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ABSTRACT
We propose a simple and efficient method to reconstruct materials’ bidirectional texture functions (BTFs) from
angularly sparse measurements. The key observation is that materials of similar types exhibit both similar surface
structure and reflectance properties. We exploit this by manually clustering an existing database of fully measured
material BTFs and fitting a linear model to each of the clusters. The models are computed not on per-texel data
but on small spatial BTF patches we call apparent BTFs. Sparse reconstruction can then be performed by solving
a linear least-squares problem without any regularization, using a per-cluster sampling strategy derived from the
models. We demonstrate that our method is capable of faithfully reconstructing fully resolved BTFs from sparse
measurements for a wide range of materials.
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1 INTRODUCTION
In many applications, it is desirable or even imperative
to reproduce a material’s appearance faithfully and,
possibly, in real-time. For a wide range of materi-
als bidirectional texture functions (BTFs) – loosely
speaking, an image-based variant of the better known
spatially varying bidirectional reflectance distribution
functions (SVBRDFs) – provide good reproduction
quality, even at interactive frame rates. The acquisition
of high-quality, high-resolution BTFs of real-world
materials is, however, by many means expensive.
In particular, measurement times of typically many
hours per material make it very cumbersome to obtain
large BTF databases, as pictures of the material to be
measured have to be taken from many different viewing
angles and under many different lighting conditions.

We propose a simple and efficient method for the sparse
acquisition of material BTFs, assuming a sufficiently
large and heterogenous database of fully measured ma-
terials is available:

We demonstrate that linear models describing material
reflectance per texel are insufficient for this task be-
cause effects not local to texels frequently occur. We
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Figure 1: Left: Reference rendering along with the full
sampling. Right: Sparse sampling used to produce the
rendering of a sparse reconstruction shown below.

show that, instead, small BTF patches we call apparent
BTFs (ABTFs) provide a suitable foundation for such
models. In order to account for the high variance of
material surfaces, we propose to fit models to patches
clustered by semantic material class. From these mod-
els, sparse sampling strategies can be deduced that take
advantage of the peculiarities of existing BTF acqui-
sition devices. Reconstruction from such sparse mea-
surements can then be achieved efficiently by solving a
simple linear least-squares problem without regulariza-
tion.

We demonstrate that our method is able to reconstruct
fully resolved material BTFs of good quality from as
little as 6% of the original samples. It can be used
for substantially improving acquisition times or angu-
lar resolution, thus benefiting the most common BTF
acquisition devices.

Journal of VSCG

Volume 22, 2014 83 ISSN 1213-6972

CORE Metadata, citation and similar papers at core.ac.uk

Provided by DSpace at University of West Bohemia

https://core.ac.uk/display/295560228?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 BACKGROUND
2.1 Bidirectional texture functions
BTFs have been introduced by Dana et al. [1] as an
image-based approach to spatially varying appearance.
Like SVBRDFs, they are 6-dimensional functions of
the form

B(x,ωi,ωo),

where ωi,o ∈ R2 are the incoming and outgoing light
directions, respectively, and x ∈ R2 is the position on a
parameterized surface V . In the case of material BTFs,
V is typically flat; it does not need to coincide with the
material’s actual surface geometry. It is generally as-
sumed that light sources are directional and have the
same spectrum. In particular, effects such as phospho-
rescene, fluorescence and subsurface scattering cannot
be captured accurately.

The fundamental difference from SVBDRFs is that the
function B(x,−) need not be BRDF-valued: the corre-
sponding per-texel reflectance function does not need
to adhere to Helmholtz reciprocity and conservation of
energy and is, therefore, capable of capturing non-local
effects such as interreflections and self-shadowing.
Moreover, because V does not necessarily coincide
with the actual surface, the per-texel reflectance
functions may also describe parallax effects. For these
reasons, the term apparent BRDF (ABRDF) has been
suggested by Wong et al. [18] for this kind of functions.
Conversely, the values of the function B(−,ωi,ωo)
are just 2D textures corresponding to specific pairs of
incoming and outgoing light directions.

2.2 BTF acquisition
Several setups for the acquisition of BTFs have been
proposed. We briefly review the most prominent
paradigms, as our method benefits all of them to a
greater or lesser extent. An in-depth overview can be
found in [16].

