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Abstract

This thesis addresses several issues of automatic sign language recognition, namely the
creation of vision based sign language recognition framework, sign language corpora creation,
feature extraction, making use of novel hand tracking with face occlusion handling, data-driven
creation of sub-units and "search by example" tool for searching in sign language corpora using
hand images as a search query.

The proposed sign language recognition framework, based on statistical approach incorpo-
rating hidden Markov models (HMM), consists of video analysis, sign modeling and decoding
modules. The framework is able to recognize both isolated signs and continuous utterances
from video data.

All experiments and evaluations were performed on two own corpora, UWB-06-SLR-A and
UWB-07-SLR-P, the �rst containing 25 signs and second 378.

As a baseline feature descriptors, low level image features are used. It is shown that better
performance is gained by higher level features that employ hand tracking, which resolve occlu-
sions of hands and face. As a side e�ect, the occlusion handling method interpolates face area
in the frames during the occlusion and allows to use face feature descriptors that fail in such
a case, for instance features extracted from active appearance models (AAM) tracker. Several
state-of-the-art appearance-based feature descriptors were compared for tracked hands, such as
local binary patterns (LBP), histogram of oriented gradients (HOG), high-level linguistic fea-
tures or newly proposed hand shape radial distance function (denoted as hRDF) that enhances
the feature description of hand-shape like concave regions.

The concept of sub-units, that uses HMM models based on linguistic units smaller than
whole sign and covers inner structures of the signs, was investigated in the proposed iterative
method that is a �rst required step for data-driven construction of sub-units, and shows that
such a concept is suitable for sign modeling and recognition tasks.

Except of experiments in the sign language recognition, additional tool search by example
was created and evaluated. This tool is a search engine for sign language videos. Such a system
can be incorporated into an online sign language dictionary where it is di�cult to search in the
sign language data. This proposed tool employs several methods which were examined in the
sign language recognition task and allows to search in the video corpora based on an user-given
query that consists of one or multiple images of hands. As a result, an ordered list of videos
that contain the same or similar hand con�gurations is returned.
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Abstrakt

Tato práce se zabývá problematikou automatického rozpoznávání znakového jazyka z obra-
zových dat. Práce p°edstavuje p¥t hlavních p°ínos· v oblasti tvorby systému pro rozpoznávání,
tvorby korpus·, extrakci p°íznak· z rukou a obli£eje s vyuºitím metod pro sledování pozice a
pohybu rukou (tracking) a modelování znak· s vyuºitím men²ích fonetických jednotek (sub-
units). Metody vyuºité v rozpoznávacím systému byly vyuºity i k tvorb¥ vyhledávacího nástroje
"search by example", který dokáºe vyhledávat ve videozáznamech podle obrázku ruky.

Navrºený systém pro automatické rozpoznávání znakového jazyka je zaloºen na statistickém
p°ístupu s vyuºitím skrytých Markovových model·, obsahuje moduly pro analýzu video dat,
modelování znak· a dekódování. Systém je schopen rozpoznávat jak izolované, tak spojité
promluvy.

Ve²keré experimenty a vyhodnocení byly provedeny s vlastními korpusy UWB-06-SLR-A a
UWB-07-SLR-P, první z nich obsahuje 25 znak·, druhý 378.

Základní extrakce p°íznak· z video dat byla provedena na nízkoúrov¬ových popisech obrazu.
Lep²ích výsledk· bylo dosaºeno s p°íznaky získaných z popis· vy²²í úrovn¥ porozum¥ní ob-
sahu v obraze, které vyuºívají sledování pozice rukou a metodu pro segmentaci rukou v dob¥
p°ekryvu s obli£ejem. Navíc, vyuºitá metoda dokáºe interpolovat obrazy s obli£ejem v dob¥
p°ekryvu a umoº¬uje tak vyuºít metody pro extrakci p°íznak· z obli£eje, které by b¥hem
p°ekryvu nefungovaly, jako nap°. metoda active appearance models (AAM). Bylo porovnáno
n¥kolik r·zných metod pro extrakci p°íznak· z rukou, jako nap°. local binary patterns (LBP),
histogram of oriented gradients (HOG), vysokoúrovnové lingvistické p°íznaky a nové navrºená
metoda hand shape radial distance function (hRDF).

Bylo také zkoumáno vyuºití men²ích fonetických jednotek, neº jsou celé znaky, tzv. sub-
units. Pro první krok tvorby t¥chto jednotek byl navrºen iterativní algoritmus, který tyto
jednotky automaticky vytvá°í analýzou existujících dat. Bylo ukázáno, ºe tento koncept je
vhodný pro modelování a rozpoznávání znak·.

Krom¥ systému pro rozpoznávání je v práci navrºen a p°edstaven systém "search by exam-
ple", který funguje jako vyhledávací systém pro videa se záznamy znakového jazyka a m·ºe
být vyuºit nap°íklad v online slovnících znakového jazyka, kde je v sou£asné dob¥ sloºité £i
nemoºné v takovýchto datech vyhledávat. Tento nástroj vyuºívá metody, které byly pouºity
v rozpoznávacím systému. Výstupem tohoto vyhledávacího nástroje je se°azený seznam videí,
které obsahují stejný nebo podobný tvar ruky, které zadal uºivatel, nap°. p°es webkameru.
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1 | Introduction

Sign languages are used worldwide as a primary means of communication by deaf people.
With the development of camera hardware in last decade and its availability, there are demands
for research in the �eld of Human Computer Interaction (HCI) enabling the sign language to
be a natural mean of communication between the computers and humans. The results of the
research can be used in other �elds such as linguistics or education. One of the main challenges
is to develop an automatic system that can serve as an interpreter between sign and spoken
languages, to allow communication of deaf people with others who use spoken language. This
is not feasible nowadays, due to a still unresolved subtask of sign language recognition (SLR)
that tries to recognize signs in a stream of video data.

The �eld of SLR faces similar problems as automatic speech recognition (ASR) did in its
50 year history. Thus it can pro�tably utilize methods and paradigms, where a tremendous
research e�ort has been already put in. Despite this, the developments in SLR are many years
behind. The reasons are the lack of available data, small number of researchers and small
target group.

Like the spoken languages, sign languages evolve naturally within the deaf communities,
independently from the spoken language of the region or country. Thus, each sign language
has own grammar and lexicon, but share a common property that they are conveyed through
multiple visual communication channels, incorporating mainly hands and head. This makes
the analysis of sign language more complex task in comparison to one dimensional audio signal
in speech. This visual manner of communication incorporates di�erent language concepts than
which are used in spoken languages.

In general, for most of the sign languages, no written form of the language is established
and widely used. These days, instead of writing, the sign languages can be recorded, archived
and sent in a digital video form. Another practical use case for the SLR research is to allow
searching in this type of video data, that contains sign language recordings.

Sign language recognition is a multidisciplinary area that involves pattern recognition, com-
puter vision, linguistics and natural language processing. Initially, cumbersome data gloves
were used for data collection, but for real world applications this has been replaced by contact-
less camera-based devices, now even embedded in mobile devices.

In this thesis, several aspects of sign language recognition �eld are studied, such as hand
tracking, particularly during an occlusion with the face, hand feature extraction, face feature
extraction, sign modeling, recognition both of isolated signs and continuous speech, and data-
driven analysis of smaller phoneme units. A SLR system was built and its performance was
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CHAPTER 1. INTRODUCTION

measured on two corpora, UWB-06-SLR-A and UWB-07-SLR-P that were recorded for the
purpose of this thesis. Although the corpora include isolated signs only, arti�cial continu-
ous utterances were generated to perform continuous recognition. Multiple feature extraction
methods were examined, some were based on low level image information, other were using
higher level information about hand and head positions together with hand segmentation. Be-
yond the SLR system, a search by example system was proposed and evaluated. The system
allows searching in sign language videos having one or multiple hand images as a search query.

