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Abstract—In this paper we are focusing on the kinetic extension
[4] of classic model of Hodgkin and Huxley [2]. We are showing
the descent gradient method used in the learning process of
neuron, which is described with stochastic kinetic model. In
comparison with [1] we use only 3 weights instead of 9: gNa, gK
and gL. We show that this model behaves equally accurate as the
model of Hodgkin and Huxley with slighter system description.

I. INTRODUCTION

We will deal with the stochastic kinetic model of neuron,
in which processes that takes place on the membrane are
described with kinetic Markov schemes. The equation that
describes the dynamics of potential on the membrane can be
written in the form [4]:

C
dV

dt
= I − gNa [m3h0] (V − VNa)

− gK [n4] (V − VK)− gL (V − VL)
(1)

where I represents the input current, gNa, gK , gL - the ion
conductances and VNa, VK , VL - the reverse potentials, for
sodium, potassium and chloride ions respectively. Markov
kinetic schemes for sodium and potassium ions can be drawn
in the form [4]:
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The membrane is built from channels which consist from
small gates, that control the movement of ions between interior
and exterior of the neuron. In the classic Hodgkin-Huxley
approach it is assumed that gates can be in on of two states,
namely permissive or non-permissive. In the kinetic model we
assume that sodium gates can be in one of eight states (eq.
(2)) and potassium gates can be in one of five states (eq. (3)),
where only one state ([m3h0] and [n4]) is permissive while the

rest of the states remain non-permissive. For kinetic formalism
see [3].

In the stochastic approach, we assume that number of gates
that are at the moment changing the state is taken from the
binomial distribution, which under certain assumptions can be
approximated with the normal distribution [5].

We are using the descent gradient method of learning in
the stochastic kinetic model. This learning method allows
to adjust the weights (in our case parameters of the model
gNa, gK , gL), so the course of the potential could fit the given
pattern potential. The task of the neuron is to learn the pattern
potential in the adaptively way for given current input.

In the next section we provide a short description of the
descent gradient method, while in section III we show some
experimental results. We end this paper with short conclusion
in section IV.

II. DESCENT GRADIENT METHOD

In the process of learning of neuron we used the descent
gradient method. Scheme to be proceed can be written in the
form of algorithm:

1) Define the problem - minimization of error function E
2) Designate initial values of weights w1, w2, . . . , wn (in

our case gNa, gK , gL)
3) Designate the value of gradient of error function:

∇E =

[
∂E

∂w1
,
∂E

∂w2
, . . . ,

∂E

∂wn

]
(4)

4) Actualize the values of weights according to rule

wi → wi − η∇E (wi) (5)

(where η is the learning rate) until the condition of the
end is met

e = |V − V ∗| < ε (6)

In the case of our problem we can write the minimized
function as:

E =
1

T

t∫
0

1

2
(V (t)− V ∗ (t))

2
dt (7)
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where V is the potential obtained from the model of neuron,
while V ∗ is the pattern potential. In comparison with [1],
where nine weights were assumed, in our system we consider
only three weights, namely gNa, gK and gL rewritten in the
form [1]:

w1 = gNa = ḡNae
g̃Na

w2 = gK = ḡKe
g̃K

w3 = gL = ḡLe
g̃L

(8)

where w̄ represents the default value of the parameter, while
w̃ - the adopted weight.

We are considering the system of the form [1]:

V̇ = F (V, gNa, gK , gL) (9)

where

F =
1

C
(I − gNa [m3h0] (V − VNa)

−gK [n4] (V − VK)− gL (V − VL))
(10)

If we want to know the influence of particular parameters of
the system on equation (9), then we can shape a differential
equation, for each parameter:

Ẏi =
∂F

∂V
· Yi +

∂F

∂wi
(11)

where

Yi =
∂V

∂wi
(12)

hence the differential equations system:
Ẏ1 = G · Y1 + [m3h0] (V − VNa)

Ẏ2 = G · Y2 + [n4] (V − VK)

Ẏ3 = G · Y3 + (V − VL)

(13)

where

G =
∂F

∂V
= − 1

C
(gNa [m3h0] + gK [n4] + gL) (14)

Actualization of weights is done with the following scheme
[1]:

Ta∆̇w̃i = −∆w̃i +
1

T
(V (t)− V ∗ (t))

∂V (t)

∂wi
· ∂wi
∂w̃i

(15)

where
w̃i = −ηw̃i (16)

and Ta = T, η = 0.01.

III. EXPERIMENTAL RESULTS

In Fig. 1 we are showing three potential waveforms. The
first one is the pattern potential obtained from the Hodgkin-
Huxley model with the assumption of input current I =
40 [nA] . The second and the third waveforms were obtained
in the learning process of neuron modelled by Hodgkin and
Huxley and from the stochastic kinetic model, respectively.

Fig. 1

IV. CONCLUSION

As we can observe, results from the Hodgkin-Huxley model
and from the stochastic kinetic model are equally accurate.
This means that we can easily replace learning in Hodgkin-
Huxley model with learning in the stochastic kinetic model.
This will give us the implementation benefits related with the
reduction of calculations resulting from the formulation of the
model and from the reduction of number of weights in the
learning process.
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