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Abstract –Computation complexity of a broad variety of 
practical design problems is known to be strongly 
depending on an algebraic complexity of corresponding 
mathematical system representations. Especially some 
vector-matrix models are frequently used in numerous 
interdisciplinary fields. One way to overcome the 
complexity problems is based on some special algebraic 
structures of low order model approximations, such as 
e.g. balanced representations. Another approach based 
on the concept of sparse matrices has also become very 
popular. As a very successful special case of sparse 
matrix based approach a class of tridiagonal system 
representations [1] has found applications in solution of 
partial differential equations, digital signal processing, 
image processing, computational fluid dynamics, spline 
curve fitting and many others. In this contribution a 
generalized sparse matrix motivated multi-diagonal 
method is proposed and some new results, based on state 
space energy motivated causal system representations 
are presented, too [2].  
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I.  INTRODUCTION  
This paper will present a new continuous-time 

state-space system structure which has some 
interesting properties that have proven to be useful in 
design of both adaptive and fixed filters, in analysis a 
synthesis of nonlinear generators of chaotic signals, 
etc. Causal systems with such a structure can be called 
ladder systems. From physical point of view, it is 
worthwhile to notice that inherent property to the 
proposed structure is the fact that the corresponding 
state variables can be considered as scaled versions of 
physical energy state variables, e.g. capacitor voltages 
and inductor currents. From linear system theory point 
of view, another useful property of such structures is 
the ability to realize any structurally asymptotic stable 
transfer-function matrix. The most important feature 
of the proposed structure is its structural compatibility 
with a form of abstract energy conservation principle. 
For illustration of a practically useful multi-diagonal 
structure an example of tri-diagonal matrix: 

         
2

2 1 0 0 0
1 2 0 0

1 0 1 0
0 0 1 2 1
0 0 0 1 2

A
h

− 
 − 
 =
 − 
 − 

            (1) 

with diagonal elements representing the total energy 
dissipation while the off-diagonal elements represent 
the internal system interactions of a nth order state 
space representation (h - step of space discretization). 
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of the infinite-dimensional real system with physical 
structure shown in the Fig.1. 
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Fig. 1. Example of heated beam with control. 

From the strictly theoretical point of view, the 
adequate model of the real system under consideration 
takes the form of parabolic partial differential 
equation 
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The solution of this equation represents the 
temperature θ(x,t) in a one-dimensional normalized 
heat conduction problem, with heat input term u(x,t). 

The state space representation given by the eqs.(1), 
and (2) can be derived using the space discretization 
as a finite-dimensional approximation of inherently 
infinite-dimensional structure. This standard technique 
is known as finite-elements method.  

It is not very difficult to demonstrate that even in 
case of low order physical systems the standard ways 
to derive a proper system representations (using eg. 
Hamilton`s postulate, energy conservation principle, 
or Kirchhoff`s laws, etc.), need not to lead to 
symmetric and/or tri-diagonal structures, like eqn. (1). 
Two relatively simple physical examples will be 
briefly discussed in order to illustrate this point.  

The first one is the chain structure of an electrical 
network consisting of the chain of finite number of 
controlled interacting (real) RLC harmonic oscillators 
shown in the Fig.2. 
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Fig. 2. Ladder electrical network example. 

A typical internal structure of the nth order 
electrical network as shown in the Fig. 2, resulting 
directly from the given physical structure, can be 
illustrated by algebraic structure which is tri-diagonal 
but not symmetric, as given by the matrix A (for all 
R,L,C parameter values normalized to 1): 
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The second example can be characterized as the 
chain structure of a mechanical system consisting of a 
finite number of controlled interacting MKD harmonic 
oscillators shown in the Fig.3, with physical 
parameters: M – mass, K- stiffness, D -damping. 
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Fig. 3.  Mechanical system example 

A typical example of the internal algebraic 
structure of the 4th order mechanical system as shown 
in the Fig. 3, resulting directly from application of 
Hamilton`s postulate for the given physical structure 
can be illustrated by corresponding algebraic structure 
defined by the matrix A as given by eq.(5). Recall that 
the class of tri-diagonal structures, such as A in eq. (1) 
and (4), represents a sub-class of the well known 
Hessenberg structures. It is worthwhile to notice that 
the structure (5) is neither tri-diagonal nor symmetric. 
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One of the most important features of the 
Hessenberg matrix (or its transpose) is that all 
elements below the first sub-diagonal have to be zero. 

Thus if a Hessenberg matrix is a composition of 
symmetric and skew-symmetric sub-matrices like 
eqn.(4), it follows that the structure is tri-diagonal. 
Such matrices have the same eigenvalues as the 
original, but less computation is needed to reveal 
them. It is not difficult to prove that there exist multi-
diagonal structures, (like the 5-diagonal matrix A in 
eqn. (5) for zero value of the interaction parameter 
K2=0). Such structures are closely related to 
composition of symmetric and skew-symmetric parts 
leading to the class of port-Hamiltonian system 
representations which can be optimal with respect to 
energy motivated measures of approximation errors. 

The following nth order state energy equivalent 
tri-diagonal structure to the non-symmetric structure 
eq.(5) (for n=4), where ω2 and ω4 are the frequency 
parameters of two 2nd order subsystems in interaction 
where σ3 is the interaction parameter and parameters 
∆11 and ∆33 represent the total system dissipation.  
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It is easy to prove that the existence of the 
equivalent representation (6) reduces to solvability of 
equations: 
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II. CONCLUSIONS 
The main objective of the contribution was to show 
how multi-diagonal as well as a broad class of 
generally non-symmetric system representations may 
be transformed into the tri-diagonal form. The nth 
order generalization is straightforward. 
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