering in this case is not able to fully

emphasize and separate the infarction core from its neighborhood and it is the reason why

following thresholding still face to flooding larger areas or why the largest continuous area

is often not the one marked by the physicians.
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Chapter 7

Proposed method

7.1 Introduction

We presented that automated infarction core delineation based on edge preserving smooth-

ing and selecting the largest continuous area (as described in Section 6.3) has very good

results on CBV maps but results on PBV maps suffer by low specificity. The proposing

method is designed to reach higher specificity in PBV maps. From previous sections we

can summarize that PBV maps contain steep changes of intensities at borders of brain

tissue and tissue of other types (rests of automated segmentation of bones and chambers).

Also we noticed that the infarction core values can be also negative and the lowest value

is not defined and can vary from patient to patient. Edge preserving smoothing with the

traditional settings (details in Section 6.3) does not differentiate enough the infarction

core from the neighborhood to use the previously described method and obtain similar

specificity as in case of CBV maps.

7.2 Inspiration

If we want to reach higher specificity and higher number of correct matches we must reach

better differentiation between the infarction core and its neighborhood. Our approach was

inspired by study [36]. This study is concerned in automated infarction core delineation in

the NCCT examinations and it is based on an adaptive image by image thresholding. For

each image separately is found a threshold value and standard deviations range and all

voxels of the current image satisfying these conditions are suspicious to be the infarction

core. Finally the reconstruction algorithm connects adjacent groups of suspicious voxel

through all images and the largest one is marked as infarction core. The features of the

NCCT examinations are different from PBV maps. Values acquired in NCCT examination

correspond to real property of the tissue and are measured in Hounsfield’s unit. The values

in PBV maps are proportional to a subtraction of Hounsfield’s units with and without

contrast material and are expressed in ml·l−1 units.
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7.3 Method description

Our aim is to differentiate the infarction core area enough for its extraction. In opposite

of CBV maps the PBV maps seem to be influenced by the partial volume effect caused by

usage of different slice thickness of the source NCCT and CTA examinations. Infarction

core areas but also some other parts like segmented skull or areas around the cerebral

ventricles also contain steep changes of values and overall the PBV values seem to be

more patient depended probably because of the CTA examination where the details of

the contrast medium application in combination with individual person can influence the

acquired values.

We believe that simple meaning corresponding to the nearest neighborhood can provide

enough smoothing for local areas. We also believe that this kind of meaning in combina-

tion with standard deviations of the nearest neighborhood and adaptive selection of the

threshold value can provide enough information for the infarction core extraction.

Proposing method can be described by the flowchart in Figure 7.1.

7.3.1 Mean filtering

Mean filtering is a noise reduction method based on averaging values of the nearest neigh-

borhood. The dimensions of the neighborhood is application depended. This kind of

filtering we used in the maps in order to differentiate the infarction core from its neigh-

borhood and the best size of the neighborhood is to be found by optimization process

described in Section 8. The used area for the mean filtering has rectangular shape and for

the averaging purposes were used only voxels with values higher than -500. This value -500

was chosen to be low enough to cover all infarction core values and high enough for use

also in CBV maps where by value -500 are already marked anatomical structures (Section

4.6). The mean filtering is evaluated from source images but only for as many images as

provided by the segmentation adjustment step. Meaning is evaluated on a voxel by voxel

basis and for one voxel the Equation 7.1 is used where X, Y and Z area dimensions of

the used rectangular neighborhood, i, j, k are coordinations of the currently processed

voxel. For the summarization are used only voxels with values higher than -500 and their

count inside the used neighborhood is used for division as Count of used voxels. All re-

sulting values are stored into newly created image (of the same size as input map) called

MeanImage at coordinations i, j, k.

MeanImagei,j,k =

X
∑

x=−X

Y
∑

y=−Y

Z
∑

z=−Z

SourceImage>−500
i+x,j+y,k+z

Count of used voxels
(7.1)
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Figure 7.1: Flowchart of the proposed method.
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7.3.2 Threshold detection

We believe that the threshold can differ from patient to patient and thus we want to find

it from histogram of the image instead of using one global threshold value. We search

for the best threshold for each axial image separately and only for as many images as

provided by the segmentation adjustment step. For each axial image of MeanImage we

compute histogram and the value with the maximal frequency Vmax is localized. We make

a distribution function of frequencies for values from -499 to Vmax referring as DVmax
(v).

It means that DVmax
(−499) = 0 and DVmax

(Vmax) = 1. The image threshold is computed

as p% quantile of the DVmax
(with minimum value limitation −20) and lets denote it

as ThRawi. The p is common for whole map and the optimal value is again found by

optimization process in Section 8. If the segmentation adjustment step provided C + 1

images to be processed then we get thresholds ThRawi for i from 0 to C. The last

thresholds operation is their approximation by polynomial of k-th degree. The optimal k

is again found by the optimization process in Section 8. The threshold detection process

results in adjusted values Thi for i from 0 to C.

7.3.3 Standard deviations evaluation

We have denoised image MeanImage and thresholds for all images Thk. For further

purposes we define MIThSubtracted (Mean Image Threshold Subtracted) which is sub-

traction of threshold values Thk from MeanImage. Such image contains values which

represent differences from the local threshold Thk.

MIThSubtractedi,j,k = MeanImgi,j,k − Thk (7.2)

Now we compute another image StDev which contains the standard deviations of the

same neighborhood as used for construction of the MeanImage.

StDevi,j,k =

√

√

√

√

√

√

X
∑

x=−X

Y
∑

y=−Y

Z
∑

z=−Z

((SourceImg>−500
i+x,j+y,k+z − Thk+z)−MIThSubtractedi,j,k)2

Count of used voxels
(7.3)

When the Stdev for coordinations i, j, k is being computed its neighborhood is pro-

cessed. Local differences from the i, j, k are symbolized by x, y, z. Every voxel of

this neighborhood is taken from the source image and the change from the current im-

age threshold with index k + z is evaluated: (SourceImg>−500
i+x,j+y,k+z − Thk+z) and the

MIThSubtracted (Mean Image Subtracted Threshold) value with coordinations i, j, k is

subtracted.

There are again processed only voxels having value above -500 in the source image and

their count is remembered for the final division in the Equation 7.3.
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Figure 7.2: Depiction of the MIThSubtracted (left), StDev (middle) and StDevUnified

(right) images of the PBV map using neighborhood 4x4x1 threshold 0.6 and the degree

1 for approximating thresholds. Images are displayed using windowing technique with

window settings (Center, Width): left (0, 50), middle (10, 20) and right (0, 3).

7.3.4 Standard deviations unification

Previous sections described the process of construction of the MeanImage containing the

mean values evaluated from the nearest neighborhood. After finding of the thresholds for

each image separately, these thresholds were subtracted from corresponding MeanImage

and were stored in MIThSubtracted.

Next we measured changes from local image threshold in the nearest neighborhood area

of the source image and we evaluated standard deviation according to the mean values

stored in MIThSubtracted.

The aim is to accept local threshold of each image and evaluate values using the nearest

neighborhood and express them in relation to the local image threshold. If we want to

describe a voxel in just single number we must use some kind of unification. We have

standard deviation and a mean value. If we divide the standard deviation by the mean

value (using Equation 7.4) we get the standard deviation connected with the unit value

(1 ml·l−1). In the case of possible dividing by zero we just put StDevUnifiedi,j,k = 0.

StDevUnifiedi,j,k =
StDevi,j,k

MIThSubtractedi,j,k
(7.4)

Due to the expressing standard deviations and the mean values as a relation to the

local thresholds the resulting value StDevUnifiedi,j,k preserves the relation to the local

image threshold. If the value StDevUnifiedi,j,k is negative then the MeanImagei,j,k is

also below the local image threshold. The positive value of Equation 7.4 also means higher

value than the local image threshold. The amplitude (or the absolute value) expresses the

ratio of the value changes in the nearest neighborhood. We can expect that very steep

changes will have very high values and also little changes will be characterized by low

values.
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7.3.5 Suspicious voxels marking

Voxels which satisfy certain condition are marked as suspicious. All adjacent suspicious

voxels are grouped and finally the largest group is considered to be an infarction core

group containing voxels of the infarction core. The suspicious voxels are suspicious to be

an infarction core.