1.1 Structure of This Document

This document is organized as follows. Chapter 2 introduces scope and scienti�c goals,
addressing the main contributions of this work.

Chapter 3 contains a deeper introduction to sign languages, their notation systems and
relations with Human Computer Interaction (HCI), especially the aspects of sign languages
that are crucial for building of an automatic sign language recognition (SLR) system or other
HCI applications.

Chapter 4 summarizes available datasets, including the description of our recorded corpora.
The datasets are compared and their suitability for SLR is discussed, due to the fact that most
of the datasets were recorded for usage in linguistics and not HCI research.

Chapter 5 is an overview of current approaches and methods that are employed in SLR.
Most systems use statistical approach, employing Bayes decision rule and hidden Markov mod-
els. The recognition system consists of several modules. The �rst module performs analysis of
a source video, resulting in a series of feature vectors. Multiple approaches, mostly based on
appearance-based modeling, processing both manual (hands) and non-manual (face) compo-
nents of a sign, are discussed. Furthermore, supportive methods such as feature decorrelation
and dimension reduction are included. Next section, sign modeling, is a brief introduction
to hidden Markov models and its application in the �eld of SLR. Language Modeling section
introduces possibilities for the use of language models for sign languages. Finally, the sign
decoding module is described, involving possibilities of quality evaluation.

The main chapter 6 reveals contributions and results of this work, particularly in video
analysis and sign modeling. Multiple approaches for sign language recognition task are intro-
duced and their performance is compared. Then, the search by example system is introduced
and evaluated.

The last chapter 7 concludes the document. The achieved results are summarized and
future perspectives of the sign language recognition �eld are given.
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2 | Scope and Goals of the Thesis

The main goal of the thesis is to build a sign language recognition system and establish
a basis for further experiments and evaluations. Such a system consists of several modules,
each rising its own problems. The particular goals are to improve feature extraction and sign
modeling methods. Two di�erent real-world applications are considered for evaluation: 1)
sign language recognition (SLR) system, both for recognition of isolated signs and for
continuous utterances; 2) search by example system, which allows searching in sign video
corpora, where single or multiple images containing hands in particular con�gurations are given
as a search query.

2.1 Goals of the Thesis

1. To develop a baseline SLR system to allow further research in the area, both for recog-
nition of isolated signs and continuous utterances.

2. To record a dataset suitable for experiments and evaluations of the SLR system.

3. To compare existing feature extraction methods that analyze input frames recorded by
a stationary camera. Both low level image features and higher level appearance-based
features, incorporating hand and head tracking, are considered.

4. To improve particular feature extraction techniques, with focus on hand tracking and
occlusion handling.

5. To evaluate recognition performance for di�erent parameters of the SLR system, for
di�erent features and their modi�cations, such as dimension reduction and fusion.

6. To investigate the construction of smaller phoneme units, sub-units, by unsupervised
analysis of the used datasets, and evaluate its usage in the SLR system.

7. To use the integration of proposed methods to build a search by example system, that
uses images containing hands as a search query. The motivation behind is to embed
such a search system into an online sign language dictionary application, so that the user
is allowed to search the video content by posting queries that consist of hand images
captured by a webcam.
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3 | Sign Languages

Sign languages use manual communication means and body language to convey meaning,
instead of acoustic sound patterns used in spoken languages. The speaker, signer, uses com-
bination of hand shapes, orientation and movements of the hands, arms and body, and facial
expressions to communicate.

There are around two hundred sign languages around the world. They develop wherever
communities of deaf people exist.

Deaf sign languages are preferred by the deaf, and they are a natural form of sign languages
developed in a community of deaf people.

Signed modes of spoken languages (manually coded languages) are a bridge between
spoken and sign languages. Likewise, they use signs, but the grammar and sentence
structure are adopted from spoken languages.

Auxiliary sign systems are arti�cial signed systems, sometimes used together with spoken
languages, for instance: International Sign (an auxiliary language used by the deaf in
international settings), Baby Sign (used in early language development in young children),
Military hand and arm signals, Tic-tac (used by bookmakers to communicate the odds
at racecourses).

Cued speech is a phonemic-based system. It makes traditionally spoken languages accessible
by using a small number of handshapes (representing consonants) in di�erent locations
near the mouth (representing vowels), as a supplement to speechreading [wik12].

It is quite di�cult to estimate number of people who are deaf and who use sign languages. In
the Czech Republic the number is about 7500 of deaf signers (0.07% of the population) [Hru09],
and about 500000 (4.7%) hard of hearing. In Germany, the estimation is about 100000 (0.12%)
of people using sign languages [FSH+12].

Sign languages are now recognized as fully legitimate languages in countries throughout the
world.

There is one major di�erence between sign and spoken languages. In most of the sign
languages, signs can be meaningfully placed or directed in space. One instance of such a sign
may di�er from the next instance of the same sign depending on how the sign is directed or
placed in the space. For instance, the verb TELL begins with the index �nger in contact with the
chin. If the �nger moves outward toward the addressee, the verb expresses the meaning "tell
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CHAPTER 3. SIGN LANGUAGES

you". If it moves outward toward any female present in the room, it expresses the meaning
"tell her" [Lid03].

It is useful to think of a sign as analogous to the concept of word from spoken languages
[SLM06]. Signs consist of still smaller elements, a �nite set of discrete meaningless elements
that combined together form the signs. This discovery that a sign language has a phonemic
level of structure was �rstly described by Stokoe [Sto60], where a sign is divided into three
aspects: location, what acts and movement.

Although Stokoe's system of representation was widely used, it did not appear helpful
in understanding either phonological or morphological problems, because the model did not
include some types of structures needed to describe morphological problems [Lid03].

There is now a number of other proposals concerning the sequential representation of signs.

The term non-manual signal, in this work referred as non-manual component, was intro-
duced in order to describe aspects of signing that go beyond the hand actions [Lid77], which
is referred as manual component.

The most important parts of manual component are hand shape, location of the articulation
in the signing space, trajectory of hand movements, palm and �nger orientations, contact of
hands with the body and mutual relative position of the hands. Usually, one hand is dominant
and conveys more meaning than the other hand. If the signer is left-handed then the signs are
reversed with respect to the right-handed signers.

The non-manual component is an expression of the face and upper body poses and move-
ments. It has similar function as intonation in spoken languages, which conveys feelings, but
additionally it has grammatical functions. The carriers of the non-manual component are eyes,
eyebrows, mouth, cheeks and head. For example, vertical movements of the head from top
to down can express agreement, horizontal movements from one side to another can express
negation of the utterance performed by the manual component of a sign [Kuc05]. Most of the
rules were formed within the sign languages, but there is one exception for the use of mouth
[BSS01]. Mouth patterns can be particular realizations of spoken language words, which are
usually performed in signed modes of spoken languages.

It is necessary to di�erentiate terms sign and gesture. Gestures are means of non-verbal
interaction among people, usually accompanying verbal speech. They range from simple actions
of using a hand to point at and move objects around to the more complex ones that express
some feeling (�g. 3.1) [PSH97]. There are no rules for the production of gestures in contrast to
sign languages, although some gestures are internationally understandable. The gestures are
not limited in space where the gesture is performed, in contrast to sign languages where the
sign is limited by a signing space, which is delimited by the top of the head, bottom part of
the torso and by the width of an elbow.
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CHAPTER 3. SIGN LANGUAGES

Hand/Arm Movements

Gestures Unintentional Movements

Manipulative Communicative

Acts Symbols

Figure 3.1: Taxonomy of hand gestures for HCI. Gestures used for manipulation of objects
are separated from the gestures which possess inherent communicational character [PSH97]

Fingerspelling is part of sign languages used to represent letters of written languages (�g.
3.2). Special hand con�gurations denote single letters and can build whole words in a sequence.
This can be used for name or abbreviation spelling.

