Analysis of HF half-bridge matrix converter

${ }^{1}$ S. Kascak,
${ }^{1}$ Department of Mechatronics and Electronics, Faculty of Electrical Engineering, University of Zilina, Univerzitna 8215/1, Zilina
E-mail : slavomir.kascak@fel.uniza.sk

Abstract

Anotace: Článok sa zaoberá $\mathrm{DC} / \mathrm{HF}$ _ $\mathrm{AC} / 2 \mathrm{AC}$ meničovým systémom s ortogonálnym dvojfázovým výstupom a premenlivým napätim i frekvenciou. Navrhnutý systém s vysokofrekvenčným striedavým medziobvodom v porovnaní s bežne používanými systémami, používa dva jednofázové polomostové maticové meniče, ktoré sú ovládané bipolárnou šírkovo-impulzovou moduláciou PWM. Výhodou takéhoto systému je potom menší počet polovodičových súčiastok. Fourierova transformácia bola vykonaná pre jednofázový a dvojfázový ortogonálny systém.Elektrický motor bol nahradený R-L zátažou a indukované protinapätie záviselo od otáčok motora. Modelovanie a výsledky simulačných experimentov polomostového maticového meniča pre ustálené a prechodné stavy sú v článku uvedené. Výsledky potvrdzujú vel'mi dobre časové priebehy prúdu uvažovaného dvojfázového AC motora.

Annotation:

The paper deals with DC/HF_AC/2AC converter system which can generate two-phase orthogonal output with both variable voltage and frequency. The proposed system with HF AC interlink in comparison with currently used conventional systems uses two single phase half-bridge matrix converters operated with the bipolar PWM. The advantage of such a system is then less number of semiconductor devices. The Fourier transformation has been considered for both single- and two phase orthogonal systems under substitution of the equivalence scheme of the electric motor by R-L load and back EMF voltage depended on the motor speed. Modelling and simulation experiment results of half-bridge matrix converter for both steady- and transient states are given in the paper. The results confirm a very good time-waveform of the considered two-phase AC motor current.

INTRODUCTION

In the very early days of commercial electric power, some installations used two-phase four-wire systems for motors. Next two-phase systems have been replaced with three-phase systems. However, some applications of two-phase systems have been produced, especially with 90 degrees between phases. In these days new fields of application come up - in industrial or transport area [1]- [4].
A two-phase supply can be derived from three-phase system using a Scott-connection [5]. It can be also easily created using power electronic converters e.g. from battery supply, with two-phase transfer of energy for zero distance. DC/2AC and DC/HF_AC/2AC converter system can generate twophase orthogonal output with both variable voltage and frequency [6]-[8]. Ones of the possible schemes with full bridge and half-bridge converter on second stage and two-phase motor load are depicted in Fig.1. [4]

b)

Fig.1. Principle diagram of full bridge (a) and half-bridge converter system (b) with second phase shifted by 90 degrees

The Fourier transformation can be considered for both single- and two phase orthogonal systems under substitution of the equivalence scheme of the electric motor [9], [10].

TWO-STAGE DC/AC/AC CONVERTER FOR TWO-PHASE SYSTEM

DC/2AC and DC/HF_AC/2AC converter system can generate two-phase orthogonal output with both variable voltage and frequency. Such a system usually consist of single-phase voltage inverter, AC interlink, HF transformer, 2-phase converter and 2phase AC motor.

Due to AC interlink direct converter (cycloconverter or matrix converter) is the best choice. Each matrix- or cyclo-convertor can be connected as

1. full bridge converters connection (Fig.1a), 2. two half bridge one with central point of the source using HF transformer (Fig.1b, 2a) or 3. half-bridge one with central points of the motor load (Fig. 2b).

Fig. 2. Circuit diagram of half-bridge converters system with central points of AC source (a) and with central points of motor loads (b)

There is chosen matrix- or cyclo-convertor connection no. 2 - two half bridge converter systems with central points of source [4]. The advantage is then less number of semiconductor devices of the converters (four instead six). In this case is both hard and ZVS commutations of half-bridge connection of matrix converters. So, they should be operated using bipolar PWM modulation.