The conditions which voxel with index i, j, k must satisfy to be considered as suspicious

are:

• -1.0 ≤ StDevUnifiedi,j,k ≤ 0

• StDevi,j,k < 50

These values were found by analysis of the corresponding images StDevUnifiedi,j,k and

StDevi,j,k. The unified values of the StDevUnifiedi,j,k corresponding to the infarction

core must be negative (or zero) in order to be below the threshold. The -1.0 value is

satisfied when the local standard deviation is maximally the same as the mean value. It

means the linear dependency between the standard deviation value (StDev) and the mean

value MIThSubtracted. The second condition just expresses that the standard deviation

is not allowed to be too high. values above the 50 are present in the areas of the cerebral

ventricles in the PBV maps and also at the borders of brain tissue and segmented bones.

7.3.6 Suspicious voxels grouping

All axial images of one map are processed separately. Once the suspicious voxel is found

then new group is created and the voxel is added. The 4-nearest neighborhood (we process

the 2D axial image) of the voxel is browsed for finding another suspicious voxel which would

be added also into the same group. We continue recursively this way since no other new

voxel in the 4-nearest neighborhood is found.

For each group G are evaluated following values:

• GAverage - Average value [ml·l−1] of source image voxels evaluated from all voxels in

the group.

• GSize - Dimensions of the group. GSize
X = number of voxels between the most left

and the most right voxel and GSize
Y = the number of voxels between the most top

voxel and the most bottom voxel of the group.

• GCenter - Center of the group. The x and y average coordination of all group voxels

(GCenter
X , GCenter

Y ).

Example of the grouping is shown in Figure 7.3.
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Figure 7.3: Example of suspicious voxels grouping. Unified standard deviations on the

left displayed using the windowing technique with window level and center (0, 3). On the

right suspicious groups. Each group color corresponds to average voxel values of the group

in the source image, displayed in a color scale with range from -15 to 20 ml·l−1. Rows

correspond to different locations in the map.
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Figure 7.4: Example of discarding criteria use on PBV map. Unified standard deviations

on the left displayed using the windowing technique with window level and center (0, 3).

Middle image shows suspicious groups (white color). Red marking shows groups discarding

by criteria 1 and yellow marked group shows the application of the criteria 2. Image on

the right show suspicious groups (white color) after application of the Discarding criteria.

7.3.7 Discarding criteria

The processed maps consist of images where the suspicious groups were found. We can

browse all the groups (of all the images) and discard some of them from further processing.

A group is discarded when one of the following conditions is satisfied.

1. (GCenter
X - ImageCenter

X ) / GSize
X < 0.2

2. GAverage ≤ −50.0

The first condition discards group of suspicious voxels when the group lies in both

hemispheres. Such groups are often false positives groups formed by voxels persisted by

non ideal segmentation of cerebral ventricles or using the threshold which flooded large

areas enough to spill to both hemispheres. This criteria is satisfied when the distance

between the center of the group and the center of the image is lower than 20% of the group

size. This limitates the discarded groups to have enough portion in both hemispheres which

reduces the influence of not precisely centered head in the image or possible rotation of

the head from the straight position.

The second condition discards groups which average value is below or equal to −50.0
ml·l−1. Such groups can be found at borders of brain tissue and segmented objects like

bones or cerebral ventricles. Infarction core groups can contain voxels with negative values

but the average value of such areas is always above −50 ml·l−1.

The example of discarding criteria use is shown in Figure 7.4.
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7.3.8 Grouping of the adjacent groups between images

Grouping of the adjacent groups between images is based on processing of pairs of adjacent

images. The first pair of images is formed by image I0 and I1, the second pair by I1 and

I2 and the last pair by images IMax−1 and IMax. Two groups are joined into one group

when (both conditions must be satisfied):

1. It has at least one voxel with the same xy-coordination (overlaying).

2. The difference between average values is lower or equal to 10.0 ml·l−1.

The first condition means that two group of the adjacent images can be joined only

when at least one voxel of the two considered groups has the same xy-coordinations. It

means that the groups at least partially overlay each other. The second criteria expresses

that two groups which overlay each other must be also similar in the average value. It

aims that they should cover tissue with similar features. The similarity is here expressed

as the maximal difference between the average group values of 10.0 ml·l−1 which we found

to be a suitable threshold.

For each group of the image with index i we find all adjacent groups in image with

index i + 1 satisfying the joining condition. From these groups we select the largest one

(L) and all others including the parent group in the image i we join together. The new

resulting group average value is set to the average value of the largest group L. All other

features of the joined group are recalculated - size and the center position. The used

average value of the largest group preservers smooth joining of the adjacent image groups

where the average value can slightly differ between adjacent images but the average value

difference would get higher with the distance between images.

7.3.9 Selection of the largest group

The final step of the proposed method is descending sorting of the groups according to

the count of voxels belonging to a group. The largest group is selected to be the one

corresponding to the necrotic tissue area.
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Chapter 8

Optimization, results, comparison

8.1 Optimization

Lets recapitulate the proposed method. The source map is processed in order to denoise

it by meaning filtering as described in Section 7.3.1. For this purposes we must choose the

size of the nearest neighborhood. We process volumetric maps which have 3 dimensions

so the size of the nearest neighborhood must have also 3 dimensions. We can denote the

dimensions of the nearest neighborhood as DX , DY , DZ . If the DX would be for example

1 than it means that the nearest neighborhood in the x direction would contain 3 voxels

(1 per each direction and 1 for the current voxel which the neighborhood is considered to).

When the meaning is finished the thresholds are found for each image separately as

described in Section 7.3.2. The thresholds are found using a common parameter p which

is used for computing the p% quantile of the image which becomes the image threshold.

When all these local thresholds are found then they are approximated by a polynomial of

the k-th degree for a smoothing purposes.

All other steps are described without need for other parameters. If we summarize the

required parameters we get the following list:

• Nearest neighborhood dimensions: DX , DY , DZ

• Parameter for the threshold detection: p

• Degree of the polynomial used for approximation of the thresholds: k

The way how to find the best parameters is comparing results according to the manual

infarction core by the physicians. Two physicians marked their findings on all of the PBV

and CBV maps. The proposed method was aimed to provide better specificity than other

methods described in Section 6 using PBV maps. We try to find the best parameters for

the PBV maps but also for the CBV maps. Since the findings of the physicians are not
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the same for the PBV and CBV maps, we will look for the best parameters individually

for the following combinations:

• PBV-Ph1

• PBV-Ph2

• CBV-Ph1

• CBV-Ph2

In the used material, one voxel size in the direction of the x-axis is the same as the voxel

size in the y-axis direction. We can reduce parameters to be optimized by considering DX

as the same value as DY and thus we can replace two parameters DX and DY by only one

parameter DXY and interpret it like DX=DXY and DY=DXY .

8.1.1 PBV optimization

For the PBV maps we evaluated matches using parameter ranges described in Table 8.1.

Parameter From To Step

DXY 0 11 1

DZ 0 2 1

p 0.4 1 0.1

k 0 3 1

Table 8.1: Range of parameters used for the proposed method optimization in PBV maps.

8.1.2 CBV optimization

For the CBV maps we evaluated matches using parameter ranges described in Table 8.2.

Parameter From To Step

DXY 0 11 1

DZ 0 2 1

p 0.1 0.6 0.1

k 0 3 1

Table 8.2: Range of parameters used for the proposed method optimization in CBV maps.
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8.2 Results

Using the optimization range of parameters we received a lot of match records. By ana-

lyzing these records we can get following results.

8.2.1 Best specificity results

For each combination of the parameters was evaluated a match as described in Section 6.1.

Table 8.3 shows the best specificity results for PBV and CBV maps having 0-2 numbers

of the incorrect detections.

We can see that the obtained specificities are relatively high with the low number of

the incorrect detections. The best specificity for PBV maps was 99.9999% with 4 incorrect

detections and for CBV maps 99.9982% again with 4 incorrect detections. In both cases

there was used large neighborhood area DXY=10 and DZ=2. The larger the neighborhood

is the more are removed the steeper changes and the more are preserved only the infarction

core areas which we suppose are the largest continuous areas with the low values. The

large neighborhood in combinations with relatively low threshold value p provide small

sensitivities (for PBV 2.13%, for CBV 16.52%). The larger neighborhood also limits

flooding of the infarction core detections to the surrounding areas which supports the

higher specificity (especially in PBV maps).