2.2.1 Gonioreflectometer
In what is historically the first BTF acquisition setup,
proposed by Dana et al. [1], the material sample is
placed on a turntable, and a camera and a light source
held by robot arms are moved across the hemisphere
above the sample to capture images of the sample under
different lighting and viewing conditions. The goniore-
flectometer is very flexible in terms of possible sam-
plings of the hemisphere, but measurement times are
excessive – on the order of weeks for a moderate angu-
lar resolution – due to the little amounts of light sources
and sensors and the movable parts’ low speeds.

2.2.2 Kaleidoscope
Han et al. [7] introduced an intriguing parallel setup:
The sample is placed underneath a tapered kaleido-
scope, lit and captured from a projector and a camera

placed at the other end, which allows for a number of
lighting and viewing conditions to be measured in a sin-
gle camera shot. By appropriately arranging the mir-
rors, the angular and spatial resolution can be adjusted;
however, both are typically rather low, and increasing
one leads to a decrease of the other, so there is always a
tradeoff to be made.

2.2.3 Camera domes

Camera domes as proposed, for instance, by Müller et
al. [11] and Schwartz et al. [15] ideally provide a highly
parallel means to acquire BTFs: A number of cam-
eras is spread across the hemisphere above the sample
holder. Their flashes or separate LEDs are used as light
sources. Parallelism may be traded for fewer cameras
and lower cost by placing the sample on a turntable in
order to achieve a similarly dense sampling of the hemi-
sphere. Due to the number of cameras, data transfer
times become a new bottleneck.

In all of the above setups, it is usually necessary to cap-
ture the same scene several times with different shutter
times in order to obtain HDR data.

2.3 Related work
To the best of our knowledge, no method for sparse re-
construction of entire BTFs has been proposed so far.
There exists, however, a number of methods for lower-
dimensional reflectance models:

In [10], Matusik et al. perform singular value decom-
position (SVD) on a database of 100 measured BRDFs
of a wide range of isotropic materials to obtain a linear
model.

In [9], the same authors introduce two methods for
sparse reconstruction of isotropic BRDFs: The first
method is based on a wavelet analysis of their BRDF
database. A set of basis wavelets termed common
wavelet basis is determined and used to reconstruct pre-
viously unseen BRDFs with approximately 1.5 million
samples from approximately 70000 measurements. The
second method uses the entire BRDF database itself
as a linear model for reconstruction of fully measured
BRDFs from as little as 800 out of the original approx-
imately 1.5 million samples, at the cost of slightly in-
creased reconstruction errors and the required availabil-
ity of the BRDF database. Samples are chosen using a
simple optimization algorithm such that the linear sys-
tem to be solved for reconstruction is well-conditioned.
They do not investigate how well their methods gener-
alize to more complex reflectance such as anisotropic
BRDFs or ABRDFs.

In [2], Dong et al. reconstruct a material’s SVBRDF
from a sparse measurement using a manifold con-
structed from analytical BRDFs fit to fully measured
BRDFs of manually selected representative points on
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the material’s surface. The algorithm is unlikely to
scale to BTFs because of the typically much higher
intrinsic dimensionality of the ABRDF manifold (cf.
section 4.1.1). A generalization to previously unseen
materials is not obvious, albeit conceivable.

Peers et al. [13] introduce compressed sensing [3] to
the acquisition of reflectance fields, assuming both 2D
outgoing (here: fixed viewing direction) and incident
light fields. Their algorithm uses a hierarchical, multi-
resolution Haar wavelet basis, taking spatial coherence
into account. It is not clear how to extend this approach
to a multi-view setup. Common BTF acquisition setups
only have a very limited number of light sources, where
the advantage of compressed sensing might be negligi-
ble. Due to these light sources’ brightness, we expect
shot noise to become a problem.

Conversely, in [8], Marwah et al. use sparsity-based
methods related to compressed sensing in order to
sparsely acquire 4D light fields with an angular res-
olution of 5× 5. They compute a dictionary of what
they call light field atoms – 11 × 11 spatial light field
patches which allow for a sparse representation of
natural light fields. Such a dictionary does not exist
in the case of ABRDFs or ABTFs; as demonstrated in
section 4.1.1, their dimensionality is likely too high.

