
 page 1

Line Clipping in E2 with O(1) Processing Complexity

Václav Skala1
 Computer Science Department

University of West Bohemia
Univerzitni 22, Box 314, 306 14 Plzeò - Bory

Czech Republic
 skala@kiv.zcu.cz http://yoyo.zcu.cz/~skala

Abstract

 A new algorithm for line clipping by convex polygon with O()1 processing
complexity is presented. It is based on dual space representation and space subdivision
technique. The suggested algorithm also demonstrates that pre-processing can be used in
order to speed up solution of some problems in computer graphics applications significantly.
Theoretical considerations and experimental results are also presented.

Keywords: Line Clipping, Convex Polygon, Computer Graphics, Algorithm Complexity,

Geometric Algorithms, Algorithm Complexity Analysis.

1. Introduction

 It is well known that in many applications it is possible to use pre-processing in order
to speed up the processing. Pre-processing enables to us to decrease run-time complexity
significantly because some parts are stable in their expected usage. Of course it can be used in
clipping algorithms only in those cases when the clipping polygon is constant. Line clipping
algorithms with many modifications in E2 have been published so far, see [Ska94a] for
known references. The Cyrus-Beck (CB) algorithm is very often used for comparisons as its
is very stable. The usual complexity of line clipping algorithms in E2 is O N() or O N(lg) ,
where N is a number of polygon edges, see [Ska94a] for references. The pre-processing
complexity must also be taken into account for overall computational complexity and
algorithm efficiency considerations.

2. Dual space representation

 A line r is usually described by the equation
ax by c+ + = 0

and can be rewritten as
y kx q= + if b ≠ 0

resp.
x my p= + if a ≠ 0

or
x
p

y
q

+ = 1 if c ≠ 0

It means that the line r E∈ 2 can be represented in dual space representation as a point
D r k q D E() [,] ()= ∈ 2 , resp. D r m p D E() [,] ()= ∈ 2 , see Fig.2.1, using an asymmetrical
model of dual space representation. There is also a possibility to use the a symmetrical model
where the line r is represented as a point D r p q D E() [,] ()= ∈ 2 , but this representation is

1 Supported by the grant UWB-156/95; Accepted for publication in Computers&Graphics, Vol.20, No.4.,1996

Computers & Graphics, Vol.20, No.4, pp.523-530, 1996.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace at University of West Bohemia

https://core.ac.uk/display/295560044?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 page 2

not convenient for our considerations. For more theoretical background of dual space
representation, see [Sto89a], [Zac95a]. Dual space representation has very interesting
properties and applications can be found in [Nie95a], [Kol94a], [Zac95b]. Generally it is
possible to show relations between fundamental geometric primitives by Table 1.1. In the
following text we will consider situations in E 2 only. A similar approach can be used for
other geometric primitives.

Space Euclidean
representation

Dual
representation

E 2 line
point

point
line

E 3

plane
line

point

point
line

plane

 Fundamental relations between geometric primitives
Table 1.1.

It can be shown that a convex polygon P E∈ 2 , see Fig.2.1.a, can be represented by an
infinite area in the dual space D E()2 if asymmetrical model is used for dual space
representation [Zac95a], see Fig.2.1.b, resp. Fig.2.1.c. It can be also shown that the line r
intersects the polygon edges (,)e ea b if and only if the point D r() lies in a zone (,)a b in
dual space representation. The line r1 intersects edges (,)e e1 2 and therefore the point D r()2
lies in the zone (,)1 2 , similarly for the line r2 .
The detection whether a line r intersects a convex polygon P is dual to the modified well
known Point-in-polygon test. Algorithms for Point-in-polygon test usually have O N() or
O N(lg) processing complexities. The algorithm complexity can be reduced to an O()1
processing complexity without using parallel processing if pre-processing is used, see
[Ska94b] for details.
 However the line clipping problem solution generally consists of two steps:

 - detection whether the given line intersects the polygon (dual to the Point-in-polygon test),
 - selection of polygon edges which are intersected by the given line and computation of

intersection points.

It means that the line clipping problem solution is more complex than the Point-in-polygon
test. Nevertheless this considerations lead to the line clipping algorithm with O N(lg)2
processing complexity described in [Ska94a].

Komentář [VS1]:

Computers & Graphics, Vol.20, No.4, pp.523-530, 1996.

 page 3

Dual space representation

Figure 2.1

3. Semidual space representation and space subdivision
 There are two problems if dual space representation is used that must be solved:
- dual space polygon representation and zones are infinite and it is difficult to represent them,
- it is necessary to find a fast method for determining in which zone the point D r() lies.
The given line can be represented as

y kx q= + if | |k ≤1
or

x my p= + if | |m <1
This means that k , resp. m values are limited.