Figure 3.2: Fingerspelling - example of two-handed (top) and one-handed (bottom) alphabet

Written Forms of Sign Languages

The relation of sign languages to written form is di�erent from spoken languages. The
phonemic structure of spoken languages is sequential which leads to use of sequential phonemic
writing systems. On the contrary, the sign languages have non-sequential components, i.e.
many phonetic constructions are produced in the same time, which makes traditional sequential
writing systems unsuitable. This is one reason why many sign languages are not written and
the deaf signers use the written form of spoken language which is used in their country.

Nevertheless, several scripts for sign languages were developed. First group are phonetic
notation systems, such as SignWriting (�g. 3.3) or HamNoSys (Hamburg Notational System)
(�g. 3.4), which can be used for transcription of any sign language. Second group are "phone-
mic" systems, such as Stokoe notation (3.5), which are created for usage in a speci�c language.
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CHAPTER 3. SIGN LANGUAGES

All mentioned systems use iconic symbols. The Stokoe notation and HamNoSys are mostly
restricted to linguists and academic usage, and neither of them were designed to represent
facial expressions.

Figure 3.3: Example of SignWriting notation, Czech sign gloss CYKLUS, English sign gloss
LOOP [CKK+12]

Figure 3.4: Example of HamNoSys notation, Czech sign gloss CYKLUS, English sign gloss LOOP
[CKK+12]

Figure 3.5: Example of Stokoe notation [wik12]

As the written forms of sign languages are immature when compared to the spoken lan-
guages, it is di�cult to use these written forms in the automatic processing as there are no
developed tools and the knowledge of these forms is not wide spread. Although there are some
attempts of direct automatic transcriptions from a sign language utterance into a written form
[EFH+12], the majority of the SLR systems uses glosses, which are notations of the meaning in
written form of a spoken language. For example, instead of representing a sign in the written
form as seen in �g. 3.3 and �g. 3.4, it is more convenient to use a gloss "CYKLUS", which is the
Czech translation of the sign, or "LOOP" in English.

3.1 Sign Languages in Human-Computer Interaction

Human-Computer Interaction (HCI) is a highly interdisciplinary �eld studying interaction
between human beings and computers or other electronic devices. The goals of the research are
to �nd new interaction methods, make computers more user-friendly and create new automatic
aids.

In the particular case of sign language, HCI is related to �elds of pattern recognition,
computer vision, natural language processing and linguistics. HCI can be used to:

1. facilitate communication between deaf and hearing people, by creating specialized aid
devices,

2. enhance communication between deaf people and computers by using natural means of
the communication, because written languages used primarily in HCI are not natural and
many deaf people have poor reading and writing skills 1.

1For example, reading skills of 18 year old deaf students are at the level of 10 year old hearing students.
[Hol93]
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CHAPTER 3. SIGN LANGUAGES

As the sign language is a visual form of communication, the HCI systems must be based
on a processing of visual information. This has higher demands for memory storage and com-
putational power than processing of audio information, which is used in automatic speech
recognition and synthesis as another sub�eld of HCI, which is being developed since 1960s. Al-
though automatic speech recognition and sign language recognition �elds share many methods,
the �eld of SLR is not so advanced. The main reason is the lack of available data and lower
number of possible users. Speech HCI systems for recognition and synthesis are wide-spread
and used in many applications, in contrast to HCI systems for sign language, where the �eld is
several years behind. Current applications are able to provide good sign language synthesis (�g.
3.6) and to recognize isolated signs in videos recorded under some special conditions. Another
di�culty is the necessity to translate the recognized utterances into a spoken language. This
task of automatic machine translation is often solved concurrently with the recognition task.

The �rst direction of communication is from computer to the user, where sign language
synthesis is used to create a 3D signing avatar which uses hand movements and facial expressing
to convey utterances (�g. 3.6).

Figure 3.6: Example of sign speech synthesis [KKC+11]

The opposite direction is from the user to the computer, where some components of the
sign or whole utterances are captured by an input device and recognized. In the early SLR
systems, the input devices were based on contact measurements, such as data gloves (�g. 4.1).
Even today this kind of device has advantage in high accuracy. The disadvantage that made
these devices obsolete for real applications is cumbersome usage. This lead to the expansion of
vision-based devices, such as digital cameras, camcorders or Kinect, where the measurements
are not so accurate, have problems with occlusions when some body part is not visible, but
are cheaper, a�ordable and more native. Some of the problems, such as the occlusion, can be
solved by usage of multiple cameras for the cost of higher processing demands.

Sign language recognition (SLR) or its partial algorithms can be used for:

automatic translation from sign language to spoken language This is one of the ulti-
mate tasks that incorporates continuous sign language recognition and machine transla-
tion.

search by example This task uses SLR for searching in an archive of video footages, where
the search query consists of an example of a sign or a hand shape. For example, this can
be used in sign language dictionaries, where a video footage with a sign or an utterance
can be queried by another video footage or a single image provided by the user.
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CHAPTER 3. SIGN LANGUAGES

semi-automatic annotation of sign language corpora SLR systems can automatically or
semi-automatically annotate sign language video footages, used for example in linguistics.

automatic collection and annotation of sign language corpora Corpora of signs can be
built automatically from TV broadcasts, where the main video track is accompanied by
another track with a signer who translates the original speech from audio track into sign
language. Here, the correlation between the audio and sign video information is high and
the SLR system could �nd corresponding pairs of words and signs.

education SLR systems can be incorporated into educational software, for example to create
interactive tutoring systems for sign languages.

Basic schema of a continuous sign language recognition system is shown in �g. 3.7. The
observed data in form of images or measurements from data gloves are recognized into a
sequence of signs.

One property is that the same sign has di�erent observations among di�erent realizations,
even of the same person. One observation of a sign can be seen as a measurement of a stochastic
process, where some noise is present (�g. 3.8).

According to the model in �g. 3.9, a sign originates as a signer's mental concept, which is
expressed through the manual and non-manual sign components. The observer, either a person
or a device, then perceives signs as streams of visual images, which they interpret using the
knowledge they possess about the sign language [PSH97].

Sign Language Recognition System

Sequence 
of images 

Sequence
 of recognized

signs

Feature
extraction Recognition

Figure 3.7: General schema of a sign language recognition system
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x

y

z

Figure 3.8: Hand movement as a stochastic process. The line represents mean trajectory of
a movement, the points are measurements of several realizations of the same movement.

Sign
(the mental concept of)

Hand/Head
Movements

Observation
(visual images)

Signer
produces

Observer
perceives

Figure 3.9: Production and perception of signs. Signs originate as a mental concept S, are
expressed (Tsm) through head and hand motion M and are observed (Tom) as visual images

O. Redrawn from [PSH97].
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4 | Data

The methods used in the �eld of sign language recognition are highly inspired by the ones
used in the automatic speech recognition. The vast majority is based on learning of statistical
models where large amount of labeled data is required. Additionally, to make the statistical
models robust, the certain phenomena contained should appear many times in the data, which
is not necessary true for the data collected for linguistic research. A typical set of data recorded
for the purpose of linguistic research is focused on certain aspects of sign languages. It is also
recorded in laboratory conditions but without any assumption that the data can be processed
automatically, i.e. the illumination can be highly varying, the background is cluttered or the
resolution of the footage is too low. Such conditions make tasks incorporating automatic video
processing methods more di�cult.

On the other hand, several sign language corpora targeted to experiments with the video
processing exist, but are usually of a limited size or resolution.

Such data di�er greatly from the language which is used outside of the laboratory. An
example of such a real world data source is a broadcast of some public TV station, which
features interpretations of some programs into sign language using an overlay box with the
interpreter. This type of data source may encounter some problems with license issues. A wide
variety of topics is covered in TV broadcasts and the annotation covering the whole domain
is not feasible. One of the solutions is to restrict the topic to some domain where a limited
vocabulary is expected, such as to weather forecasts [FSH+12].