SIMULATION OF HF HALF-BRIDGE MATRIX CONVERTER SYSTEM WITH CENTRAL POINTS OF SOURCE

Voltage and Current Analysis of AC/AC HalfBridge Matrix Converter System

Equivalent circuit diagram of half-bridge single phase converter (one of two-phase orthogonal systems) is depicted in Fig. 2a, and bipolar pulsewidth modulation in Fig. 3b.

Switching-pulse-width can be determined based on equivalence of average values of reference waveform and resulting average value of positive and negative switching pulses during switching period (Fig. 3b). There are defined both amplitude- and frequency modulation ratios m_{a} and m_{f} as

$$
\begin{equation*}
m_{\mathrm{a}}=\frac{U_{1 \mathrm{~m}}}{U} m_{\mathrm{f}}=\frac{f_{\mathrm{S}}}{f_{1}} \tag{1a,b}
\end{equation*}
$$

where $U_{1 \mathrm{~m}}$ is reference amplitude of fundamental harmonic,

$$
\begin{array}{ll}
U & \text { magnitude of supply voltage, } \\
f_{\mathrm{S}} & \text { switching frequency, } \\
f_{1} & \text { fundamental frequency. }
\end{array}
$$

So, the peak amplitude of the fundamental harmonic component (equal to reference voltage) is m_{a} times U, and varies linearly with m_{a} (provided m_{a} ≤ 1).

a)

b)

Fig. 3. Single-phase half-bridge matrix converter (a) with bipolar PWM (b)

Harmonic contents of converter output voltage is equivalent to those of DC/AC inverter bipolar modulation [5]. Consequently, the harmonics in the converter output voltage waveform appears as sidebands, centered on the switching frequency f_{S} and its multiples, that is, around harmonics $m_{\mathrm{f}}, 2 \cdot m_{\mathrm{f}}, 3 \cdot m_{\mathrm{f}}$, and so on. This general pattern holds true for all m_{a} smaller (or equal) 1. For a frequency modulation ratio $m_{\mathrm{f}} \geq 9$ (which is our case), the harmonic amplitudes are almost independent on m_{f}, though m_{f} defines the frequencies at which they occur. Theoretically, the frequencies at which voltage harmonics occur can be defined as

$$
\begin{equation*}
f_{v}=\left(i \cdot m_{\mathrm{f}} \pm k\right) \cdot f_{1} \tag{2}
\end{equation*}
$$

that is, the harmonic order v corresponds to the k-th sideband of the i-times the frequency modulation ratio m_{f}

$$
\begin{equation*}
v=\left(i \cdot m_{\mathrm{f}} \pm k\right) \cdot f_{1} \tag{3}
\end{equation*}
$$

where the fundamental harmonic frequency corresponds to $v=1$. For odd values of i, the harmonics exist only for even value of k, and opposite, for even values of i, the harmonics exist only for odd value of k.

The discrete Fourier transformation has been used for calculation of individual harmonics coefficients [3]:

$$
\begin{equation*}
X(v)=\frac{1}{N} \sum_{n=0}^{N-1} x(n) e^{-\mathrm{j} 2 \pi \frac{n v}{N}} \tag{4}
\end{equation*}
$$

resp.

$$
\begin{equation*}
\operatorname{Re}\{X(v)\}=\frac{2}{N} \sum_{n=0}^{N-1} x(n) \cos \left(2 \pi \frac{n v}{N}\right) \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
\operatorname{Im}\{X(v)\}=\frac{-2}{N} \sum_{n=0}^{N-1} x(n) \sin \left(2 \pi \frac{n v}{N}\right) \tag{6}
\end{equation*}
$$

The carried-out results are identical ones with those of given in [5] for DC/AC inverter. The harmonic spectrum is plotted in Fig. 4, which is plotted for $m_{\mathrm{f}}=39$.

Fig. 4: Amplitude harmonic spectrum of the bipolar PWM voltage
The frequency modulation ratio m_{f} should be an odd integer. Choosing m_{f} as odd integer results in an odd symmetry $[f(-t)=-f(t)]$ as well as half-wave symmetry $\left[f(-t)=-f\left(t+T_{\mathrm{S}} / 2\right)\right]$ with the time origin shown in Fig. 3b. Therefore, only odd harmonics are present and the even harmonics disappear from the wave form of u_{a}. Moreover, only the coefficients if the sine series in Fourier analysis are finite; those for the cosine series are zero.