8.2.2 Optimal parameters for the used material

Previous section and the best specificity results (Table 8.3) show that the proposed method

can reach high specificities (around 99.99%) in both PBV and CBV maps. Focusing only

to the best specificity we can get low sensitivity. In this section we will try to find the

best balance between the sensitivity and the specificity. Optimization process resulted

in a huge amount of evaluated matches. We chose low number of incorrect detections,

relatively high specificity and high sensitivity as a criteria for the optimal parameters.

From all of the PBV-Ph1 matches we can find only one parameters combination that

can reach 0 incorrect detections but with specificity 99.8376%. We considered this speci-

ficity as too low and thus we will search for the best parameters from a group of evaluated

matches which reached 1 incorrect detection. CBV-Ph2 does not contain any record with

lower than 2 incorrect detections. The optimal parameters will be searched only from

those match evaluated records corresponding to the number of incorrect matches defined

in Table 8.4.

For the optimal parameters selection is often used ROC analysis where the best param-

eters correspond to the point which is nearest to the upper-left corner or in other words

the point which balances the sensitivity and specificity. The ROC curve is used for tuning

classifiers where the parameter is a kind of threshold value. Adjusting this threshold we

always get two sets where the one is correctly classified while the second is not. The count
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Match type Parameters

DXY xDZ

(k) p

Sensitivity

[%]

Specificity

[%]

Matthews

[%]

Incorrect

detections

PBV-Ph1 11x1 (2) 0.8 53.52 99.8376 47.21 0/12

PBV-Ph1 7x2 (1) 0.7 33.19 99.9660 44.33 1/12

PBV-Ph1 11x2 (1) 0.7 24.52 99.9772 37.99 2/12

PBV-Ph1 4x2 (1) 0.5 7.62 99.9991 23.21 3/12

PBV-Ph1 7x2 (0) 0.5 3.75 99.9998 15.03 4/12

PBV-Ph2 10x1 (1) 0.7 30.50 99.9711 44.16 1/12

PBV-Ph2 7x2 (1) 0.7 29.77 99.9730 43.47 2/12

PBV-Ph2 8x1 (1) 0.6 23.08 99.9952 41.30 3/12

PBV-Ph2 10x2 (1) 0.5 2.13 99.9999 10.43 4/12

CBV-Ph1 6x1 (0) 0.2 24.33 99.9939 43.31 1/12

CBV-Ph1 7x1 (0) 0.2 21.87 99.9963 42.05 2/12

CBV-Ph1 7x1 (1) 0.2 26.06 99.9958 47.48 3/12

CBV-Ph1 5x1 (2) 0.2 29.39 99.9951 50.21 4/12

CBV-Ph2 8x1 (0) 0.2 18.73 99.9980 38.12 2/12

CBV-Ph2 10x2 (1) 0.2 15.91 99.9977 35.17 3/12

CBV-Ph2 10x2 (0) 0.2 16.52 99.9982 35.85 4/12

Table 8.3: Proposed method best specificity results with 0-4 incorrect detections (where

available) from a set of parameters defined in Section 8.

Match type Incorrect detections Count of records

PBV-Ph1 1 33/980

PBV-Ph2 1 37/980

CBV-Ph1 1 35/840

CBV-Ph2 2 47/840

Table 8.4: Optimal parameters features reducing the searched set of parameters defined

in Section 8.
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Figure 8.1: ROC depiction of the evaluated match records with features defined in Table

8.4.

of member of both sets changes continuously with the threshold which preserves the ROC

curve to be monotonicity function coming out from the lower-left corner and going to the

upper-right corner.

This kind of curve can not be constructed from the evaluated match records because the

method uses the criteria of the selection of the large continuous area. This step influences

the sensitivity and specificity and can provide discontinuity of the ROC curve or breaking

the monotonicity rule.

We used depiction only of points obtained by evaluated match records for each match

type separately (Figure 8.1). Choosing of optimal parameters is not clear since there is no

clear balancing point. Instead of arbitrary choosing the optimal parameters we decided to

use another criteria.

Stability criteria

If we suppose the method to be used on a larger set of maps we can focus to select as

optimal such parameters combination which would preserve similar results also on other

maps than only the total 24 of the used material. Such parameters combination could be

named as stable. As we have no more maps available we can just suppose that the most

stable parameters should be low sensitive for little changes of parameters leading only to
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Type DXY DZ k p Sensit. Specif. Matthews Incorrect detections

PBV-Ph1 10 2 1 0.8 40.0% 99.94% 48.4% 1/12

PBV-Ph2 9 1 1 0.7 33.0% 99.97% 45.9% 1/12

CBV-Ph1 7 1 0 0.3 43.0% 99.97% 53.1% 1/12

CBV-Ph2 7 1 0 0.3 36.6% 99.98% 51.1% 2/12

Table 8.5: Optimal parameters for the proposed method.

small changes in results and preserve the low number of incorrect detections. For this

purpose we defined what are the little changes in parameters. We selected following:

• DXY - the change of ±1

• p - the change of ±0.1

These changes express the nearest members of the DXY and p in a set of evaluated

matches generated by optimization process (Section 8). The other parameters DZ and k

are not considered for the stability purposes because their little change means different

behavior of the method (k parameter) or the rapid growing of the considered neighborhood

area (DZ) parameters.

To evaluate the most stable parameters we found for each parameters combination

all adjacent parameters combinations (according to the DXY and p) including the base

(central) combinations and we summarized up the numbers of incorrect detections and we

also evaluated the average sensitivity and specificity. The total number of the used match

evaluation records was 9 for 1 tested combination of the parameters. Finally we sorted the

results by the number of the incorrect matches of the base parameters combination, next

by the number of the total incorrect matches using the parameters neighborhood and third

by the specificity. Results are shown in Table 8.5 and performance in the 9-neighborhood

is shown in Table 8.6.

8.2.3 Inaccuracies visualization

We can compare manual delineation by a physician with with the best findings of the

proposed method. The proposed method is actually based on evaluation of the mean

values and corresponding standard deviations. Now we want to show the manual infarction

core delineation in a form of 2D histogram where the y-axis is a mean value and the x-

axis is a standard deviation. We will use the best found parameters and we will use

the corresponding neighborhood settings. For the mean value and standard deviation

calculations we will use standard equations (Equation 8.1 and Equation 8.2).
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Type Sensit. Specif. Matthews Incorrect detections

PBV-Ph1 40.5% 99.92% 45.9% 14/108

PBV-Ph2 37.1% 99.94% 47.0% 16/108

CBV-Ph1 41.4% 99.95% 50.4% 14/108

CBV-Ph2 35.8% 99.97% 49.3% 21/108

Table 8.6: Performance of the optimal parameters using the parameters 9-neighborhood

of the stability criteria (Section 8.2.2).

Figure 8.2: Example of frequency histogram of combination of mean values and standard

deviations in PBV map using neighborhood 9x9x1. The color frequency scale is from 0 to

the highest value 624.

MeanV aluei,j,k =

X
∑

x=−X

Y
∑

y=−Y

Z
∑

z=−Z

SourceImage>−500
i+x,j+y,k+z

Count of used voxels
(8.1)

StDevi,j,k =

√

√

√

√

√

√

X
∑

x=−X

Y
∑

y=−Y

Z
∑

z=−Z

((SourceImg>−500
i+x,j+y,k+z)−MeanV aluei,j,k)2

Count of used voxels
(8.2)

If we summarize the counts of the voxels corresponding to the mean value and standard

deviation pairs in the whole map limited by the segmentation adjustment step (Section 5)

we get the histogram like in Figure 8.2.
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Figure 8.3: Comparison of infarction core features delineated by Physician 2 (on the left)

and the proposed method (on the right) using PBV map with the best sensitivity using

optimal parameters for PBV-Ph2. The frequency scale is from 0 to the limited maximal

value 20.

Figure 8.4: Comparison of infarction core features delineated by Physician 2 (on the

left) and the proposed method findings (on the right) using PBV map with the worst

specificity using optimal parameters for PBV-Ph2. The frequency scale is from 0 to the

limited maximal value 20.

