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Abstract— This paper presents a singular version of the 
hybrid FEM-DBCI method to solve skin effect problems in open 
boundary domains. This version consists of overlapping the 
fictitious truncation boundary with the integration one, as in the 
FEM-BEM method.  
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I.   INTRODUCTION 
 

Both FEM-BEM (Finite Element Method - Boundary 
Element Method) [1-2] and FEM-DBCI (Dirichlet Boundary 
Condition Iteration) [3-4] couple a differential equation, 
which governs the interior problem, with an integral one 
which makes use of the free-space Green function and 
expresses the unknown boundary condition on the fictitious 
truncation boundary.  

In FEM-BEM the integration surface coincides with the 
truncation one, whereas in FEM-DBCI the integration 
surface is another surface strictly enclosed by the truncation 
boundary. In FEM-BEM the normal derivative of the 
potential on the truncation boundary is introduced and treated 
as an independent unknown, so that the interior problem is 
very often a pure Neumann one. In FEM-DBCI the normal 
derivative is not explicitly defined, but a numerical derivative 
is computed in the integral equation, so that the interior 
problem is a Dirichlet one. 

A comparison was made in [5] between the two methods, 
concluding that FEM-BEM is more accurate than FEM-
DBCI, but requires more computing time:  

This paper presents a singular version of the FEM-DBCI 
method in order to alleviate its major drawback, that is, the 
insertion of some element layers between the integration and 
truncation surfaces.  
 
II. FEM-SDBCI  FORMULATION FOR SKIN EFFECT PROBLEMS 

 

 Consider a system of z-directed straight conductors 
embedded in free space, as depicted in Fig. 1. The k-th 
conductor has magnetic reluctivity νk, electrical conductivity 
σk and cross sections Sk. The conductors carry a set of 
assigned source currents Ik, which are sinusoidal of angular 
frequency ω and globally balanced.  
 The z-directed magnetic vector potential A=A(x,y) 
satisfies the Laplace equation in free space, whereas in each 
conductor the Poisson equation holds: 
 

    JA2
k =∇ν−                                                    (1) 

 

where J is the unknown current density, expressed as [6]: 
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Fig. 1 - A set of conductors enclosed by the truncation boundary. 
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 Equation (1) is rewritten in integro-differential form as: 
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 The unbounded free space is truncated by means of a 
fictitious boundary ΓF (see Fig. 1), on which an unknown 
Dirichlet condition is assumed to hold. Discretizing the 
obtained bounded domain by means of nodal finite elements 
of a given order, the following FEM system is derived: 
 

     FF0 AMBMA −=                           (4) 
 

where: A and AF are the vectors of the unknown values of the 
vector potential A in the nodes inside the domain and on the 
fictitious boundary ΓF, respectively, M, MF are sparse 
matrices of geometrical coefficients, B0 is the part of the 
known term vector due to the source currents Ik. 

Equation (4) alone is not sufficient to solve the problem 
because it only allows A to be obtained once the correct AF is 
known. If an incorrect guess is made for AF, the resulting 
solution will be affected by a systematic error. 

In order to solve the unbounded field problem, it is 
necessary to derive another equation relating the unknown 
vectors A and AF. This equation is derived by 
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where ci is the normalized angle of D at node Pi, Aext is due 
to the external (lumped or distributed) source currents, the 
normal derivative is evaluated internally to D, and G(P,P’) is 
the free-space Green function, given by  
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where r is the distance between P and P’. In numerical form, 
equation (5) reads  
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where Sk is the side of the simplex finite element Ek lying on 
ΓF; index m refers to the nodes of the element Ek, αm are the 
nodal shape functions, )k(

rν  is the relative permittivity of Ek. 
In matrix form we obtain: 
 

   extF AGAAH +=                                 (9) 
 

where H and G are dense matrices. The coefficients him are 
assembled in H if node Pm belongs to to ΓF, otherwise they 
are assembled in G with a change of sign. On the contrary, 
the coefficients gim are assembled in G if node Pm does not 
belong to to ΓF, otherwise they are assembled in H with a 
change of sign. Note that H is a square NF×NF matrix by 
construction, NF being the number of nodes lying on ΓF. Note 
also that null columns appear in G for the nodes of the 
elements not lying on ΓF; called NE the total number of nodes 
belonging to the elements lying on ΓF, the number of non 
null entries of G is NF×(NE−NF). Since approximately 
NE≈2NF, the dense equation (9) requires a memory of about 

2
FN2  memory locations, practically the same as FEM-BEM. 

If node Pi does not belong to Sk the integrand functions in 
(7) and (8) are regular and a simple Gauss quadrature 
technique may be used [1]. If, on the contrary, the node Pi 
belongs to Sk, the integrand functions are singular and the 
integrations are performed analytically: the coefficients him 
vanish, whereas the coefficients gim are calculated by means 
of analytical formulas. 
 

IV.  A NUMERICAL EXAMPLE 
 

 In this section an example is given concerning a 
transmission line constituted by a coupled strip line on a 
ground plane, as depicted in Fig. 2. The geometrical data are: 
conductor width w=360 µm, conductor thickness t=36, 
height from the ground plane h=100 µm, space between the 
conductors s=50µm. The conductors are made of copper 
(σ=56 106 S/m), whereas the surrounding medium is assumed 
to have zero conductivity and vacuum permeability. Two 
analyses are performed in relation to common mode (CM) 
and differential mode (DM) source currents, whose 
frequency is set to 10 MHz. A rectangular truncation 
boundary is selected at a distance d=50 µm from the 
conductors (see dashed line in Fig. 3). Due to symmetry 
reasons, the analyses are restricted to half the system, by 
imposing homogeneous Neumann and Dirichlet conditions 
on the symmetry axis (y-axis) for CM and DM, respectively,  
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Fig. 2 – Strip line on a ground plane and the relative truncation boundary. 
 
 

 
 

Fig. 3 – Contours of the magnitude of A for the CM case. 
 
 

 
 

Fig. 4 – Contours of the magnitude of J for the CM case. 
 

whereas in both cases homogeneous Dirichlet conditions 
hold on the ground plane (x-axis). The bounded domain is 
discretized by means of 1080 second-order triangles and 
2263 nodes. Having set an end-iteration tolerance of 10−4 per 
cent, convergence is obtained with 17 and 19 GMRES 
iterations for CM and DM, respectively. The CPU times are 
20.9 s and 20.5 s on a Pentium IV, 3.2 GHz, 3Gb RAM. Fig. 
3 and 4 show the contours of the magnitude of the magnetic 
potential and of the current density, respectively, for the CM 
case.  
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