Harmonic components can be compute using above methodology and work [12]. For modulation indexes $m_{\mathrm{a}}=0,2 ; 0,4 ; 0,6 ; 0,8 ; 1$ and $m_{\mathrm{f}}=39$ resulting Fourier components and the amplitudes for $U=150 \mathrm{~V}$ are given in Tab. 1 .

Tab. 1: Calculated voltage Fourier coefficients $\mathrm{C}_{\mathrm{V}}(v)=\mathrm{A}_{v} / \mathrm{A}_{1}$ and voltage amplitude A_{v} for $\mathrm{m}_{\mathrm{a}}=0.2 ; 0.4 ; 0.6 ; 0.8 ; 1$ and $\mathrm{m}_{\mathrm{f}}=39$ and $\mathrm{U}=150 \mathrm{~V}$

v	$\begin{gathered} m_{\mathrm{a}}= \\ 0.2 \end{gathered}$	$\begin{gathered} m_{\mathrm{a}}= \\ 0.4 \end{gathered}$	$\begin{gathered} m_{\mathrm{a}}= \\ 0.6 \end{gathered}$	$\begin{gathered} m_{\mathrm{a}}= \\ 0.8 \end{gathered}$	$\begin{gathered} m_{\mathrm{a}}= \\ 1.0 \end{gathered}$	$\begin{gathered} A_{\nu}[\mathrm{V}] \\ m_{\mathrm{a}}= \\ 1.0 \end{gathered}$
1	0.2	0.4	0.6	0.8	1.0	150
$\begin{gathered} \boldsymbol{m}_{f} \\ \boldsymbol{m}_{f} \pm 2 \\ \boldsymbol{m}_{f} \pm 4 \end{gathered}$	$\begin{aligned} & 1.242 \\ & 0.016 \end{aligned}$	$\begin{gathered} 1.15 \\ 0.061 \end{gathered}$	$\begin{aligned} & 1.006 \\ & 0.131 \end{aligned}$	$\begin{aligned} & 0.818 \\ & 0.220 \end{aligned}$	$\begin{aligned} & 0.601 \\ & 0.318 \\ & 0.018 \end{aligned}$	$\begin{gathered} 90.15 \\ 47.7 \\ 2.7 \end{gathered}$
$\begin{aligned} & 2 m_{f} \pm 1 \\ & 2 m_{f} \pm 3 \\ & 2 m_{f} \pm 5 \end{aligned}$	0.190	$\begin{aligned} & 0.326 \\ & 0.024 \end{aligned}$	$\begin{aligned} & 0.370 \\ & 0.071 \end{aligned}$	$\begin{aligned} & 0.314 \\ & 0.139 \\ & 0.013 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.181 \\ & 0.212 \\ & 0.033 \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline 27.15 \\ 31.8 \\ 4.95 \\ \hline \end{array}$
$\begin{gathered} 3 m f \\ 3 m f \pm 2 \\ 3 m f \pm 4 \\ 3 m f \pm 6 \\ \hline \end{gathered}$	$\begin{aligned} & 0.335 \\ & 0.044 \end{aligned}$	$\begin{aligned} & \hline 0.123 \\ & 0.139 \\ & 0.012 \end{aligned}$	$\begin{aligned} & 0.083 \\ & 0.203 \\ & 0.047 \end{aligned}$	$\begin{aligned} & 0.171 \\ & 0.176 \\ & 0.104 \\ & 0.016 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.113 \\ & 0.062 \\ & 0.157 \\ & 0.044 \end{aligned}$	$\begin{gathered} 16.95 \\ 9.3 \\ 23.55 \\ 6.6 \end{gathered}$
$\begin{aligned} & 4 m f \pm 1 \\ & 4 m f \pm 3 \\ & 4 m f \pm 5 \\ & 4 m f \pm 7 \end{aligned}$	0.163 0.012	0.157 0.070	$\begin{aligned} & \hline 0.008 \\ & 0.132 \\ & 0.034 \end{aligned}$	$\begin{aligned} & 0.105 \\ & 0.115 \\ & 0.064 \\ & 0.017 \end{aligned}$	$\begin{aligned} & 0.068 \\ & 0.009 \\ & 0.119 \\ & 0.050 \end{aligned}$	$\begin{gathered} 10.2 \\ 1.35 \\ 17.85 \\ 7.5 \end{gathered}$