Lets consider the optimal parameters for Physician 2 and calculate such histograms.

The comparison between manual delineation by Physician 2 and the proposed method can

be seen in Figure 8.3.

We can see that the proposed method results in lower number of detected infarction

core voxels and the detected ones mutually correspond. This reflects the high specificity

and confirms the sensitivity values. The figure shows an example of a map where was

reached the highest sensitivity 62.04%, specificity 99.9841% and Matthews correlation

coefficient 76, 19%. Now lets have a look to the case of the worst specificity map using the

same method parameters. The comparison is depicted in Figure 8.4 and corresponding

specificity is 99.8714%, sensitivity is 55.56% and the Matthews correlation coefficient is

59.47%. The last example is shown in Figure 8.5 and it is for a map with the lowest

sensitivity which is only 6.89% but with the specificity 99.9999% and the corresponding

Matthews coefficient 26.13%.
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Figure 8.5: Comparison of infarction core features delineated by Physician 2 (on the left)

and the proposed method findings (on the right) using PBV map with the worst sensitivity

using the optimal parameters for PBV-Ph2. The frequency scale is from 0 to the limited

maximal value 20.

These figures does not differentiate between map’s images separately and are displayed

one for the whole map. We can see that the proposed method tends to delineation of

smaller areas and those parts with the higher mean value and higher standard deviations

(upper right areas of the physician’s manual delineations) are not delineated at all. The

reason is in the used criteria:

-1.0 ≤ StDevUnifiedi,j,k ≤ 0

This equation provides the clipping and causes the missing parts of the delineations

with the higher mean values and higher standard deviations. But on the other hand these

higher mean values with the higher standard deviations are in the maps more frequent also

at places which should not be considered as infarction core area and thus it can provide

higher risk of the worse specificity or the higher number of the incorrect detections. Table

8.7 shows results comparison between different lower limits of the criteria using the optimal

parameters. It supports the choice of the proposed method lower limitation −1.0 which
has the best results according to the Table 8.7. We can find samples of individual maps

which provide better match while using different lower limitation than −1.0 but the overall
match is the best for the value −1.

8.2.4 Memory and processing time requirements

Required processing time for the proposed method depends on the used examination fea-

tures. One of the biggest influence has the dimensions of the input map. In our case, all

the processed maps had dimensions 512x512x44. Linear increase of the dimensions will

cause a linear increase of required processing time.

In details, the highest portion of processing time is spent by providing mean filtering

with standard deviations calculation. This time is dependent on the used neighborhood

size. If we denote the total number of examination voxels as N and the total number of

voxels in the neighborhood area as M, then we get M*N as a number of voxels required to
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Match type Lower

limit [-]

Average

sensitivity

[%]

Average

specificity

[%]

Average

Matthews

[%]

Incorrect

detections

PBV-Ph1 -1.0 40.10 99.9361 48.41 1/12

PBV-Ph1 -1.5 54.79 99.8659 52.39 2/12

PBV-Ph1 -0.5 14.47 99.9930 30.28 4/12

PBV-Ph2 -1.0 32.98 99.9652 45.89 1/12

PBV-Ph2 -1.5 47.63 99.9103 52.82 1/12

PBV-Ph2 -0.5 24.61 88.8871 23.74 3/12

CBV-Ph1 -1.0 42.95 99.9669 53.12 1/12

CBV-Ph1 -1.5 61.13 99.9165 58.58 2/12

CBV-Ph1 -0.5 19.66 99.9965 38.08 4/12

CBV-Ph2 -1.0 36.60 99.9804 51.13 2/12

CBV-Ph2 -1.5 52.46 99.9411 60.09 3/12

CBV-Ph2 -0.5 19.45 99.9982 39.54 5/12

Table 8.7: Different lower limitation results for the optimal parameters ordered by number

of incorrect detections and the highest specificity
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be accessed when considering the mean filtering. The same it is for the standard deviations

calculation. All other steps like identifying suspicious groups or their grouping, are less

time expensive. Just one passage of N voxels is required for suspicious groups identification

or in case of grouping between images, only two adjacent slices are considered at a time.

If we look on the memory requirements, we can see that the method proposes to create

temporary images to store the mean values, standard deviations and unified values. All of

these images have the same dimensions as the original map. If we calculate the map itself

and one more image, where the final image with highlighted infarction core is delineated,

we get that the required memory is 5 times larger than the original map (which has about

25 MB).

We can conclude that the processing time is almost constant for the fixed dimensions

of the input map and fixed parameters of the method. The memory requirements are close

to 5x of the input map size. On a computer with Intel Xeon 1.86 GHz CPU (2 processors)

and 10 GB of installed memory, the required processing time was 2 minutes an 5 seconds

for a sample of CBV map using the optimal parameters. We must also mention that our

implementation did not use any parallel operations which would be beneficial and easy to

use especially with the mean filtering and standard deviations evaluation.

8.3 Methods comparison

In this study we reproduced procedure of [39] on our dataset. This procedure is based

on edge preserving smoothing with following thresholding (Method 1). We found optimal

values but corresponding specificities were too low for the further infarction core volume

evaluation. Next was described the same procedure enriched by the final selection of the

largest continuous area considered as infarction core (Method 2). This method already

provided satisfactory results but only for case of CBV maps. The proposed method pro-

vides satisfactory results despite of the map type. All these three methods we will compare

using different kind of statistics.

For simple comparison between different methods we chose the optimal parameters

and only results using these parameters are compared. The optimal parameters were not

determined only for the Method 2 for case of PBV maps. In this case we will use the best

specificity settings, it means thresholds 0.5 ml·100 g−1 (5.25 ml·l−1).

The comparison is presented in Table 8.8 for PBV maps and in Table 8.9 for CBV maps.

The volume error is evaluated as an absolute value (Equation 8.3) and as a percentage value

(Equation 8.4). The pattern in equations means the manual delineations by physicians

while method is one of the Method 1, Method 2 and Proposed method.

V olume error [cm3] = V olume of pattern − V olume of method (8.3)
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V olume error [%] =
V olume of pattern − V olume of method

V olume of pattern
· 100 (8.4)

If we browse the results we can see that the Method 1 - the process reproduced by [39]

reaches the best sensitivity and the worst specificity. The specificity even if it reaches in

average to both physicians 95.2276% for PBV maps and 95.8391% for CBV maps suffer

by the highest volume error from all the tested methods. The average volume error for

Method 1 was found for PBVmaps in average−2660% and for CBVmaps−3221.78%. The
negative value expresses that the detected area by Method 1 is larger than the pattern by

physicians and also expresses that it is in average 26.6x and 32.2x larger than the pattern.

Method 2 should be considered separately for PBV and CBV maps. In case of PBV

maps we could not find such settings which would provide better specificity. Because of

this reason we used the settings corresponding to the highest specificity. The specificity

is higher than in the Method 1 but still produces relatively large volume error (in average

−806.94% meaning 8x larger detections). In case of CBV we selected the optimal pa-
rameters also in order to reach low number of incorrect detections while preserving high

precision with average relative volume error 24.64% meaning that the average detected

area is only 0.25x smaller than the manual delineations which is the lowest volume error

from all the tested methods.

The last method is the Proposed method. We can see that in case of CBV maps

we received better specificity in average 99.9737% than in using the Method 2 but the

corresponding volume error is in average 41.71%. Using the PBV maps we can see the

highest benefit of the proposed method because the specificity reaches 99.9507% which

is the highest from all the methods and corresponding volume error is 39.38% expressing

that the proposed method results in average in 0.4x smaller area according to manual

delineations.

If we compare the number of incorrect detections we see that the Method 1 has the

lowest numbers (1/24 for CBV maps and 1/24 for PBV maps), the second place gets the

proposed method with 3/24 for CBV maps and 2/24 for PBV maps and at the last place

is for Method 2 with 4/24 for CBV and 6/24 for PBV maps.