The implicit assumption in the mentioned claims is that the data are recorded in the form of
a video footage. In general, a SLR system can use any other possible type of data source. Many
early SLR systems used data gloves and accelerometers for measurements of hand position and
shape (�g. 4.1). Although the measurement accuracy was very high, the need of wearing

Figure 4.1: Data glove and 3D tracker used in [WCG06]
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Figure 4.2: Visualization of upper body skeletal joints generated from a depth-map [ZBS+11]

cumbersome devices did not allow natural movements and thus altered the performed signs.

Therefore the use of vision sources has become more popular and is nearly exclusive data
source used in SLR nowadays. The vision source uses one or multiple cameras to capture
a sequence of images. In contrast to the use of data gloves, some additional problems arise:
occlusion of hands and head, di�erent appearance of the recorded signers under di�erent lighting
conditions, motion blur in case of fast movements, higher data storage and computational
demands.

Optical motion capture systems can be considered as a special case of vision sources, which
uses multiple image sensors to triangulate the 3D position of a signer's body parts. Such an
approach was used in [KJV+12].

Most of the mentioned problems can be avoided by the usage of a depth-mapping camera,
such as the Kinect [ZBS+11] (�g. 4.2). This camera provides two data streams: RGB image
and a depth-map. The depth-map data allows solving majority of occlusion problems and the
3D hand pose could be determined. This kind of sensors has become reasonably priced and is
a very promising direction for the use in sign language recognition �eld.

Apart from the type of data source, another issue should be referenced. Because the
majority of the SLR systems are based on a statistical approach, a large amount of data is
required. To be speci�c, each sign (or smaller sub-unit) should be seen several times in the
data, enabling robust training of the recognition system.

To avoid the lack of training samples, a method for generating of synthetic samples can be
used to enlarge the training set [JGY+09]. Another promising approach how to avoid di�cult
and time consuming task of manual data collection is automatic extraction of signs from existing
source such as broadcasting news for the deaf. The idea is that the signs should co-occur in the
similar time interval with the spoken word which corresponds to the translation of the sign.
The spoken words can be either automatically recognized or extracted from manually created
subtitles. Then, on a large dataset this co-occurence can be identi�ed and some signs can be
automatically extracted [SASA09] [CB09] [AAA+08].
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4.1 Available Sign Language Data Sets

ASL Lexicon Video Corpus [ANS+08] (�g. 4.3a) is a public dataset containing video se-
quences of American Sign Language signs, with annotations of the sequences, where
start/end frames of every sign is known. The vocabulary contains nearly 3000 signs,
recorded from front and side view.

ATIS Sign Language Corpus [BSD+08] (�g. 4.3b) is based on the domain of air travel, is
recorded in �ve di�erent sign languages, and is suitable for recognition and translation
experiments. The corpus contains 680 sentences, about 400 di�erent signs performed by
several speakers.

Auslan Corpus [Aus] consists of 300 hours of Australian sign language, with linked linguistic
annotations of a small subset of the recordings.

DEGELS1 Corpus [BB12] (�g. 4.3c) is primarily targeted for linguistic research to compare
annotation and analysis methods.

Dicta-Sign Corpus [EFH+12] is a recent multilingual dataset for British, French, German
and Greek sign languages, providing approximately 1000 signs in every language. The
video was recorded from di�erent perspectives and with additional stereo camera. Addi-
tionally, another footage on the domain "Travel across Europe" was recorded in all four
countries, by 14 to 16 informants in sessions lasting about two hours each.

ECHO Corpora [Ech] (�g. 4.3d) is a collection of three corpora in British sign language,
Swedish sign language and sign language of the Netherlands. All three corpora have
been linguistically annotated. For the usage in the �eld of sign language recognition,

(a) ASL Lexicon [ANS+08] (b) ATIS [BSD+08]

(c) DEGELS1 [ZDR+06] (d) ECHO [ZDR+06]

Figure 4.3: Sample frames from di�erent corpora
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(a) eNTERFACE'06
[AAA+09]

(b) OXFORD
[BEZ10]

(c) RWTH PHOENIX
Weather [FSH+12]

(d) Phoenix [BSD+06]

Figure 4.4: Sample frames from di�erent corpora

some parts of the original database were selected [ZDR+06]. Although a completely
controlled environment with contrast background was used for the recording, it is hard
to use the corpora for sign language recognition. The number of unique words is too high
in relation to the number of utterances. Altogether, the collection contains more than
500 sentences, having 1500 unique words.

eNTERFACE'06 Corpus [AAA+09] (�g. 4.4a) is an example of a single-purpose dataset
of 19 signs from American sign language, used for evaluation of non-manual e�ects in-
�uencing recognition accuracy. Colored gloves were used to ease the segmentation of left
and right hand.

OXFORD Corpus [BEHZ08] (�g. 4.4b) is an extract from broadcast news videos recorded
from BBC and is suitable mainly for tracking experiments.

Phoenix Database [BSD+06] (�g. 4.4d) is a set of 51 transcribed recordings, each is a
snapshot of one weather forecast broadcast from the German TV channel Phoenix. There
are 11 di�erent signers, more than 400 sentences build from more than 600 unique words.

RWTH-PHOENIX-Weather corpus [FSH+12] (�g. 4.4c) is another corpus built from the
same source of the video data as the Phoenix Database, coming from 190 weather forecast
broadcasts, having 1980 sentences comprising 911 di�erent signs from 7 signers in German
Sign Language. Although not recorded under laboratory conditions, the TV studio has
controlled lighting conditions, additionally signers wear dark clothes. Unfortunately,
the resolution of the videos is 210x260 pixels, which might not be su�cient for some
processing tasks in the �eld of sign language recognition.

RWTH-Boston Databases [DFN10] [DNA+08] (�g. 4.5a) is a set of several individual cor-
pora. RWTH-Boston-50 database, containing 50 di�erent isolated words performed by 2
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(a) RWTH-Boston [ZDR+06] (b) SIGNUM [AK07]

Figure 4.5: Sample frames from di�erent corpora

speakers, with about 1500 annotated frames, was used for the task of isolated sign lan-
guage recognition [ZDR+06]. RWTH-Boston-104 database has been successfully used for
sign language recognition [DRD+07], mainly for the evaluation of hand tracking meth-
ods. This database consists of 161 sentences, having 103 signs in the vocabulary. In
more than 15k frames the signers' head and hand positions are annotated. The last is
RWTH-Boston-400 database with 843 sentences, where the vocabulary size has a size of
406 words, recorded by 4 speakers. The main gloss and English translation are annotated.

SIGNUM Corpus [AK07] (�g. 4.5b) contains about 33 thousand sentences in German sign
language, 700 signs and 25 di�erent speakers. The corpus is suitable for signer indepen-
dent continuous sign language recognition tasks.

The Corpus NGT [CZ08] contains 12 hours of upper body and front view recordings, having
64 thousand annotated glosses. The single sessions or pair discussions, in Dutch sign
language, were recorded without a speci�c domain.

znaky.zcu.cz The Online web sign dictionary [CKK+12], which is primarily targeted for Czech
sign language and for educational purposes, is a source of more than 3000 video �les, each
containing one isolated sign. This is an example of many existing online sign dictionaries
targeted for educational purposes.

UWB-SLR is a set of two individual corpora, recorded in the same laboratory conditions
for the usage in sign language recognition tasks. Video data were collected from three
di�erent views: front view, upper view and face view. This allows advanced experiments
with automatic processing of the face and with stereo vision (�g. 4.9), the camera setup
was calibrated from recorded frames containing a special calibration box with chessboard
patterns.

The �rst corpus UWB-06-SLR-A [CHv07] (�g. 4.6) consists of 25 signs, performed by
15 signers, each sign was repeated 5 times. Several types of signs were recorded: one
and two handed signs, signs containing movements with occlusions between objects, rich
hand shapes and �nger movements, and signs that di�er only in head movement and/or
face expression.