Current harmonics investigation under resistiveinductive load with emf

Current time-waveforms for 1-harmonic components in steady-state $i_{\mathrm{S} 1}(t)$ are given [12]
$i_{\mathrm{Sl}}(t)=\frac{A_{1}-U_{\text {enf }}}{Z_{1}} \cdot \sin \left(\omega t-\varphi_{1}\right)=\frac{U}{Z_{1}} C_{\mathrm{I}}(1) \cdot \sin \left(\omega t-\varphi_{1}\right)$,
where: $\quad A_{v}=A_{1} \cdot C_{\mathrm{V}}(v)$ - amplitude of v-harmonic voltage component,
$A_{1}=m_{\mathrm{a}} \cdot U$ - amplitude of 1 . harmonic voltage component,
$U_{\text {emf }}$ - counter-voltage (of electromagnetic force)
$\left|\underline{Z}_{v}\right|=Z_{v}=\sqrt{R^{2}+(v \cdot \omega \cdot L)^{2}}$ - module of complex impedance of resistive-inductive load
$\varphi_{v}=\arctan (\nu \cdot \omega \cdot L / R) \quad$ - argument of complex impedance of resistive-inductive load
$C_{\mathrm{I}}(v)$-Fourier coefficient of v-harmonic current component,
I_{v} - amplitude of v-harmonic current component.
Harmonic current components can be compute similarly using above methodology and work [12]. The accurate calculation of $U_{\text {emf }}$ can be obtained to use of motor circle diagram.

For modulation indexes $m_{\mathrm{a}}=0,2 ; 0,4 ; 0,6 ; 0,8 ; 1$ and $m_{\mathrm{f}}=39$ resulting Fourier components, the impedance of load Z_{v} and the current amplitudes $I_{v m}$ for $U=150 \mathrm{~V}$ with counter-voltage $U_{\text {emf }}=0,9$ of A_{1} are given in Tab. 2.

The MatLab programming environment has been used.

Simulation experiments have been done for the parameters: $R=10 \mathrm{Ohm}, L=25 \mathrm{mH}, U=150 \mathrm{~V}, f$ $=50 \mathrm{~Hz}$ at $m_{\mathrm{a}}=1, m_{\mathrm{f}}=39$, time increment $\Delta t=5$ $\mu \mathrm{s}$.

The total current in steady-state will be summarizing of single harmonics.

Tab. 2: Calculated current Fourier coefficients $C_{I}(v)$ and current amplitude $I_{v m}$ with impedance of load Z_{v} for $m_{a}=0.2 ; 0.4 ; 0.6 ; 0.8$; 1 and $m_{f}=39$ with counter-voltage $U_{\text {emf }}=0,9 A_{I}$

v	$\begin{gathered} m_{\mathrm{a}}= \\ 0.2 \end{gathered}$	$\begin{gathered} m_{\mathrm{a}}= \\ 0.4 \\ \hline \end{gathered}$		$\begin{gathered} m_{\mathrm{a}}= \\ 0.8 \\ \hline \end{gathered}$	$\begin{gathered} m_{\mathrm{a}}= \\ 1.0 \end{gathered}$	$\begin{gathered} Z_{v}[\mathrm{k} \Omega] \\ m_{\mathrm{a}}=1.0 \end{gathered}$	$\begin{gathered} I_{v \mathrm{~m}}[\mathrm{~A}] \\ m_{\mathrm{a}}=1.0 \\ \hline \end{gathered}$
1	0.00	0.01	0.036	0.064	0.1	0.013	1.180
$\begin{gathered} m_{\mathrm{f}} \\ m_{\mathrm{f}} \pm 2 \\ m_{\mathrm{f}} \pm 4 \end{gathered}$	0.248	0.46	0.604	0.654	$\left\{\begin{array}{l} 0.601 \\ 0.318 \\ 0.018 \end{array}\right.$	0.306 $0.291 ;$ 0.322 $0.275 ;$ 0.338	$\left\lvert\, \begin{gathered} 0.294 \\ 0.164 ; \\ 0.148 \\ 0.010 ; 0.008 \end{gathered}\right.$
$\begin{gathered} 2 m_{\mathrm{f}} \pm 1 \\ 2 m_{\mathrm{f}} \\ \pm 3 \\ 2 m_{\mathrm{f}} \\ \pm 5 \\ \hline \end{gathered}$	0.004	0.130	0.022	$2 \begin{aligned} & 2.251 \\ & 0.111 \\ & 0.010 \end{aligned}$	$\left\{\begin{array}{l} 0.181 \\ 0.212 \\ 0.033 \end{array}\right.$	$\begin{gathered} \hline 0.621 ; \\ 0.605 \\ 0.636 ; \\ 0.589 \\ 0.652 ; \\ 0.573 \\ \hline \end{gathered}$	$\begin{gathered} \hline 0.044 ; \\ 0.045 \\ 0.050 ; \\ 0.054 \\ 0.008 ; \\ 0,009 \end{gathered}$