Filip et al. [5] propose a vector quantization of BTFs for
the purpose of compression, guided by a psychophys-
ically validated metric. They conclude that as little as
10 – 35 % of the original textures are sufficient to main-
tain the same visual appearance in renderings. It would
be interesting to investigate whether there is a common
quantization for all materials, and if so, whether it could
be used for sparse acquisition. A large user study would
be needed in order to adapt the metric to a bigger BTF
database.

3 LINEAR MODELS FOR MATERIAL
BTFS

During measurement, a finite discretization of the mea-
sured material’s BTF B is obtained. After rectification
of the acquired images, the discrete BTF has a natural
representation as a matrix B ∈ Rn×m with the columns
representing the m discrete ABRDFs, each entry cor-
responding to some pair (ωi,ωo) of incoming and out-
going angle, and the rows representing the n rectified
textures (cf. figure 2).

3.1 Linear models & reconstruction
The goal is now to recover B from a sparse measure-
ment

B̃ = MB

of ns samples, where M ∈ Rns×n is a measurement ma-
trix, typically binary, which determines the sparse sam-
pling.

(x, y)

(ω
i,
ω
o)

Figure 2: Representation of a discretized BTF as a ma-
trix.

Arguably one of the most simple methods to attack this
problem is, given fully resolved training data D, to fit
a linear model D ≈ UC. An optimal fitting method in
terms of L2 error is to compute a truncated SVD

D≈ UΣVt

as established by the Eckart-Young theorem [4]. The
hope is that the model both

• generalizes to previously unknown data; i.e.

min
CB
‖UCB−B‖< ε (1)

• is expressive enough that a sparse sampling is suffi-
cient to find reasonable coefficients; i.e.

min
CB
‖M(UCB−B)‖< δ =⇒ ‖UCB−B‖< ε (2)

Provided B̃ has at least as many rows as columns, an
approximation of B may then be obtained via

B≈ U(MU)†B̃, (3)

where (MU)† denotes the Moore-Penrose pseudo-
inverse of MU.

It is well-known that the fitting of linear models through
minimization of L2 error is sensitive to outliers. In or-
der to decrease the influence of specular highlights, we
reduce the data’s dynamic range by converting the mea-
sured HDR RGB data to YUV color space, dividing the
U and V values by the corresponding Y value and ap-
plying log to the Y values.

Despite its simplicity, this approach has been demon-
strated in [9] to be quite effective in the special case of
isotropic BRDFs. It seems thus worthwhile to investi-
gate whether this generalizes to ABRDFs.

3.2 Linear models for ABRDFs
Linear models for ABRDFs are already being used for
compression and rendering of BTFs, often under the
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moniker full matrix factorization (FMF). In that case,
models are fit to a certain material’s ABRDFs only; i.e.
to B instead of a whole database D. The columns of U
and V are commonly refered to as eigen-ABRDFs and
eigentextures, respectively [12], in reference to their se-
mantic meaning.

It is reasonable to assume that for BTFs the ABRDFs
of which are close to being true BRDFs, a linear model
may perform similarly well as in [9] [10] with respect to
equations 1 and 2. However, as soon as surface struc-
ture becomes significant, reconstructions from sparse
measurements might easily miss effects such as self-
shadowing, interreflections, occlusion and parallax. We
shall demonstrate in section 4.2 that this is indeed the
case.

3.3 Linear models for ABTFs
In order to overcome these problems, we take spatial
information into account: instead of considering only
ABRDFs, we consider entire collections of neighboring
ABRDFs, which we call apparent BTFs (ABTFs), as
similar to ABRDFs they capture effects not local to the
specific patch such as interreflections or shadows cast
from neighboring patches.

The matrix B then takes on a different form, with its
columns representing discrete ABTFs, for instance as
vectors of stacked discrete ABRDFs belonging to the
same neighborhood. The corresponding measurement
matrix becomes 1p2 ⊗M, where p denotes the spatial
patch size and ⊗ the Kronecker product.