The second corpus UWB-07-SLR-P [CHT08] (�g. 4.7) contains video data of 4 signers,
378 di�erent signs with 5 repetitions. Several types of signs are incorporated: numbers (35
signs), one and two-handed alphabet (64), town names (35), day and month names (19)
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and other signs (225), which were selected as most frequent signs in the Train timetable
dialogue corpus [KZJM06]. In total the corpus consist of 21853 video �les.

Figure 4.6: Sample frames from UWB-06-SLR-A corpus (front view)

Figure 4.7: Sample frames from UWB-07-SLR-P corpus (front, face and upper view)

Figure 4.8: UWB-07-SLR-P corpus: sign SIX
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Figure 4.9: UWB-06-SLR-A corpus: English sign gloss PLANE, visualisation of 3D trajectory
of hand movements estimated from front and upper camera view [CHv07]
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5 | Automatic Sign Language
Recognition: Current
Approaches and Methods

The majority of modern SLR systems is based on statistical approach, usually incorporating
Hidden Markov Models (HMM). The scheme of such a system is shown on �g. 5.1

Video
analysis

Sign
modeling

Language
modeling

Decoding

video

Figure 5.1: Schema of the statistical approach to automatic sign language recognition

The SLR system contains several modules. In the Video analysis module the video sequence
is transformed into a series of observations O = o0,o1, . . . . Each observation is represented by
a feature vector. The assumption and requirement is that the observation sequence O carries as
much information needed for recognition as possible. The Sign modeling module converts the
observation sequence O into p(O |W ), i.e. into likelihoods of the observation sequence given
the word (sign) sequence W . The Language modeling module is used to evaluate the a priori
probability P (W ) of the given sign sequence W . Finally, the task of the Decoding algorithm is
to �nd the most probable sign sequence Ŵ for given observation sequence O .

Detailed description of the particular modules follows in the next sections.
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5.1 Video Analysis

The goal of video analysis is to transform the video sequence containing one signer into a
series of observations O = o0,o1, . . . . Each observation is represented by a feature vector. To
enable the use of non-vectorial image data, a feature extractor is used to map the input image
data into a real valued vectorial representation.

In the next section 5.1.1 an overview of skin color segmentation techniques is presented
as a �rst step of the processing which allows �nding body parts in the video frames. Then,
face detection (section 5.1.2) and tracking methods (section 5.1.3) are introduced. When the
head position and hand shapes are known, the sequence of observations O can be calculated by
feature descriptors applied to the hands (section 5.1.4) and the head (section 5.1.5). Optionally,
a decorrelation and dimension reduction can be applied to improve quality of the feature vectors
(section 5.1.6).

5.1.1 Skin Color Segmentation

For sign language recognition, the objects of our interest are head and hands. Various
image segmentation methods can be used to identify pixels belonging to human body by their
color. Under condition that the input image does not contain skin color objects other than
human parts, image segmentation techniques can be easily used to �nd these objects in the
image. Under another simplifying condition that the person wears clothes with non-skin color
and with long sleeves, all skin color objects in the image belong to either head or hand.

For images satisfying those conditions a rule-based method proposed in [KPS03] can be
used. The method uses RGB color space and a set of heuristic rules which describe the skin
color cluster in the RGB color space. In addition to the original method, a parameter s was
added to control strictness of the rules. With s = 0 the rules are the same as in [KPS03]:

R > 95 + s

G > 40 + s

B > 20 + s

R > G

R > B

max{R,G,B} −min{R,G,B} > 15 + s

|R−G| > 15 + s

Pixel belongs to skin color cluster if all rules are ful�lled. Example segmentation for di�erent
strictness parameter s is shown on �g. 5.2.

This rule-based method is su�cient for scenes with good and static illumination. Both
corpora UWB-06-SLR-A and UWB-07-SLR-P used in this work were recorded in laboratory
conditions and satisfy this condition. The quality of the segmentation was similar to the second
considered method [AAA+08].

The second method uses training data with manually segmented images, where all the pixels
belonging to skin areas were labeled, to train a skin color model using Gaussian Mixture Model
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Figure 5.2: Skin color segmentation for sample image from UWB-06-SLR-A dataset. Source
image (left), skin color segmentations for s = −50, s = −25, s = 0, s = 25 and s = 50.

Figure 5.3: Skin color segmentation (GMM method), left: source image, middle: probability
of each pixel to belong to skin color cluster, right: skin color probability distribution in the
RGB color space, with two levels visible (probability of 0.5 for outside layer and 0.86 for inner

layer)

(GMM). Similarly to previous method, the RGB color space is used for color representation.
The training data are processed by the Expectation Maximization (EM) algorithm to train the
GMM. After manual inspection of the spatial parameters of the data, �ve GMM components
is a compromise between smooth segmentation and over�tting.

With given GMM model, the probability of belonging to a skin cluster is computed for
each pixel (�g. 5.3). To segment image into two classes (skin color and non-skin color) a
thresholding must be applied to the resulting probability image.

5.1.2 Face Detection

Common problem in sign language recognition is detection of face in the source image. A
face detector initially proposed by Viola [VJ01], improved by [LM02] and freely available in
OpenCV [ope12] software library is used in this work.

Firstly, a cascade of boosted classi�ers is trained with sample views of a face (positive
examples) and non-face views (negative examples). The classi�er is applied to regions in an
input image, with the same size as positive images. To process whole input image the search
window is moved across the image and every location is classi�ed. To �nd a face of di�erent
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size the scan process is repeated at di�erent scales. The features used in classi�ers are based
on Haar-like features, using integral images for rapid calculation [VJ01]. As a result, a set of
axis-aligned bounding boxes is computed, each containing face subimage.

5.1.3 Hand and Head Tracking

In general, tracking is a process of locating one or multiple moving objects over time in
consecutive video frames.

Any face detection method can be used directly for track-by-detection face tracking. In case
of some noisy detections, a running average over a series of frames is a fully su�cient and well
performing way how to track a face. Particularly for sign language corpora where only one face
is considered to be present in a scene. The face detection method described in the previous
section 5.1.2 is partially robust to occlusions with hands. In case the occlusion prevents the
detector to �nd the face, the largest image segment corresponding to skin-color area is expected
to contain occluded face. Thus, the problem of head detection and head tracking are considered
to be solved for the usage in sign language video processing.

Since the face and hands often overlap, all areas have similar color and the hand shape and
its appearance is highly variable, the hand tracking is still a challenging problem.

Figure 5.4: Example of tracking failure. The
tracking of left hand was confused with the right

hand.

Even state-of-the-art general tracking al-
gorithms have some limitations, for instance
they do not allow presence of multiple similar
objects in the scene [KMM11], as is depicted
in �gure 5.4. Many specialized hand tracking
algorithms were proposed to overcome di�-
culties with occlusions and high variability of
hand shape. Mainly, methods based on simi-
larity cost functions between the current im-
age and a template, and methods based on
dynamic hand models have become widely
used [OKA12].

For non-linear and non-gaussian problems
the particle �lter algorithm [IB98] has be-
come successful. In [Ara08] the particle �lter
was used for hand tracking and allowed some
level of robustness for occlusions, in [GC11]
di�erent hand and head models were used
during occlusion and increased the tracking accuracy.

Most of the algorithms target to tracking of the center of gravity, which is su�cient for hand
trajectory estimation, but is insu�cient for hand shape modeling, where the exact segmentation
of the pixels corresponding to hand regions is needed.
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Resolving Hand over Face Occlusion

In order to describe hand appearance and shape features, it is necessary to perform hand
segmentation during occlusion with face. This task is di�cult because of the same color of
hand and head, and large variability of the hand shape.

In [HSS02], the hand was the only object in the image and the occlusion was avoided.
Methods proposed in [HLM04] [RVCB03] provide extraction of skin color regions, but they
did not handle skin objects occlusions. Active contours approach [HLO05] does not cover
variability and fast change of hand shape. The concept of image force �eld was used in [SdS07]
for rough hand segmentation, which is not precise enough for sign language analysis.