Simulation results are given in Fig. 5 and Fig. 6.

Fig. 5: Time waveform of voltage (1. harmonic component) and load current - with various counter-voltage and modulation index of bipolar PWM $\mathrm{m}_{\mathrm{a}}=1$ and $\mathrm{m}_{\mathrm{f}}=39$

Fig. 6: Time waveform of voltage (1. harmonic component) and load current - with various counter-voltage and modulation index of bipolar PWM $\mathrm{m}_{\mathrm{a}}=0.2$ and $\mathrm{m}_{\mathrm{f}}=39$

Root-mean-square value of the total steady-state current can be calculated as:

$$
\begin{equation*}
I=\sqrt{\sum I_{v}{ }^{2}}=\sqrt{\sum\left(\frac{I_{\mathrm{um}}}{\sqrt{2}}\right)^{2}} \tag{8}
\end{equation*}
$$

The total harmonic distortion of the current is given by:

$$
\begin{equation*}
\frac{\sqrt{\sum I_{v}^{2}}}{I_{1}}=\sqrt{\frac{I^{2}-I_{1}^{2}}{I_{1}^{2}}}=\sqrt{\left(\frac{I}{I_{1}}\right)^{2}-1}=2 \% \tag{9}
\end{equation*}
$$

Transient phenomena investigation using Fourier analysis

The Fourier analysis can be used also for the behaviour of the system in transient state. The total current of v-harmonic component i_{v} will be summarizing of current in steady-state i_{Sv} and current in transient phenomenon $i_{\text {Tv }}$

$$
\begin{align*}
& i_{v}(t)=i_{\mathrm{S} v}(t)+i_{\mathrm{T} v}(t)= \\
& \frac{A_{v}}{Z_{v}} \cdot \sin \left(v \omega t-\varphi_{v}\right)+\frac{A_{v}}{Z_{v}} \cdot \sin \varphi_{v} \cdot e^{-t / \tau} \tag{10}
\end{align*}
$$

where
i_{v} - is total current waveform
$i_{S v}$ - steady-state component of total current $i_{T v}$ - transient component of total current
$\tau=R / L$ - time constant of resistive-inductance load Total current as well as both components should be calculated for each harmonics. Simulation experiment results modulation index $m_{\mathrm{a}}=1$ and $m_{\mathrm{f}}=39$ resulting ratio current with counter-voltage $U_{\text {emf }}=0,1$ of A_{1} are given in Fig. 7.

Fig. 7: Time waveform of voltage (1. harmonic component) and load current- with counter-voltage $\mathrm{U}_{\text {emf }}=0.1 \quad \mathrm{~A}_{1}$ and modulation index of bipolar $\operatorname{PWM} \mathrm{m}_{\mathrm{a}}=1$ and $\mathrm{m}_{\mathrm{f}}=39$

CONCLUSION

The proposed system with AC interlink in comparison with currently used conventional systems uses two single phase half bridge matrix converters with bipolar pulse-width modulation. The advantage is then less number of semiconductor devices of the converters.

The Fourier transformation can be considered for two phase orthogonal systems under substitution of the equivalence scheme of the electric motor.

The solution given in the paper makes it possible to analyse more exactly effect of each harmonic component comprised in total waveform on resistiveinductive load or induction motor quantities.

Acknowledgement

This paper was done within the project ITMS 26220220078.