Computers & Graphics, Vol.20, No.4, pp.523-530, 1996.

 page 4

Semidual space representation
Figure 3.1

 Let us consider a rectangular bounding rhomboid so that the given polygon P is
inside of that rectangle, Fig.3.1.a. It can also be seen that values q , resp. p are limited. Then
values [,]k q , resp. [,]m p are from the limited area < − > < − >1 1, ,x a a in both space
representations. We will denote those two limited spaces as semidual spaces. It can be seen
that those two limited semidual spaces represent the original dual space.

Computers & Graphics, Vol.20, No.4, pp.523-530, 1996.

 page 5

 Fast methods for detection of the zone in which zone a point D r() lies are needed.
Several sophisticated techniques have been developed as a part of computational geometry,
see [Pre85a]. One possibility is a usage of the space subdivision technique. If semidual spaces
for (,)k q , resp. (,)m p are subdivided into small rectangles then it is possible to pre-compute
a list AEL (Active Edge List) of polygon edges which interfere in semidual space with the
given rectangle. If the rectangles are small enough then each list is empty or will contain only
two polygon edges.
 It is necessary to point out that the rhomboid that bounds the polygon must be as small
as possible. Generally the limits for p and q axes can differ and decrease memory
requirements.

4. Principle of the proposed algorithm

 Let us assume the situations shown in Fig.3.1.a. The proposed algorithm for line
clipping with O(1) processing time can be described by the sequence of steps:

 Determine whether (,)k q or (,)m p semidual space shall be used for the given line;
 if (,)k q semidual space is used { | Δx | ≥ | Δy | }
 then
 begin compute values [,]k q for the given line r ;
 find a rectangle that contains the point D r() ;
 for all members of the AEL list compute intersections with the line r
 and test if exist;
 end
 else similarly for (,)m p semidual space;

Algorithm 4.1

 It is obvious that the algorithm complexity does not depend on the number of polygon
edges but on the length of the AEL list associated with each rectangle only. If rectangles are
small enough then just two edges can be expected in the list nearly for all rectangles. Because
all steps in Alg.4.1 have O()1 complexity the whole algorithm has O()1 complexity, too. It is
necessary to point out that number of members in AEL list depends on the number of
subdivision in (,)k q , resp. (,)m p spaces and also on geometric shape of the given polygon,
see [Ska94b]. Detailed algorithm is described in Alg.4.2.

global k0 := Nq / (2*a); k1 := Nk / 2; { global constants }
 k3 := Np / (2*a); k4 := Nm / 2;
t0 := +∞; t1 := -∞; { initialisation - empty interval < t0 , t1 > = ∅ }
Δx := xB - xA; Δy := yB - yA;
if | Δx | ≥ | Δy | then { select (,)k q semidual space }
begin k := Δy/Δx; q := yB - k*xB;
 i := int ((q + a) * k0) + 1;
 j := int ((k + 1) * k1) + 1;
 test := false; { test all members of AEL list for zone (i,j) and compute values t }
 {for the line intersection points of selected edges }
 test := COMPUTE (ZONE(i,j), t0,t1); { if intersection exists then test = true }
end
else

Computers & Graphics, Vol.20, No.4, pp.523-530, 1996.

 page 6

begin m := Δx/Δy; p := xB - m*yB;
 i := int ((p + a) * k3) + 1;
 j := int ((m + 1) * k4) + 1;
 test := false; {test all members of AEL list for zone (i,j) and compute values t}
 {for the line intersection points of selected edges }
 test := COMPUTE (ZONE(i,j), t0,t1); { test = true if intersection exists }
end;

if line segment clipping then < t0,t1> := < t0,t1> ∩ <0,1>;
test := test and (< t0 , t1 > ≠ ∅);
if test then { intersection exists }
begin
 x0:= xA + Δx * t0; y0:= yA + Δy * t0;
 x1:= xA + Δx * t1; y1:= yA + Δy * t1;
end;

Algorithm 4.2

The function COMPUTE is based on the CB algorithm that is performed only for edges
included in the AEL list associated with the selected ZONE(i,j).
 It can be shown that computation of AEL lists for all zones is of O N N Nk q(* *) ,
resp. O N N Nm p(* *) complexity, where:
 - N is a number of edges of the given polygon,
 - N k , resp. Nq is a number of subdivision in the direction of k, resp. q,
 - Nm , resp. N p is a number of subdivision in the direction of m, resp. p.