Method proposed in [GCD10] is able to segment a hand in front of a face in occlusions
where the face does not change its appearance too much. In �rst step, immediately before
the occlusion starts, the face position and the face template is remembered. Then, the face
template is registered with the image during occlusion so the face position is tracked. Edges in
the image are classi�ed as belonging to the hand or to the face by mapping edges orientation
to the face template (�g. 5.5 (a)). The di�erence between pixel colors from the template and
image is measured (�g. 5.5 (b)). Robust hand segmentation is reached by merging both color
di�erence and edge orientation di�erence features (�g. 5.5 (c), (d)).

In detail, the main problem is that hand segmentation in front of the face is not easily
performed by only considering color feature. The idea is to �nd any information in the face area

(a) normalized edge orienta-
tion di�erence map

(b) merged (a) with mask of
pixels that have changed

(c) hand segmentation result

(d) hand segmentation results with artifacts under the chin and
over the collar

Figure 5.5: Hand over face segmentation [GCD10]
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that was not present before the occlusion started. The assumption is that the face template,
remembered from the moment just before the occlusion started, does not change its appearance
during the hand occlusion. Thereby, when the face template is registered with the image, and
edge �lter is applied to both template and image, the orientation and presence of edges in both
images on the same positions can be compared.

Several cases arise:

1. edges in the template and image are present in the same position and have the same
orientation,

2. edges are in the same location but with di�erent orientation,

3. edge from the template or image is lost.

Case 1 indicates that no hand is present at the location of examined pixel or the hand is
present and has the same edge orientation. Case 2 and 3 indicates that the hand is present
in the position. The method fails in case 1 where hand and face edge orientations are the
same (e.g. �nger parallel with face edge) and in case where the face changes its appearance in
respect to the template during the occlusion (mouth moves, eye blinks, cheek movement) (�g.
5.5 (d)). This method does not limit shape or number of objects that occlude the face, thus
it is suitable for sign language recognition where two hands can occlude the face at the same
time.

5.1.4 Manual Component Features

As was explained in chapter 3, the manual component is one of the two sign components.
In order to discriminate the signs during the recognition process, it is necessary to obtain
features which describe this component, consisting of hand shape, location in the signing space,
trajectory of hand movements, palm and �nger orientations.

The hand tracking method described in the previous section provides necessary information
about the hand location and trajectories, where hand and head positions and velocities can be
used as features. The remaining hand shape and palm and �nger orientations can be modeled
and described by di�erent approaches:

3D hand modeling This approach uses a 3D hand model, having several degrees of
freedom, to analyze the hand posture by synthesizing the 3D model and then varying its
parameters until the model and the real hand appear as the same visual images. In other words,
hand model hypotheses are generated and evaluated on the available visual observations. Even
though such models have become quite realistic, they can be too complex to be rendered in
real-time [PSH97]. One of the �rst systems that can operate in real time with full articulation
of two interacting hands is proposed in [OKA12]. For further SLR tasks, the model parameters,
such as joint angles, can be directly used as features. Another approach for 3D hand parameters
estimation uses a motion capture system which uses markers attached to the signer hands and
other body parts, and multiple cameras for 3D tracking of those markers [KJV+12]. This
system can produce accurate trajectories, but is limited for the laboratory usage only.

Appearance-based modeling Appearance based features usually do not depend on
complex processing and are suitable for real-time usage. The features are extracted directly
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Figure 5.6: Example of di�erent hand con�gurations that have nearly the same shape (rep-
resented as a 2D binary mask) from given viewpoint, but di�er in the appearance

from the images. The idea is that the same hand poses have similar appearances, i.e. the
captured images will be similar, which leads into similar feature vectors computed from those
images. Vice versa, two di�erent hand poses, which have di�erent appearance in the images,
should have dissimilar feature vectors. If those conditions are valid then an appearance-based
method for hand pose description has discriminative power.

To describe hand shape appearance image with compact and descriptive representations of
the hand con�gurations, both hand shape and appearance should be considered (�g. 5.6). In
[RTPM10], an a�ne-invariant hand shape modeling is proposed using a hybrid representation
of both shape and appearance of the hand.

In the following, four methods for appearance-based feature extraction are described. Radial
Distance Function (RDF) is a shape descriptor which ignores the texture information. On the
other hand, Local Binary Patterns (LBP) is an example of state-of-the-art texture descriptor
where shape information is ignored. Despite that, both descriptors can be used and resulting
features can be combined together in further processing.

Radial Distance Function - RDF

Radial Distance Function (RDF) feature descriptor is de�ned as a feature vector XRDF =
{‖p1− pc‖, ‖p2− pc‖, . . . , ‖pN − pc‖} where pc ∈ R2 is the centroid of the object silhouette and
pi is the point on the silhouette contour [SB08]. pi − pc measures the maximal extent in the
particular direction denoted by i.

RDF was used in [KYSD06] for hand-based person recognition. In [KYA+11] and [HCD+11]
the method was slightly modi�ed to represent two handed shapes for the problem of �nger-
spelling recognition. In [SASA09] RDF was used in automatic sign segmentation problem.

Histogram of Oriented Gradients - HOG

Histogram of Oriented Gradients (HOG) is a regional feature descriptor introduced in
[DT05] for object detection, in particular for pedestrian detection. The method was inspired
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(a) Sample source image (b) Visualization of resulting HOG

Figure 5.7: Example of Histogram of Oriented Gradients - HOG

by gradient orientation histograms used in the SIFT descriptor [Low99]. In [LE09] HOG
was used as a hand shape descriptor for �ngerspelling recognition which outperformed other
descriptors [GH06] [FR94].

The idea is to describe the local object appearance and shape by the distribution of intensity
gradients (see �g. 5.7). The source image is divided into cells of the same size. For each cell,
a histogram of gradient directions is computed. The concatenation of histograms from all cells
forms the resulting feature descriptor.

The accuracy can be improved by normalization of the contrast across a larger region of
the image (called block), but at the cost of greater length of the feature descriptor. Because of
the static illumination conditions of the corpora used in this work this contrast normalization
step is not relevant and can be skipped.

The �rst step is the computation of the gradient values. Commonly used kernels can be used
to �lter image in horizontal and vertical directions: [−1, 0, 1] and [−1, 0, 1]T [SHB07]. Other
kernels and Gaussian smoothing could be used, but it was found that the kernels mentioned
above and omission of any smoothing performed better in practice [DT05].

In the second step, histograms are created in each cell. Each pixel in the cell casts a
weighted vote in a histogram bin associated to one orientation interval. The histogram bins
are evenly spread over 0 to 360 degrees or over 0 to 180 degrees when the orientation of the
gradient is ignored. The �nal feature descriptor is constructed as a concatenation of histograms
from each cell.

Local Binary Patterns - LBP

Local Binary Patterns (LBP) have been shown as a successful texture descriptor in many
computer vision applications: face expression recognition [MB11], face recognition [CKM07],
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(a) 8-neighborhood (b) LBP mask

Figure 5.8: Local Binary Patterns - operator for 8-neighborhood with radius 1

(a) Non-uniform operator examples

(b) Uniform operators, all possible combinations without rotations

Figure 5.9: LBP - Examples of non-uniform and uniform LBP operators

human detection [WHY09] and lately in sign language recognition [HTv11] [KYA+11] [HCD+11].

Even the LBP method was �rstly used for texture classi�cation, it was shown [HCD+11]
that it has a discriminative power for hand shape description. In addition, the computation is
simple.