Note that an alternative to patches exists in the form of
appropriate filter banks, as e.g. demonstrated by Peers
et al. [13] A case has been made in favor of the sim-
pler spatial patches by Varma et al. [17], albeit in the
case of material classification: the authors demonstrate
that classification using spatial patches, which can be
as small as 3× 3 texels, is superior to that using filter
banks with equivalent support.

The intrinsic dimensionality of the ABTF database is
likely higher than that of the ABRDF database; in the
worst case by a factor equal to the patch size. To mit-
igate this to some extent, we propose to cluster the
database such that each cluster contains only materials
with similar surface structure, and determine the linear
models Dcluster ≈ UΣVt per cluster. The columns of U
shall be called eigen-ABTFs.

3.4 Sampling strategies
Once a model satisfying equation 1 has been estab-
lished, a measurement matrix M that takes advantage of
the model needs to be devised. We chose to implement
the simple optimization algorithm proposed in [10]:

M ∈ Rns×n is initialized as random binary matrix
with precisely one 1 on each row. The algorithm then

randomly replaces one row of M with a different ran-
dom binary unit row vector. If the condition number
κ(MU) does not decrease, the change is reverted. This
is repeated until convergence or a maximum number of
steps is reached (cf. algorithm 1). For ABTFs, the con-
dition number κ((1p2 ⊗M)U) is tested instead.

The intuition behind this choice is that the condition
number κ(MU) is an indicator of how robustly MU can
be inverted; i.e. of how well coefficients CB as in equa-
tion 2 can be found.

In its present form the algorithm is free to choose what-
ever pairs of incoming and outgoing light directions
lead to well-conditioned linear system. This approach
suits best the gonioreflectometer setup, where all such
pairs have equal costs. The algorithm can easily be
modified to take the parallelism of camera dome setups
into account.

While undersampling could be used in the kaleidoscope
setup as well, we argue it is more beneficial to use
the proposed method in order to increase the kaleido-
scope’s limited angular resolution.

Algorithm 1 Generation of a measurement matrix.
Input: desired number ns of samples
Output: optimized measurement matrix M ∈ Rns × n

M← random binary with exactly one 1 per row
while not converged do

M′←M
r← random binary row vector with ‖r‖0 = 1
random row of M← r
if κ(M′U)< κ(MU) then

M←M′
end if

end while
return M

4 RESULTS

For our experiments, we used an existing database of
high-quality measured BTFs. The measurement device
used to create the database is a camera dome with 151
cameras, the flashes of which are used as light sources,
resulting in an angular resolution of 151×151 (cf. fig-
ure 3a). The rectified textures have a spatial resolu-
tion of 512 × 512 pixels and correspond to a part of
the sample approximately 4 cm× 4 cm in size. The
database consists of 14 semantic classes with 12 mate-
rials each. We selected the classes carpet, cloth, gravel,
leather, metal, stone, wall tile, wallpaper and wood,
which exhibit significant inter- and intraclass variance.
We used 11 materials per class for fitting the linear
models and the remaining material per class for the pur-
pose of validation.
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(a) (b)
Figure 3: (a) Sketch of the acquisition setup. The red
points correspond to both light sources and cameras.
(b) Sketch of the 7 × 7 parabolic map sampling. The
red points correspond to both light sources and cameras.

All computations have been performed using MATLAB
2011b under Windows XP on a machine with two Intel
Xeon E5645 processors and 144 GB of RAM.

4.1 Model fitting
Computing at once a truncated SVD for either of the
entire database, or even single clusters thereof, is pro-
hibitive due to the computation time required. We
therefore used eigenspace merging to compute the SVD
hierarchically; i.e. we first use EM-PCA (cf. [14]) to
obtain approximate truncated SVDs of the single BTFs
and subsequently merge the resulting eigenspaces (cf.
e.g. [6]). In order to further reduce computation times,
we cropped the BTFs to a spatial extent of 128× 128
texels. For the purpose of comparison, we fit linear
models both to the ABRDF and the ABTF database.

4.1.1 ABRDFs
For a single one of our BTFs, 200 eigen-ABRDFs for
the log(Y ) channel and 100 eigen-ABRDFs for each the
U/Y and the V/Y channel provide a very high reproduc-
tion quality. We merged the resulting eigenspaces first
per cluster and then globally to obtain an ABRDF ba-
sis of 2048 eigen-ABRDFs. The entire process takes
approximately 30 minutes per cluster, including disk
I/O and the color space transformation, hence about 4.5
hours altogether.