5. Construction of the AEL list

 How to create the AEL lists is a rather tricky problem because if one would like to set
up the AEL list directly an algorithm is quite complicated. A simple solution for setting up the
AEL lists for all zones in (,)k q semidual space is described by Alg.5.1.

for i:=1 to Nk-1 do
 for j:=1 to Nq-1 do
 for k:=1 to N do
 if edgek interferes with the zone (i,j) defined
 by corners (i,j) and (i+1,j+1)
 then add edgek into the AELij list;

Algorithm 5.1

Because N is usually small and there are no special cases this method is fast enough. The
AEL list for (,)m p semidual space can be determined in a similar way.
 Now it is necessary to find a criterion how to determine the N k and N q , resp. N m
and N p values because we would like to have just one pair of polygon edges for each AEL.
It can be shown that for (,)k q semidual space it is necessary to calculate [,]k q values for all
polygon edges from the equation.

Computers & Graphics, Vol.20, No.4, pp.523-530, 1996.

 page 7

y kx q= +

Then
 N a yq > 2 / Δ where Δy y yi j= −min {| |} for all i j, & i j≠ & Δy > 0
 N kk > 2 / Δ where Δk k ki j= −min {| |} for all i j, & i j≠ & Δk > 0
and i j N, { , ..., }∈ 1

Similarly for (,)m p semidual space

x my p= +

and
 N a xp > 2 / Δ where Δx x xi j= −min {| |} for all i j, & i j≠ & Δx > 0
 N mm > 2 / Δ where Δm m mi j= −min {| |} for all i j, & i j≠ & Δm > 0
 i j N, { , ..., }∈ 1
[,]x yi i are vertices of the given polygon and ki is the slope of the i-th edge, similarly for
mi .
It means that the N k and N q , resp. N m and N p values depend on geometric shape of the
given polygon. For detailed description, see [Ska94b].

6. Theoretical considerations and experimental results

 The proposed algorithm has been tested and compared with the CB algorithm as the
CB algorithm is very stable and its behaviour more or less does not depend on geometric
properties of the given polygon and clipped lines. Because the proposed algorithm is
supposed to be superior over other modifications of the CB algorithm it is necessary to a
make theoretical estimation of its efficiency.
 Before making any experiments it is necessary to point out that the time needed for
operations (:= , < , ± , * , /) differs from computer to computer, see tab.6.1.

Float := < ± * /
Time 33 50 16 20 114

Times for 5.107 operations for a PC 486DX/33 MHz
Table 6.1

Let us assume that N is the number of edges of the given polygon. For algorithm efficiency
considerations we will consider:

 - CB algorithm complexity, see [Ska93a], can be described as

T NCB = +(, , , ,) (, , , ,)*8 3 6 4 0 5 3 7 41
 and time of computation can be estimated

T NCB = +590 621*
 - ECB algorithm with the usage of separation function, see [Ska93a], has complexity

T NECB = +(, , , ,) (, , , ,)*15 31114 2 311 3 0
 and time of computation can be estimated

T NECB = +1329 257*
 - O N(lg) algorithm [Ska94a] with complexity defined as

Computers & Graphics, Vol.20, No.4, pp.523-530, 1996.

 page 8

T Nlg (, , , ,) (, , , ,)*= +14 4 1115 2 2 4 6 6 0
 and time of computation can be estimated

T Nlg * lg()= + +1267 376 1
 - proposed O()1 with complexity defined as

TO() (, , , ,)1 22 6 17 19 3=
 and time of computation can be estimated

TO()1 2020=
Let us introduce algorithm efficiency coefficients as:

 ν1 =
T
T

CB

O(1)

 ν 2 =
T
T

ECB

O(1)

 ν 3 =
T

TO

lg

(1)

then the expected efficiency of the proposed algorithm is described by Tab.6.2, Fig.6.1.- 6.2.