REFERENCES

[1] Blalock, T.J.: The First Poly-Phase System - a Look Back at Two-Phase Power for AC Distribution. In: IEEE Power and Energy Magazine, March-April 2004, ISSN 1540-7977 pg. 63.
[2] Two-Phase Power. Wikipedia the free encyclopedia, http://www.wikipedia.org, July 2009.
[3] Bala, S. and Venkataramanan, G.: Balanced Power Aggregation of Asymmetric Single-phase Systems. University of Wisconsin - Madison, 200x
[4] Dobrucky, B., Prazenica, M., Benova, M.: Converter Topology Design for Two-Phase LowCost Industrial and Transport Application. Submitted to this Conference.
[5] Dobrucky, B., Benova, M., Pokorny, M.: Using Virtual Two Phase Theory for Instantaneous Single-Phase Power System Demonstration. In: Electrical Review/ Przeglad Elektrotechniczny (PL), Vol. 85 (2009), No. 1, pp. 174-178, ISSN 0033-2097.
[6] Dobrucký, B., Pavlanin, R., Pokorný, M.: Direct Single to Two/Three-Phase Power Electronic Conversion for AC Traction. In: Proc. of the $8^{\text {th }}$ IASTED EuroPES'08 - Int'l Conf. on Power and Energy Systems, Corfu (GR), June 2008.
[7] Dobrucký, B., Špánik, P., Kabašta, M.: Power Electronic Two-Phase Orthogonal System with HF Input and Variable Output. In: Magazine of Electronics \& Electrical Engineering, Kaunas (LT), No. 1 (83), 2009, ISSN 1392-1215, pp. 914.
[8] Gonthier, L., et al.: High-Efficiency SoftCommutated DC/AC/AC Converter for Electric Vehicles. In: Journal ElectroMotion 5 (1998), no. 2, pp. 54-64, ISSN 1223-057X.
[9] Biringer P. P. and Slonin M. A.: Determination of Harmonics of Converter Current and/or Voltage Waveforms (New Method for Fourier Coefficient Calculations), Part II: Fourier Coefficients of Homogeneous Functions, IEEE Transactions on Industry Applications, vol. IA16, No. 2, March/April 1980, pp. 248-253.
[10]P. Záskalický, M. Záskalická: Mathematical Model of the Single-Phase Inverter with PulseWidth Modulation. In: Proc. of Mechatronika'09 Int'l Conf., Tren. Teplice (SK), July 2009, pp. CD-ROM.
[11]Mohan, N., Undeland, T.M., Robbins, W.P.: Power Electronics: Converters, Appli-cations, and Design. John Wiley \& Sons, Inc., 3. Edition, 2003, ISBN 0-471-42908-2.
[12]Chau, K.T., Chan C.C., and Wong, Y.S.: Advanced Power Electronic Drives for Electric Vehicles. Electro-Motion 5 (1998), no. 2, pp. 4253, ISSN 1223-057X
[13]Popescu, M., Demeter, E., Micu, D., Navrapescu, V. Jokinen, T.: Analysis of a Voltage Regulator for A Two-Phase Induction Motor Drive. In: Proc. of IEMD - Int'l Conf. on Electric Machines and Drives, Seattle (US), 1999, pp. 658-660.
[14]Wheeler, P.W., Rodriguez, J. Clare, J.C. Empringham, L. and Weinstein, A.: Matrix Converters: A technology review. IEEE Trans. on Industrial Electronics, vol. 49, no. 2, pp. 276288, Apr. 2002.
[15]Zuckerberger, A., Weinstock, D., Alexandrovitz, A.: Single - Phase Matrix Converter. IEE Proc. on Electrical Power Applications, vol.144, no. 4, 1997.
[16]Luft, M., Szychta, E.: Commutation Processes in Multiresonant ZVS Bridge Converter. In: AEEE Advances in Electrical and Electronic Engineering, University of Zilina (SK), No 1-2, Vol. 7/2008, pp. 84-91, ISSN 1336-1736.
[17]Roy, M., Gonthier, L., Anceau, Ch.: The MBS (MOS Bidirectional Switch), a New MOS Switch with Reverse Blocking Voltage, ST Microelectronics, Proc. of EPE '99 Int'l Conf., Lausanne (FR), Sep. 1999.