8.3.1 Delineated infarction core areas features

As it was already described in Section 8.2.3 the proposed method’s drawback is that it does

not mark voxels having higher values. We can see this feature in the Table 8.10. In this

table we measured the average maximal values (and corresponding standard deviations)

present in the delineated areas. For the manual delineations we used 95% quantile because

of presence of some very high values on borders marked probably by mistake connected

with limited precision of mouse selection with a brush tool.
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Method 1 Method 2 Proposed method

PBV-Ph1 PBV-Ph2 PBV-Ph1 PBV-Ph2 PBV-Ph1 PBV-Ph2

S
en
si
ti
vi
ty

[%
] Mean 89.39 87.20 76.41 70.83 40.01 32.98

St. dev. 13.63 12.87 18.75 17.74 20.56 21.60

Min. 51.82 51.71 39.63 44.11 6.71 6.89

Max. 100.00 96.32 99.35 95.57 64.62 62.04

S
p
ec
ifi
ci
ty

[%
] Mean 94.9389 95.5162 98.6447 98.6970 99.9361 99.9652

St. dev. 2.3713 2.2316 1.1125 1.1142 0.0657 0.0417

Min. 89.6871 90.8134 96.6436 96.6497 99.7645 99.8714

Max. 98.1537 98.4134 99.8121 99.8519 99.9996 100.0000

M
at
th
ew
s
[%

] Mean 19.19 23.22 35.18 37.15 48.41 45.89

St. dev. 6.70 9.08 14.86 13.53 12.17 17.13

Min. 10.90 11.02 17.69 17.80 25.59 22.62

Max. 30.80 37.60 61.33 60.51 65.05 76.19

V
ol
u
m
e
er
ro
r
[c
m

3
]

Mean -266.69 -235.05 -66.54 -60.82 5.13 10.54

St. dev. 124.89 116.70 59.50 60.69 7.32 10.43

Min. -549.06 -488.75 -164.81 -164.24 -7.99 -3.49

Max. -96.87 -83.37 0.73 0.66 15.98 30.58

V
ol
u
m
e
er
ro
r
[%
]

Mean -3150.05 -2170.11 -931.58 -682.30 29.13 49.63

St. dev. 2662.31 2024.74 1106.15 913.13 53.41 45.88

Min. -8304.81 -6783.51 -3048.38 -2749.36 -70.78 -67.79

Max. -822.25 -499.83 3.22 3.13 93.16 93.06

Incorrect detections

0/12 1/12 3/12 3/12 1/12 1/12

Table 8.8: Comparison of performance between different methods using PBV maps
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Method 1 Method 2 Proposed method

CBV-Ph1 CBV-Ph2 CBV-Ph1 CBV-Ph2 CBV-Ph1 CBV-Ph2

S
en
si
ti
vi
ty

[%
] Mean 90.46 83.05 54.86 49.38 42.95 36.60

St. dev. 6.64 15.28 21.17 20.64 18.43 21.23

Min. 78.47 46.26 10.92 4.34 8.51 2.86

Max. 98.98 96.35 77.52 75.10 69.31 68.00

S
p
ec
ifi
ci
ty

[%
] Mean 95.8762 95.8020 99.9148 99.9216 99.9669 99.9804

St. dev. 0.8901 0.7756 0.1172 0.1086 0.0267 0.0159

Min. 93.6712 93.8270 99.5784 99.6303 99.9167 99.9537

Max. 97.2482 96.6611 99.9947 99.9967 99.9996 99.9997

M
at
th
ew
s
[%

] Mean 20.14 22.58 59.42 58.68 53.12 51.13

St. dev. 9.93 9.85 17.15 18.88 16.12 20.51

Min. 6.77 10.01 26.70 18.40 28.43 16.54

Max. 36.15 36.34 83.76 81.51 80.91 80.29

V
ol
u
m
e
er
ro
r
[c
m

3
]

Mean -218.18 -220.62 2.24 6.28 7.09 12.00

St. dev. 51.27 44.89 6.02 4.74 9.60 10.08

Min. -331.60 -320.09 -6.32 0.34 -0.88 -0.20

Max. -146.17 -156.44 16.33 14.89 27.99 36.32

V
ol
u
m
e
er
ro
r
[%
]

Mean -4412.33 -2031.23 15.57 33.71 32.35 51.07

St. dev. 5253.37 1892.32 38.14 27.13 34.57 31.56

Min. -19969.59 -7262.94 -50.88 3.52 -19.73 -6.74

Max. -8304.81 -564.51 83.29 94.45 91.04 97.03

Incorrect detections

0/12 1/12 1/12 3/12 1/12 2/12

Table 8.9: Comparison of performance between different methods using CBV maps
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PBV-Ph1 PBV-Ph2 CBV-Ph1 CBV-Ph2

Proposed method 12.57±9.64 8.61±9.04 12.54±2.60 12.01±2.10

Manual delineations 20.35±14.33 18.53±10.45 20.02±3.76 20.53±2.08

Table 8.10: Comparison of maximal values in detected infarction core areas (values in

ml·l−1)

We can see that the manual delineations by physicians reach almost the threshold

2 ml·100 g−1 (21 ml·l−1) found by study [39]. The proposed method reaches lower values

and thus the delineated area is smaller. The another observation is that the manual

delineations maximal values are almost the same for all CBV maps - average standard

deviation is 2.92 while using the PBV maps the average standard deviation is 24.78 ml·l−1.

This also supports possibility of using a constant threshold for infarction core detection

in CBV maps but in case of PBV maps there should be the threshold found individually

for a patient. The proposed method searches such threshold from the map histogram and

this is probably the reason why it reaches the best results on PBV maps from the tested

methods.

8.4 Discussion

In this chapter we described the process of finding optimal parameters for the proposed

method. Next we mutually compared the results of different automated methods. We

can see that the proposed method is usable with both PBV and also with CBV maps.

If we consider only the CBV maps then the proposed method results are competitive to

the Method 2 (the edge preserving smoothing followed by thresholding and selection of

the largest continuous area as infarction core). For usage with PBV maps the proposed

method reaches the best results from all the tested method.

Analysis of the features of the delineated infarction core areas showed that the proposed

method does not mark infarction core voxels with higher mean values and higher standard

deviations as can be seen in Figures 8.3, 8.4, 8.5. This behavior is a method feature which

is not depended on the selection of the parameters and it causes also the lower maximal

values of the delineated areas and the lower volumes. Using the higher threshold value

(the higher p parameter) would lead to covering the higher mean values but together with

accepting the corresponding low standard deviations which would decrease the match.

It seems that better results could be obtained probably by adjustment of the proposed

method where for the higher mean values would be considered as infarction core only

voxels with higher standard deviations.
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Chapter 9

Conclusion

This work proposed a method for automated infarction core delineation using the PBV

maps and showed that it can be used also with CBV maps. Detected infarction core

volumes are lower than the volumes manually delineated by physicians. The relative

volume error is 39.38% for PBV maps and 41.71% for CBV maps. The volume error

compares just the volume but the overlaying of the automated detections with the manual

detections is expressed by the sensitivity and specificity or also by the Matthews correlation

coefficient. Especially the specificity has high influence to the precision of the infarction

core delineation. The proposed method reached the highest average specificity from the

tested methods. The average specificity (to both physicians) is 99.9507% for PBV maps

and 99.9737% for CBV maps and thus the delineated infarction core areas have the lowest

number of false positive voxels. The proposed method with this high specificity preserves

sensitivity 36.5% for PBV maps and 39.8% for CBV maps. The proposed method has also

relatively low number of incorrect detections 2/24 (8.3%) for PBV maps and 3/24 (12.5%)

for CBV maps.

From the manual delineations marked for our material by two independent physicians

we can confirm supposed infarction core threshold 2.0 ml · 100g−1 (21 ml · l−1) [39]

in the way that the maximal values present in the delineated areas have similar values

(19.44 for PBV maps and 20.28 ml · l−1 for CBV maps). We also reproduced the same

procedure as presented in [39] (with modifications for the whole brain usage) and we found

the optimal values close to the supposed threshold 2.0ml · 100g−1. We must mention that

the [39] does not describe details of the used edge preserving smoothing so it can differ

from the edge preserving smoothing method used in our study. The thresholds reach very

high sensitivities (88.30% for PBV and 86.78% for CBV) but the specificities 95.2276% for

PBV maps and 95.8391% for CBV maps are too low for automated infarction core volume

detections since it provides high number of false positive voxels. It also means that voxels

equal or lower the infarction core thresholds are present also at places where the infarction

core was not marked by physicians. This can explain that the threshold from [39] is in

different studies used only in connection with region of interests delineated by humans or
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with some kind of additional information provided by follow-up examinations where the

final infarction core area is superimposed to the admission images (like in studies [7], [23],

[17]).