Table 1 shows the relative projection errors ε that oc-
cur when projecting the log(Y ) channel of the test ma-
terial’s BTF onto the corresponding bases for various
numbers of basis ABRDFs; i.e.

ε =
‖U(U′B)−B‖F

‖B‖F

where ‖ · ‖F denotes the Frobenius norm. For compar-
ison, we include the relative projection errors for the
fully measured BTFs after FMF-compression retaining
128 eigen-ABRDFs, a number suitable for high-quality
real-time rendering. Typically, 1024 basis ABRDFs are
sufficient to achieve good projection results, which is
the lower limit on the number of samples necessary for
sparse reconstruction via equation 3.

4.1.2 ABTFs
For ABTFs, we computed bases per cluster. Following
the argument in [17], we used a spatial ABTF size of
3× 3. For performance reasons, we selected ABTFs
maximally without overlap, resulting in a database of
1764 ABTFs per material and 19404 ABTFs per clus-
ter. We again first computed bases per-material, retain-
ing 200 eigen-ABTFs for the log(Y ) channel and 100
eigen-ABTFs for each the U/Y and the V/Y channel,
and then merged the resulting eigenspaces per cluster.
This process takes approximately 2 hours per cluster, or
18 hours in total.

Table 1 shows relative projection errors (cf. sec-
tion 4.1.1) for the log(Y ) channel for 1024 and 2048
basis ABTFs in comparison with errors for reconstruc-
tions from ABRDF-wise projections. The projections
themselves were produced by collecting all possible
3 × 3 ABTFs from the test BTF and projecting them
onto the appropriate cluster’s basis. BTFs are obtained
from this representation by computing the reconstruc-
tion and blending the patches, all texels weighted
equally. Typically, 2048 basis ABTFs provide almost
as good projections results as 1024 basis ABRDFs.

4.2 Reconstruction
Figure 4 shows renderings of BTFs reconstructed with
the proposed method, table 2 the corresponding relative
reconstruction errors

ε =
‖U((MU)†B̃)−B‖F

‖B‖F
.

For comparison, we include renderings of the FMF-
compressed original fully measured BTFs and their
sparse reconstructions from ABRDF-wise linear mod-
els, along with the relative projection errors, which con-
stitute lower limits for the relative reconstruction er-
rors. BTFs were produced from ABTF-wise sparse re-
constructions as described in section 4.1.2. We used
two different sampling strategies: a 7 × 7 parabolic
map mapped to the closest light and camera positions
of the acquisition setup’s full sampling, which may be
considered a vague approximation of a kaleidoscope’s
sampling (cf. figure 3b), and optimized samplings with
the same number of samples produced by algorithm 1.
Both samplings consist of 1369 samples in total, or 6 %
of the original 22801 samples.

4.2.1 ABRDFs
As predicted in section 3.2, ABRDF-wise reconstruc-
tion produces acceptable results only for materials with
simple surface structure and reflectance – here: stone
and wood – and even then only with the optimized sam-
pling. Leather and metal already exhibit annoying ar-
tifacts; the results for even more complex materials are
unsuitable for any practical purpose.
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# basis ABRDFs # basis ABTFs
class FMF 128 256 512 1024 2048 1024 2048

carpet 5.4 6.2 5.6 5.1 4.6 4.0 5.3 5.1
cloth 2.7 4.0 3.2 2.6 2.1 1.7 2.9 2.7
gravel 5.0 8.0 6.7 5.6 4.7 4.0 5.4 4.9
leather 1.5 2.9 2.4 2.0 1.6 1.3 1.9 1.8
metal 1.0 3.2 2.5 2.1 1.8 1.6 2.7 2.2
stone 0.6 3.1 2.5 2.0 1.5 1.2 1.8 1.5
wall tile 0.4 5.6 4.7 3.8 2.9 2.1 2.2 1.7
wallpaper 2.7 5.2 4.4 3.6 3.0 2.4 3.4 3.1
wood 0.8 2.3 1.9 1.6 1.3 1.0 1.2 1.1

Table 1: log(Y ) channel relative L2 projection errors in percent for various numbers of basis ABRDFs. FMF:
Projection onto per-material ABRDF basis with 128 eigen-ABRDFs.