The basic form of LBP divides the source image into cells of the same size (e.g. 16x16 px).
Each pixel in a cell is compared to all 8 neighbors in given order. The resulting number, which
describes texture property of the examined pixel, is calculated by comparing the pixel value
of the center pixel and 8 neighboring pixels, in given order. The result is a sum of 8 numbers,
each set to 0 where the center pixel value is lower than of the neighbor, otherwise it is set to
the mask value which is shown in �gure 5.8. For each cell, a histogram of those resulting values
is computed. The �nal feature vector is a concatenation of all histograms, i.e. the vectors
representing individual histograms are concatenated into a single vector.

The method can be generalized to use di�erent number of neighboring pixels at di�erent
distance from center pixel.

To reduce the length of the feature vector and to increase robustness in locations with
multiple edges, so called uniform LBP were introduced as another extension to the basic
method. The inspiration is that some binary patterns occur more often than others. A local
binary pattern is marked as uniform if the binary pattern contains at most two transitions from
0 to 1 or vice versa (see �g. 5.9). All non-uniform patterns are labeled with the same number.
Thus, the length of the feature vector is reduced from 256 to 59 (when using 8-neighborhood).

Another extension which introduces rotation invariant description is available, but not
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considered here since the hand orientation is important feature and rotation invariancy is not
desired.

High-level Linguistic Feature Descriptor

A high level description of hand shape and motion was introduced in [BWK+04] and later
used in [CB09] [CB10].

When hand trajectories are known, its coordinate representation can be converted into a
phoneme representation taken from sign linguistics [BWK+04]:

HA Position of the hands relative to each other

TAB Position of hands relative to key body locations

SIG Relative movement of the hands

DEZ Shape of the hands

This notation provides a high-level binary feature descriptor. The events like hands move
apart, left hand on right shoulder are examples of events covered by the descriptor.

In this work, the DEZ subgroup of the features was ignored and only positional features
were used (see tab. 5.1 ).

HA TAB SIG

1. Left hand high 6+7. Face 20+21. Hand makes no movement
2. Right hand high 8+9. Left side of face 22+23. Hand moves up
3. Hands side by side 10+11. Right side of face 24+25. Hand moves down
4. Hands in contact 12+13. Left shoulder 26+27. Hand moves left
5. Hands crossed 14+15. Right shoulder 28+29. Hand moves right

16+17. Chest 30. Hands move apart
18+19. Stomach 31. Hands move together

Table 5.1: High level linguistic features [BWK+04]. The features in pairs denote two stan-
dalone features for left and right hand.

The positions of the hands used for feature computation are calculated from the centroids.

In contrast to the original method, where only features related to the dominant hand were
used, both hands are considered and included in the features in this work. Examples of such
feature vectors calculated for a set of images of one sign is shown in �g. 5.10.

5.1.5 Non-manual Component Features

As was explained in chapter 3, the non-manual component is important part of the sign. To
allow robust recognition and to distinguish signs which have the same manual component and
di�er only in the non-manual component, it is necessary to obtain features which describe this
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(a) sign AUTOBUS (b) sign CESKE BUDEJOVICE

Figure 5.10: Examples of high-level linguistic feature descriptor for a short video sequence.
Each column corresponds to one video frame, row to particular feature (white color denotes

active feature).

component and are able to discriminate non-manual expressions, such as raised or lowered eye-
brows, head tilts, eye gaze, etc. In particular, eyebrows indicate negation and question schemes,
mouth and lip movements encode adjectives and adverbials, and head pose has participation
in a�rmations, questions and denials.

A key factor for estimation of non-manual signals is accurate tracking of the facial landmarks
[MLY+12]. Although many models have been proposed for face tracking, most of them target
global shape optimization and are sensitive to occlusions of the face (�g. 5.12).

Common methods used for face tracking are Active Shape Models (ASM) [CTCG95] and
Active Appearance Models (AAM) [ETC98]. Other methods use a 3D deformable model
[vAKK08], but this method cannot be applied in real-time systems.

In the following, Active Appearance Model method employed in this work is described.

Active Appearance Model (AAM)

Active Appearance Model (AAM), �rstly proposed in [ETC98], is a non-linear generative
parametric model, most frequently applied for face modeling [LTC97].

The goal of the algorithm is to match a statistical model of object shape and appearance
to a source image. The model is built in a training phase from a set of images with annotated
coordinates of landmarks. It is related to the active shape model (ASM) [CTCG95] that uses
only shape information and thus does not take advantage of all the information available.

The �rst step is to �t the AAM to the source image, the model parameters are found to
maximize the match between the model instance and the input image [MB04]. The model
parameters can be used directly as feature vector, representing the face shape and appearance,
or can serve as a basis for calculation of higher level features, like lip height, left eyebrow
elevation etc.

Fitting an AAM to the source image is a non-linear optimization problem [MB04]. For the
experiments in this work, an e�cient implementation based on Inverse Compositional Image
Alignment [BM01] [BM04] is used.

Figure 5.11 presents an example of an AAM �tting. The AAM in the example was trained
on di�erent people than the one on which the AAM was applied, thus the appearance (�g.
5.11d) modeled by the �tted AAM seems to belong to other person. When no other objects
occlude with the head, the AAM �ts the face correctly, but the �tting can fail when larger part
of the face is occluded (�g. 5.12).
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(a) Source image,
UWB-06-SLR-A corpus

(b) AAM shape model (c) Fitted AAM shape

projected to source im-
age

(d) Fitted AAM ap-

pearance projected to
source image

Figure 5.11: Active appearance models (AAM): example of a model and �t of the model to
the source image

Figure 5.12: Example of AAM wrong �tting due to occlusion

5.1.6 Feature Decorrelation and Dimension Reduction

Features obtained by the feature extraction methods described in the previous sections are
likely to be correlated, i.e. the features statistically depend on each other. In such a case the
sign modeling module (section 5.2) has to process some redundant information, which is time
and memory ine�cient, and full covariance matrix of features should be used for Gaussian
Mixture Model (GMM) used in sign modeling (section 5.2.1).

Dimensionality reduction is a way how to deal with both problems. It aims at selecting the
most discriminative information from the feature vectors, usually by use of a linear transfor-
mation of the feature space. Although this transformation leads to a loss of information, the
parameter estimation in the reduced feature space is often more reliable.

In the following, Principal Component Analysis (PCA) method employed in this work is
explained. The �rst use is to reduce and decorrelate features obtained from appearance-based
features described in previous sections. The second use is its application for Eigensign features
obtained directly from image pixel values (section 5.1.6).
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Comparison of other methods can be found in [THZ+08]. The results in [Zah07] show that
PCA and its Eigensign application is a powerful transformation method and is more useful
to improve the resulting error rate when compared with Linear discriminant analysis (LDA)
method.

Principal Component Analysis

The Principal Component Analysis [Pea01] (PCA) is widely used method to turn a set of
correlated variables into a smaller set of uncorrelated variables. The high-dimensional dataset
described by correlated variables can be reduced to only a few meaningful dimensions, which
account for most of the information. This method �nds the directions with the greatest variance
in the source data, called principal components.

Denote a set of random vectors with observations as X = {x1, x2, . . . , xn}}, xi ∈ Rd. The
mean value vector µ and covariance matrix are computed from all observations as:

µ =
1

n

n∑
i=1

xi , S =
1

n

n∑
i=1

(xi − µ)(xi − µ)T (5.1)

The eigenvalues λi and eigenvectors vi of matrix S are computed to satisfy: Svi = λivi , i =
1, 2, . . . , n.

The resulting eigenvectors are ordered by their eigenvalue in descending order. The k prin-
cipal components are selected as the eigenvectors which correspond to the k largest eigenvalues,
denoted as

P = (v1, v2, . . . , vk) (5.2)

The problem of determining k is not trivial, either relevant information is lost (for low k)
or noise is included (for high k).The problem of determining k is widely discussed in [PNJS05].