The proposed method is unique. It is a fully automated method delineating the infarc-

tion core while minimizing the number of false positive voxels. We did not find any similar

method with comparable results in available literature dealing with automated infarction

core delineation in PBV maps. This automated method could be used by physicians like

a first information about the extent and location of the infarction. The method tend to

delineate smaller infarction core areas according to the manual delineations by physicians

with previously mentioned volume error. Physicians can use this volume information as

another factor helping them with the thrombolytical treatment indication decision.

9.1 Advantages of the proposed method

The used mean filtering is beneficial for processing PBV maps. It smooths the values in

the map enough for further infarction core thresholding purposes. The standard deviations

are also used for segmentation of the cerebral ventricles. The used selection of the largest

continuous area from all the thresholded voxels supports the high specificity of the proposed

method and focuses the delineated area to the same location as marked by physicians and

thus the measured volume is not influenced by false positive areas of different regions. The

overall match evaluation of the proposed method to the manual delineations (the average

Matthews coefficient for PBV maps is 47.15% and for CBV maps 53.13%) is relatively

close to the mutual match between both physicians (Matthews coefficient is 56.90% for

PBV maps and 62.09% for CBV maps).

The proposed method can serve as another tool for physicians which can provide infor-

mation about the location and volume of the infarction. The used algorithm can be easy

parallelized and provide results in a short time. Since the method tends to mark smaller

infarction core areas than by the physicians, the evaluated volume could be considered as

the lowest infarction core volume estimation.

9.2 Disadvantages of the proposed method

Many of the mentioned advantages can be also considered in a way as disadvantages. The

using of the mean filtering smooths the local neighborhood and it can theoretically smooth

out also the little infarctions or to reduce or larger the area of the detected infarctions.

The selection of the largest continuous area satisfying the infarction core threshold can

cause also the incorrect detection - the discarding of the real infarction core area while

accepting larger false-positive one. This criteria has also disadvantage in possible presence

of more than one continuous area of the infarction core in the map which happened 5x in

total of 48 (10.4%) manual delineations by physicians.
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The proposed method also requires the segmentation adjustment step (Section 5) which

in the general use should reflect the rotation of the head and before using of the proposed

method the rotation adjustment should be made.

As the infarction core area is selected the largest continuous area but even if there

would be no infarction core area the method would still select one. This corresponds to

the presence of false positive voxels also in non-infarction core areas.

The used material contains only 12 patients and it would be desirable to prove the

proposed method on a larger set of maps to provide more reliable results.

We can discuss also about the mutual match between physicians which is only 56.90%

for the PBV maps and 62.09% for the CBV maps. It would be desirable to evaluate

match according to some more stable pattern. May be the use of the magnetic resonance

follow-up examinations would provide such pattern but it would also require to use only

recanalised patients.

9.3 Future works proposals

As a future work we can propose to verify the method using the larger set of patients and as

the pattern to use the magnetic resonance follow-up examinations. The another possibility

of the future work is considering the symmetry plane axis and using also information from

the opposite hemisphere.

Another point for the future works can be the fact that the manual delineations made

by the physicians can contain more than one continuous area. The proposed method

was designed according to presumption that there is only one continuous infarction core

area. The future work could handle this situation which would lead to better precision.

Another point could be handling of cases with no infarction core at all. We can see possible

improvement of the method by using atlases which can provide additional information

about the area location and probability whether it is some kind of artifact or not.
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Appendix A

Delineated infarction core areas

features

Following tables express the features of the delineated infarction cores using the found

optimal parameters. The records with no value (-) means incorrect detection or in the

case of the physicians’ manual tracking it means no infarction core area found. The

methods are:

• Method 1 - reproduction of method [39], edge preserving smoothing followed by
thresholding

• Method 2 - same like Method 1 but after thresholding there was selected the largest
continuous area and only this area was considered to be the infarction core

• Proposed method

The optimal parameters for the methods are presented in Table A.1 and in following

table are presented detailed match information where each row expresses the match of

one patient’s map with the corresponding manual delineation by physician. The tables

are 4 for one method reflecting different match type (PBV-Ph1, PBV-Ph2, CBV-Ph1,

CBV-Ph2). The patients are identified by anonymous ID called PID.

Details about the optimal parameters description or the volume error evaluation can

be found in Section 8 and Section 8.3.
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Type Method 1 Method 2 Proposed method

ml · 100g−1

(ml · l−1)

ml · 100g−1

(ml · l−1)

DXY xDZ (k) p

PBV-Ph1 2.0 (21.00) 0.5 (5.25) 10x2 (1) 0.8

PBV-Ph2 1.7 (17.85) 0.5 (5.25) 9x1 (1) 0.7

CBV-Ph1 1.7 (17.85) 0.8 (8.40) 7x1 (0) 0.3

CBV-Ph2 1.7 (17.85) 0.8 (8.40) 7x1 (0) 0.3

Table A.1: Optimal parameters for different methods

PID Sensit.

[%]

Specif.

[%]

Matthews

[%]

Max.

value

[ml · l−1]

Volume

[cm3]

Volume

error [%]

Volume

error

[cm3]

2 6.71 99.9996 25.59 17.41 1.17 93.16 15.98

3 27.91 99.9063 41.31 18.10 13.00 54.81 15.77

6 46.41 99.9604 62.43 15.35 12.46 45.04 10.21

9 16.30 99.9968 37.17 -5.96 1.04 80.80 4.37

13 59.55 99.9356 65.05 22.60 11.94 16.51 2.36

15 49.01 99.9452 62.57 11.64 16.76 38.99 10.71

16 59.76 99.7645 45.61 13.58 19.28 -70.78 -7.99

21 - - - - - - -

23 13.16 99.9990 35.23 -1.70 1.00 86.07 6.20

24 32.93 99.9824 48.72 25.10 3.37 54.40 4.02

25 64.62 99.9188 52.79 2.41 7.62 -49.56 -2.52

41 63.73 99.8883 56.02 19.71 11.75 -29.06 -2.65

Table A.2: Detailed results of PBV-Ph1 by proposed method
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PID Sensit.

[%]

Specif.

[%]

Matthews

[%]

Max.

value

[ml · l−1]

Volume

[cm3]

Volume

error [%]

Volume

error

[cm3]

2 7.00 100.0000 26.39 13.28 0.81 92.98 10.68

3 9.13 99.9553 22.62 13.65 5.50 83.95 28.77

6 55.56 99.8714 59.47 14.55 17.52 13.26 2.68

9 6.89 99.9999 26.13 -8.83 0.41 93.06 5.56

13 62.04 99.9841 76.19 14.74 13.99 33.96 7.20

15 25.84 99.9993 50.56 5.29 10.71 74.06 30.58

16 38.88 99.9811 59.77 10.20 13.34 57.96 18.40

21 - - - - - - -

23 7.07 99.9989 25.39 -4.08 0.70 92.26 8.30

24 44.93 99.9774 55.32 23.09 3.79 34.13 1.96

25 43.48 99.9517 55.16 0.04 8.63 38.11 5.31

41 62.00 99.8977 47.81 12.81 8.65 -67.79 -3.49

Table A.3: Detailed results of PBV-Ph2 by proposed method
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PID Sensit.

[%]

Specif.

[%]

Matthews

[%]

Max.

value

[ml · l−1]

Volume

[cm3]

Volume

error [%]

Volume

error

[cm3]

2 68.83 99.9796 80.91 10.78 25.56 28.13 10.00

3 32.16 99.9730 53.49 10.18 13.87 64.15 24.82

6 69.31 99.9377 76.69 15.80 20.80 18.78 4.81

9 8.51 99.9996 28.43 10.45 0.40 91.04 4.09

13 53.65 99.9855 68.78 13.09 6.63 39.30 4.30

15 45.78 99.9167 50.68 12.17 11.51 18.76 2.66

16 19.45 99.9954 43.18 8.30 7.07 79.85 27.99

21 34.96 99.9521 35.33 17.76 3.97 2.31 0.09

23 41.09 99.9618 37.52 14.07 3.10 -19.73 -0.51

24 38.34 99.9968 52.84 13.77 0.64 47.38 0.57

25 - - - - - - -

41 60.42 99.9373 56.51 11.53 7.10 -14.09 -0.88

Table A.4: Detailed results of CBV-Ph1 by proposed method

89



PID Sensit.