N 3 4 5 10 50
CB 2 453 3 074 3 695 6 800 31 640

ECB 2 100 2 357 2 614 3 899 14 179
O(lg N) 2 019 2 395 2 395 2 771 3 523

O(1) 2 020 2 020 2 020 2 020 2 020
ν1 1,3 1,6 1,9 3,4 15,7
ν2 1,1 1,2 1,3 2,0 7,1
ν3 1,0 1,2 1,2 1,4 1,8

Theoretical estimation of time and efficiency
Table 6.2

Processing time

0
5 000

10 000
15 000
20 000
25 000
30 000
35 000

3 4 5 10 50

Number of polygon edges

time

CB
ECB
O(lg N)
O(1)

Figure 6.1

Computers & Graphics, Vol.20, No.4, pp.523-530, 1996.

 page 9

Algorithm efficiency

0,0
2,0

4,0
6,0
8,0

10,0
12,0
14,0
16,0

3 4 5 10 50

Number of polygon edges

Efficiency coeficient

ν1

ν2

ν3

Figure 6.2

The proposed algorithm has been experimentally compared with the CB algorithm and
obtained experimental results are shown in Tab.6.3 and Fig.6.3.The difference between
theoretical estimation and experimental results for processing time, see Tab.6.3, is very small
and proved the theoretical analysis of the proposed algorithm.

N 3 4 5 10 50
ν1 1,1 1,5 1,7 3,5 15,3

Experimental results without pre-processing
Table 6.3

N 3 4 5 10 50
ν1 1,1 1,2 1,4 1,8 2,6

Experimental results for 10000 lines including pre-processing
Table 6.4

Experimental results

0,0

2,0

4,0

6,0

8,0

10,0

12,0

14,0

16,0

3 4 5 10 50

Number of polygon edges

Efficiency coefficient

ν1

Figure 6.3

Computers & Graphics, Vol.20, No.4, pp.523-530, 1996.

 page 10

For partial comparative study with other approaches see [Ska95a]. Full comparison wit
Cyrus-Beck algorithm can be found in [Ska95c].

7. Conclusion

 A new line clipping algorithm against a convex polygon in E 2 was developed. It is
based on dual space representation and space subdivision technique. The proposed algorithm
is convenient for those applications where the clipping area is stable and many lines are
clipped. The algorithm is O()1 processing complexity and faster than the CB, ECB and
O(lg N) algorithms in the anticipated applications.
 The presented approach can be applied in many areas of computer graphics and there
is a hope that it can be used to speed up line clipping algorithms in E 3 and ray tracing
techniques.

8. Acknowledgements

 The author would like to express his thanks to Mr.P.Lederbuch for careful
implementation and testing algorithms and to all who contributed to this work, especially to
recent PhD. student Ms.I.Kolingerová, MSc. and PhD. students of Computer Graphics
courses at the University of West Bohemia in Plzeò who stimulated this work and proposed
many suggestions.

9. References

[Kol94a] Kolingerová,I.: Dual Representation and Its Usage in Computer Graphics, PhD
Thesis (in Czech), Univ. of West Bohemia, Plzeò, 1994.

[Nie95a] Nielsen,H.P.: Line Clipping Using Semi-Homogeneous Coordinates, Computer
Graphics Forum, Vol.14, No.1, pp.3-16, 1995.

[Pre85a] Preparata,F.P., Shamos,M.I.: Computational Geometry: An Introduction, Springer
Verlag, 1985.

[Ska93a] Skala,V.: An Efficient Algorithm for Line Clipping by Convex Polygon, Computers
& Graphics, Vol.17, No.4, Pergamon Press, pp.417-421, 1993.

[Ska94a] Skala,V.: O(lg N) Line Clipping Algorithm in E2, Computers & Graphics, Vol.18,
No.4, Pergamon Press, pp.517-524, 1994.

[Ska94b] Skala,V.: Point-in-Polygon with O(1) Complexity, TR 68/94, Univ. of West
Bohemia, Plzeò, 1994.

[Ska95a] Skala,V., Kolingerová,I., Bláha,P.: A Comparison of 2D Line Clipping Algorithms,
Machine Graphics and Vision, Vol.3, No.4, pp. 625-633, 1995.

[Ska95b] Skala,V., Lederbuch,P.: A Comparison of O(1) and Cyrus-Beck Line Clipping
Algorithm in E2, submitted SSCG96 Int.Conf., Slovak Republic, 1995.

[Sto89a] Stolfi,J.: Primitives for Computational Geometry, Report 36, SRC DEC System
Research Center, 1989.

[Zac95a] Zachariáš,S.: Duality and Complexity (in Czech), TR 81/95, Univ.of West Bohemia,
Plzeò, 1995.

[Zac95b] Zachariáš,S.: Projection in Barycentric Coordinates, submitted to WSCG96
Int.Conf., Univ.of West Bohemia, Plzeò, 1995.

Computers & Graphics, Vol.20, No.4, pp.523-530, 1996.