ABRDF ABTF
class proj pmap7 optimized proj pmap7 optimized

carpet 4.6 27.6 11.4 5.1 7.3 6.3
cloth 2.1 11.1 5.4 2.7 3.6 3.2
gravel 4.7 26.7 11.8 4.9 8.0 7.0
leather 1.6 8.0 4.0 1.8 2.3 2.1
metal 1.8 8.8 4.6 2.2 3.8 3.3
stone 1.5 6.3 3.4 1.5 2.3 2.3
wall tile 2.9 10.0 6.3 1.7 6.9 6.8
wallpaper 3.0 14.8 7.0 3.1 4.2 4.2
wood 1.3 6.3 2.9 1.1 1.6 1.5

Table 2: log(Y ) channel relative L2 reconstruction errors per cluster in percent. proj: Projection onto common
basis. pmap7: Results for reconstruction from parabolic map sampling. optimized: Results for reconstruction
from optimized sampling.

4.2.2 ABTFs

In contrast, even the non-optimized sampling is suffi-
cient to produce convincing reconstructions of moder-
ately complex materials using ABTF models. Where it
is not, the optimized sampling often helps; only gravel
and wallpaper exhibit perceivable artificats. The high-
light of wall tile is not quite as sharp as it should be, and
there are some artifacts in the highlight of metal visible
mostly in the corresponding amplified error image (cf.
figure 4f).

4.3 Limitations
While the proposed algorithm performs well in many
situations, it has a number of limitations:

Most notably, it relies on the availability of a database
of fully measured BTFs. Depending on the materials to
be measured, that database must be quite encompass-
ing; however, if e.g. only leathers are going to be mea-
sured, then a small database of a few measured leather
BTFs might already be sufficient.

Without any regularization the lowest possible number
of samples is precisely the number of basis ABTFs di-
vided by the patch size. Typically, a greater number is
necessary for robust results.

Reconstructions of material BTFs with highly complex
surface structure may still suffer from artifacts visible
in common lighting scenarios. It is not clear whether
larger patch sizes could mitigate this. Even if so, this
would likely lead to an undesirable significant increase
of computation times and memory consumption.

For the same reason, the algorithm is constrained to
moderate sampling rates. It would also be difficult
to bootstrap a sufficiently large and heterogenous BTF
database with substantially higher sampling rates.

5 CONCLUSION
We demonstrated the general possibility of efficient
sparse acquisition of BTFs for a wide range of mate-
rials, provided a database of fully measured optically
similar materials is available.

It would be interesting to investigate whether our results
could be improved further. A possible approach is to
further improve the linear bases, for instance by feature-
aligning the ABTFs prior to fitting the models. It is
also unclear how suitable our manual clustering of the
database actually is. Automatic methods might be able
to find a better optimization, possibly even consisting
of fewer classes.
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(a) (b) (c) (d) (e) (f)
Figure 4: Renderings of reconstruction results.
(a) ABRDF-based reconstructions from 7 × 7
parabolic map sampling (1369 samples).
(b) ABRDF-based reconstructions from optimized
sampling (1369 samples).
(c) FMF-compressed ground truth (22801 samples).
(d) ABTF-based reconstructions from optimized sam-
pling (1369 samples).
(e) ABTF-based reconstructions from 7 × 7 parabolic
map sampling (1369 samples).
(f) 20 × absolute differences between (c) and (d).

Moreover, our linear models might also be useful for
purposes other than sparse reconstruction; for instance,
it might be possible to use them to leverage the quality
of BTF measurements produced with consumer-grade
hardware, or under conditions less controlled than in
the discussed setups.
Although the improvement in measurement cost is sig-
nificant, the amount of samples needed still leaves room
for further improvement. Depending on the material, it

should not be impossible — at least given a rough es-
timate of the material’s surface structure — to obtain
satisfactory reconstruction results from less than 100
images. Both our experiments and compressed sens-
ing theory suggest, however, that this barrier cannot be
broken merely using unregularized linear methods. It
thus seems worthwhile to investigate non-linear meth-
ods such as manifold learning or texture synthesis.
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