[%]

Specif.

[%]

Matthews

[%]

Max.

value

[ml · l−1]

Volume

[cm3]

Volume

error [%]

Volume

error

[cm3]

2 68.00 99.9781 80.29 10.78 25.56 28.77 10.32

3 26.40 99.9882 49.96 10.18 13.87 72.36 36.32

6 64.28 99.9607 76.14 15.80 20.80 29.18 8.57

9 2.86 99.9997 16.54 10.45 0.40 97.03 13.13

13 55.89 99.9846 69.93 13.09 6.63 36.25 3.77

15 34.17 99.9929 57.20 12.17 11.51 64.52 20.92

16 27.88 99.9872 50.06 8.30 7.07 69.14 15.83

21 - - - - - - -

23 32.62 99.9596 31.54 14.07 3.10 -6.74 -0.20

24 6.26 99.9990 23.94 13.77 0.64 93.17 8.67

25 - - - - - - -

41 47.64 99.9537 55.70 11.53 7.10 27.05 2.63

Table A.5: Detailed results of CBV-Ph2 by proposed method
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PID Sensit.

[%]

Specif.

[%]

Matthews

[%]

Max.

value

[ml · l−1]

Volume

[cm3]

Volume

error [%]

Volume

error

[cm3]

2 - - - - - - -

3 39.63 99.0748 26.87 5.25 60.47 -110.19 -31.70

6 55.86 99.8105 56.56 5.25 21.93 3.22 0.73

9 99.35 96.6436 17.69 5.25 170.22 -3048.38 -164.81

13 73.60 99.8121 61.33 5.25 20.52 -43.46 -6.22

15 72.67 98.8285 39.78 5.25 90.46 -229.26 -62.99

16 73.49 99.2506 35.44 5.25 48.18 -326.75 -36.89

21 - - - - - - -

23 94.84 96.9364 19.48 5.25 169.99 -2259.97 -162.79

24 - - - - - - -

25 98.33 98.0534 21.27 5.25 108.72 -2033.83 -103.63

41 79.93 99.3920 38.21 5.25 39.65 -335.57 -30.54

Table A.6: Detailed results of PBV-Ph1 by Method 2
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PID Sensit.

[%]

Specif.

[%]

Matthews

[%]

Max.

value

[ml · l−1]

Volume

[cm3]

Volume

error [%]

Volume

error

[cm3]

2 - - - - - - -

3 44.11 99.1440 32.74 5.25 60.47 -76.47 -26.21

6 54.08 99.7752 51.69 5.25 21.93 -8.60 -1.74

9 95.23 96.6497 17.80 5.25 170.22 -2749.36 -164.24

13 59.74 99.8519 60.51 5.25 20.52 3.13 0.66

15 61.21 98.9142 40.93 5.25 90.46 -119.07 -49.17

16 60.93 99.4560 49.14 5.25 48.18 -51.80 -16.44

21 - - - - - - -

23 95.57 96.9686 21.94 5.25 169.99 -1789.51 -160.99

24 - - - - - - -

25 85.14 98.1792 30.35 5.25 108.72 -679.72 -94.78

41 81.41 99.3346 29.29 5.25 39.65 -669.33 -34.49

Table A.7: Detailed results of PBV-Ph2 by Method 2
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PID Sensit.

[%]

Specif.

[%]

Matthews

[%]

Max.

value

[ml · l−1]

Volume

[cm3]

Volume

error [%]

Volume

error

[cm3]

2 77.52 99.9495 83.76 8.40 30.24 14.96 5.32

3 58.65 99.5784 54.02 8.40 45.01 -16.34 -6.32

6 73.76 99.9762 83.13 8.40 20.06 21.68 5.55

9 10.92 99.9947 26.70 8.40 0.75 83.29 3.74

13 61.87 99.9785 72.67 8.40 7.90 27.68 3.03

15 75.76 99.8871 67.98 8.40 17.54 -23.81 -3.37

16 42.16 99.9255 57.43 8.40 18.73 46.58 16.33

21 45.10 99.9566 44.61 8.40 4.15 -2.01 -0.08

23 30.21 99.9926 44.78 8.40 1.18 54.54 1.41

24 - - - - - - -

25 - - - - - - -

41 72.68 99.9086 59.12 8.40 9.39 -50.88 -3.17

Table A.8: Detailed results of CBV-Ph1 by Method 2
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PID Sensit.

[%]

Specif.

[%]

Matthews

[%]

Max.

value

[ml · l−1]

Volume

[cm3]

Volume

error [%]

Volume

error

[cm3]

2 75.10 99.9378 81.51 8.40 30.24 15.72 5.64

3 50.76 99.6303 53.16 8.40 45.01 10.33 5.18

6 65.97 99.9861 79.58 8.40 20.06 31.71 9.31

9 4.34 99.9967 18.40 8.40 0.75 94.45 12.78

13 63.64 99.9759 72.94 8.40 7.90 24.05 2.50

15 47.62 99.9652 64.55 8.40 17.54 45.93 14.89

16 54.75 99.8833 60.34 8.40 18.73 18.20 4.17

21 - - - - - - -

23 25.39 99.9917 39.86 8.40 1.18 59.47 1.73

24 - - - - - - -

25 - - - - - - -

41 56.86 99.9275 57.81 8.40 9.39 3.52 0.34

Table A.9: Detailed results of CBV-Ph2 by Method 2
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PID Sensit.

[%]

Specif.

[%]

Matthews

[%]

Max.

value

[ml · l−1]

Volume

[cm3]

Volume

error [%]

Volume

error

[cm3]

2 51.82 94.9512 12.23 21.00 277.27 -1516.55 -260.12

3 74.86 95.4036 24.18 21.00 265.34 -822.25 -236.57

6 94.04 96.1601 30.80 21.00 209.24 -823.34 -186.58

9 100.00 90.8581 10.90 21.00 454.41 -8304.81 -449.00

13 96.79 96.6847 26.48 21.00 190.17 -1229.37 -175.87

15 96.38 93.7769 25.11 21.00 400.96 -1359.34 -373.49

16 96.42 96.1600 22.03 21.00 215.24 -1806.55 -203.95

21 87.65 96.3963 11.99 21.00 195.29 -5183.80 -191.60

23 97.48 89.6871 11.05 21.00 556.26 -7622.61 -549.06

24 80.32 98.1537 21.28 21.00 104.27 -1309.54 -96.87

25 99.92 94.3958 12.94 21.00 303.67 -5860.05 -298.58

41 97.00 96.6397 21.32 21.00 187.72 -1962.38 -178.62

Table A.10: Detailed results of PBV-Ph1 by Method 1
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PID Sensit.

[%]

Specif.

[%]

Matthews

[%]

Max.

value

[ml · l−1]

Volume

[cm3]

Volume

error [%]

Volume

error

[cm3]

2 51.71 95.7568 11.02 17.85 231.74 -1917.85 -220.25

3 76.39 95.9880 28.47 17.85 238.76 -596.75 -204.49

6 91.16 96.8035 30.81 17.85 174.93 -766.20 -154.74

9 95.53 91.7427 11.46 17.85 411.21 -6783.51 -405.24

13 92.02 97.3271 33.18 17.85 161.47 -662.22 -140.29

15 91.85 94.8583 31.44 17.85 346.63 -739.41 -305.34

16 92.61 96.9633 37.60 17.85 190.38 -499.83 -158.64

21 - - - - - - -

23 96.24 90.8134 12.88 17.85 497.75 -5432.72 -488.75

24 79.92 98.4134 20.22 17.85 89.12 -1448.61 -83.37

25 96.32 95.0549 21.56 17.85 276.46 -1882.70 -262.52

41 95.47 96.9571 16.74 17.85 167.04 -3141.40 -161.89

Table A.11: Detailed results of PBV-Ph2 by Method 1
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PID Sensit.

[%]

Specif.

[%]

Matthews

[%]

Max.

value

[ml · l−1]

Volume

[cm3]

Volume

error [%]

Volume

error

[cm3]

2 97.19 95.8445 36.15 17.85 254.70 -616.21 -219.13

3 91.05 93.6712 29.12 17.85 370.29 -857.06 -331.60

6 94.36 96.5034 34.01 17.85 195.20 -662.07 -169.58

9 78.47 96.6116 12.63 17.85 169.98 -3683.87 -165.48

13 92.57 96.0229 20.46 17.85 221.78 -1929.18 -210.85

15 97.44 95.4696 21.59 17.85 287.02 -1926.49 -272.86

16 79.98 96.5169 32.08 17.85 212.57 -506.32 -177.51

21 88.26 97.2482 14.46 17.85 150.23 -3593.24 -146.17

23 86.80 96.0270 9.49 17.85 214.03 -8158.84 -211.44

24 96.13 95.4776 6.77 17.85 242.28 -19969.59 -241.07

25 84.24 96.2125 10.15 17.85 204.41 -6690.02 -201.39

41 98.98 94.9089 14.81 17.85 277.35 -4355.01 -271.12

Table A.12: Detailed results of CBV-Ph1 by Method 1
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PID Sensit.

[%]

Specif.

[%]

Matthews

[%]

Max.

value

[ml · l−1]

Volume

[cm3]

Volume

error [%]

Volume

error

[cm3]

2 96.35 95.8444 35.98 17.85 254.70 -609.84 -218.81

3 88.03 93.8270 31.96 17.85 370.29 -637.70 -320.09

6 94.18 96.5722 36.34 17.85 195.20 -564.51 -165.82

9 46.26 96.6611 12.51 17.85 169.98 -1155.93 -156.44

13 93.74 96.0165 20.23 17.85 221.78 -2031.05 -211.37

15 91.19 95.7182 30.43 17.85 287.02 -785.05 -254.59

16 88.64 96.3790 28.89 17.85 212.57 -828.41 -189.67

21 - - - - - - -

23 86.51 96.0317 10.01 17.85 214.03 -7262.94 -211.12

24 72.51 95.5757 13.95 17.85 242.28 -2504.85 -232.98

25 62.21 96.2347 10.54 17.85 204.41 -3214.58 -198.24

41 93.99 94.9617 17.53 17.85 277.35 -2748.64 -267.61

Table A.13: Detailed results of CBV-Ph2 by Method 1
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Appendix B

Depiction of the individual

delineations

Following figures show comparison of different methods automatically delineating the in-

farction core. There are presented matches for each patient of the used material individ-

ually. Each figure is divided into 4 areas. The upper-left area corresponds to PBV-Ph1,

upper-right to PBV-Ph2, lower-left to CBV-Ph1 and lower-right to CBV-Ph2. In each area

the first row corresponds to manual delineation by physician, second row to the proposed

method, third row to Method 2 and the fourth row to Method 1. Columns corresponds to

different location in the map. Detected infarction cores are marked by red color. For the

maps depiction is used windowing method with settings of the window center to value 50

and window width to 100 ml · l−1.
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Figure B.1: Patient 2 - Comparison of different automated methods for infarction core

detection (red color). Upper-left area corresponds to PBV-Ph1, upper-right to PBV-Ph2,

lower-left to CBV-Ph1 and lower-right to CBV-Ph2. In each area the 1. row corresponds

to manual delineation by physician, 2. row to the proposed method, 3. row to Method 2

and 4. row to Method 1. Columns corresponds to different location in the map.
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Figure B.2: Patient 3 - Comparison of different automated methods for infarction core

detection (red color). Upper-left area corresponds to PBV-Ph1, upper-right to PBV-Ph2,

lower-left to CBV-Ph1 and lower-right to CBV-Ph2. In each area the 1. row corresponds

to manual delineation by physician, 2. row to the proposed method, 3. row to Method 2

and 4. row to Method 1. Columns corresponds to different location in the map.
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Figure B.3: Patient 6 - Comparison of different automated methods for infarction core

detection (red color). Upper-left area corresponds to PBV-Ph1, upper-right to PBV-Ph2,

lower-left to CBV-Ph1 and lower-right to CBV-Ph2. In each area the 1. row corresponds

to manual delineation by physician, 2. row to the proposed method, 3. row to Method 2

and 4. row to Method 1. Columns corresponds to different location in the map.
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Figure B.4: Patient 9 - Comparison of different automated methods for infarction core

detection (red color). Upper-left area corresponds to PBV-Ph1, upper-right to PBV-Ph2,

lower-left to CBV-Ph1 and lower-right to CBV-Ph2. In each area the 1. row corresponds

to manual delineation by physician, 2. row to the proposed method, 3. row to Method 2

and 4. row to Method 1. Columns corresponds to different location in the map.
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Figure B.5: Patient 13 - Comparison of different automated methods for infarction core

detection (red color). Upper-left area corresponds to PBV-Ph1, upper-right to PBV-Ph2,

lower-left to CBV-Ph1 and lower-right to CBV-Ph2. In each area the 1. row corresponds

to manual delineation by physician, 2. row to the proposed method, 3. row to Method 2

and 4. row to Method 1. Columns corresponds to different location in the map.
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Figure B.6: Patient 15 - Comparison of different automated methods for infarction core

detection (red color). Upper-left area corresponds to PBV-Ph1, upper-right to PBV-Ph2,

lower-left to CBV-Ph1 and lower-right to CBV-Ph2. In each area the 1. row corresponds

to manual delineation by physician, 2. row to the proposed method, 3. row to Method 2

and 4. row to Method 1. Columns corresponds to different location in the map.
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Figure B.7: Patient 16 - Comparison of different automated methods for infarction core

detection (red color). Upper-left area corresponds to PBV-Ph1, upper-right to PBV-Ph2,

lower-left to CBV-Ph1 and lower-right to CBV-Ph2. In each area the 1. row corresponds

to manual delineation by physician, 2. row to the proposed method, 3. row to Method 2

and 4. row to Method 1. Columns corresponds to different location in the map.
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Figure B.8: Patient 21 - Comparison of different automated methods for infarction core

detection (red color). Upper-left area corresponds to PBV-Ph1, upper-right to PBV-Ph2,

lower-left to CBV-Ph1 and lower-right to CBV-Ph2. In each area the 1. row corresponds

to manual delineation by physician, 2. row to the proposed method, 3. row to Method 2

and 4. row to Method 1. Columns corresponds to different location in the map.
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Figure B.9: Patient 23 - Comparison of different automated methods for infarction core

detection (red color). Upper-left area corresponds to PBV-Ph1, upper-right to PBV-Ph2,

lower-left to CBV-Ph1 and lower-right to CBV-Ph2. In each area the 1. row corresponds

to manual delineation by physician, 2. row to the proposed method, 3. row to Method 2

and 4. row to Method 1. Columns corresponds to different location in the map.
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Figure B.10: Patient 24 - Comparison of different automated methods for infarction core

detection (red color). Upper-left area corresponds to PBV-Ph1, upper-right to PBV-Ph2,

lower-left to CBV-Ph1 and lower-right to CBV-Ph2. In each area the 1. row corresponds

to manual delineation by physician, 2. row to the proposed method, 3. row to Method 2

and 4. row to Method 1. Columns corresponds to different location in the map.

109



Figure B.11: Patient 25 - Comparison of different automated methods for infarction core

detection (red color). Upper-left area corresponds to PBV-Ph1, upper-right to PBV-Ph2,

lower-left to CBV-Ph1 and lower-right to CBV-Ph2. In each area the 1. row corresponds

to manual delineation by physician, 2. row to the proposed method, 3. row to Method 2

and 4. row to Method 1. Columns corresponds to different location in the map.
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Figure B.12: Patient 41 - Comparison of different automated methods for infarction core

detection (red color). Upper-left area corresponds to PBV-Ph1, upper-right to PBV-Ph2,

lower-left to CBV-Ph1 and lower-right to CBV-Ph2. In each area the 1. row corresponds

to manual delineation by physician, 2. row to the proposed method, 3. row to Method 2

and 4. row to Method 1. Columns corresponds to different location in the map.
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