PCA is applied to an observed vector x to obtain k-dimensional projected vector y:

y = P T (x− µ) (5.3)

Original data can be reconstructed from y by a backprojection from k-dimensional into
original d-dimensional space:

x̂ = Py + µ (5.4)

Eigensigns

For some tasks, image itself can be used directly as a feature descriptor (only by reshaping
the image matrix into the feature vector). The problem with such an image representation is
its very high dimensionality. If we consider each pixel as one dimension, then, for instance,
an image with 100x100 pixels lies in a 10000 dimensional space. Such a dimension is too high
to be used in further processing. Since not all dimensions are equal and some carry more
information about the performed sign, we are looking for those dimensions that account for
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most of the information. The technique eigensigns applied here for images with a signer is
analogous to eigenfaces which is widely used in face recognition problem for encoding face
images into lower dimensions. The only di�erence is the form of the data, for sign language
recognition the images contain a signing person in contrast to eigenfaces where images with
faces are used. The main idea is to use PCA method (section 5.1.6) to describe the images
with a signing person by only a few variables that account for most of the information. The
idea was developed by Sirovich and Kirby 1987 [SK87] and used for face recognition by Turk
and Pentland 1991 [TP91], and was used for sign language recognition by Dreuw [Dre12].

The method is sensitive to variation in lighting and scale. The images, containing a signing
person, must be normalized in position and size. Any face detector can be used to �nd face
positions and normalize the image so that the face is a center of new coordinate system and the
size of the face is used to normalize the image size. To avoid problems with lighting variation
the source data should be recorded in the static lighting conditions.

Denote set of training images as I = {I1, I2, . . . , In}, each of size h x w. The images contain
signing person in normalized position and size.

Images are reshaped from two dimensions into vectors X, each with dimension d = h× w,
by concatenating all image columns into one vector.

After PCA is applied to X (eq. 5.2) and transformation matrix P is known, any image with
the same dimension can be projected into the PCA subspace (eq. 5.3). This representation of
the original image has much lower dimension and is suitable for further processing.

In practice, the size of covariance matrix S (eq. 5.1) is huge even for low dimensional images
(e.g. S has size 10000 x 10000 for images of size 100 x 100 pixels). Additionally, number of
images in the training set I is often smaller than dimension d. Thus the matrix X of size d×n,
where d > n, can only have n − 1 non-zero eigenvalues. In this case it is possible to use the
eigenvalue decomposition S = XT of size N ×N :

XTXvi = λivi (5.5)

The original eigenvectors of S are computed with a left multiplication of the data matrix
X:

XXTXvi = λiXvi (5.6)

The resulting eigenvectors are orthogonal, normalization is needed to get orthonormal eigen-
vectors [DHS01].
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5.2 Sign Modeling

Sign
modeling

Language
modeling

Decoding

The Sign Modeling module is used
to calculate an estimation of the like-
lihood p(W |O) for given sequence of
observations O and sequence of signs
W .

Researchers used methods such
as Finite State Machines (FSM)
[HTH00], Arti�cial Neural Networks
(ANN) [Vam96] or Dynamic Time
Warping (DTW) [HRH07]. The most
popular tool is Hidden Markov Models
(HMM) which is widely used in auto-
matic speech recognition for acoustic modeling since the middle of 1970s [Bak75] [JBM75].
The acoustic modeling is based on an idea that the vocal tract state is stationary in a short
time interval called microsegment. A short acoustic signal is produced and can be represented
by a set of features [PMMR06]. Analogously, the same concept of short stationary segments
is applied in sign language recognition, where the state of head and hands is expected to be
stationary if the microsegment is short enough.

The HMM is generally used for modeling of a stochastic process that in discrete time
intervals generates two time-aligned sequences of random variables. The �rst is a sequence of
states of the Markov model between which the process transitioned, the second sequence is a
sequence of observations O = o0,o1, . . . . The sequence of states corresponds directly to the
recognized sequence of signs. The number of recognized signs and their alignment in time is
contained in the result. With this property the HMMs overcome other methods like FSM and
ANN where another method must be used for determination of sign bounds, which is not a
trivial task.

The sign language recognition based on HMM can be formalized as a task to determine the
most probable sequence of states, between which the HMM transitioned, given the observation
sequence O . The task of best estimation of p(W |O) consist of selection of HMM topology and
of selection of observation probability function type and its parameters.

For the task of time series modeling, where the hidden state evolves through time, the
left-right (Bakis) topology is used almost exclusively (�g. 5.13).

s
1

s
2

s
3

s
4

s
5

hidden states

observations

Figure 5.13: Example of a 5-state HMM of a sign in left-right (Bakis) topology
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For given observation vector p(W |O) the HMM starts in the �rst state and either stays in
the same state or makes a transition into the state with higher index. For the last observation
the HMM ends in the last state. Thus, in left-right topology, the state cannot go back in time.

For the case of small vocabulary, i.e. small number of signs that can be recognized, one
model is created for each sign. Generally the number of states can be di�erent for each model,
however, a �xed number of states can be used, with comparable results [RS83].

sub-units The previous approach becomes unfeasible in case of larger vocabularies with
more than a hundreds of signs. Instead of using one model for each sign, smaller sub-sign
units are used. The inspiration came again from automatic speech recognition where syllables,
phonemes or even smaller units are used. The most widely used sub-word unit is triphone,
a special case of a context-dependent phoneme unit, which is able to model inter-word and
intra-word coarticulation context.

The sign models are created by linking the sub-sign units, each unit can be used in multiple
signs. This provides a way how to increase the vocabulary size and deal with more realistic
conditions where the data are collected. In [VM99], the signs were broken into basic phonemes
using the idea of the Movement-Hold model. The absence of general linguistic understanding of
sign phonetics prevents the use of manually designed sub-units, similarly to manually designed
triphones which are used in speech processing. Thus the data-driven approach for modeling
the sign sub-units is widely used. In [FGGC04], the signs were segmented into sub-units by
K-means clustering applied to trained sequences of HMM states. Another idea for data-driven
creation of sub-units was proposed in [HAS09] with the assumption that the hand movement
always goes through three phases: deceleration, acceleration and uniform motion.

variation of articulation Two sources of variations appear in the sign language utter-
ances. The �rst is due to signer variability where two signers articulate the same sign di�erently.
In order to solve this issue: a) signer independent models must be employed, b) already trained
signer dependent models must be adapted, c) the models must be trained from the whole set
of possible signers. Second source of variation is due to co-articulation, where the realization
of the current sign is in�uenced by the previous and following signs. The solution of this issue
is: a) to learn all the possible variations of a sign from the data, b) to consider each variation
as a di�erent sign.

HMM parameters When the topology of the HMM is known, and either whole sign or
sub-unit modeling was chosen, two sets of HMM parameters must be determined. The �rst set,
transition probabilities, consists of elements aij , each de�ning the probability of transition from
state i to state j. The common representation of transition probabilities is a matrix A = |aij |,
where aij is zero for the pairs of states which are not linked, thus for left-right topology the
matrix A is sparse.

The second set of parameters is known as observation probability functions. The observa-
tion probability function associated with i-th state is commonly represented as a continuous
probability density function ψi(o|λ), where o is an observation vector and λ is a vector repre-
senting the parameters of the probability distribution function, which are estimated during the
training stage. The type of the function is selected a priori. In the �eld of automatic speech
recognition two types of the function are commonly used: Neural Network Densities Functions
and Gaussian Mixture Models [Trm12]. The latter type is the most used in the �eld of SLR.
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5.2.1 Gaussian Mixture Model (GMM)

In statistics, a general mixture model is a probabilistic model where the underlying data
belong to a mixture distribution, whose density function is a linear combination of other prob-
ability density functions:

p(x) =
M∑
i=1

wipi(x) (5.7)

Each individual density function pi(x) is called mixture component (or Gaussian for normal
distributions), and the weight wi associated to i-th density function is called the mixture weight,
all weights sum to one:

M∑
i=1

wi = 1 (5.8)

The most common mixture model is the Gaussian mixture model in which the mixture
components are Gaussian (normal) distributions, each having its own mean and variance pa-
rameters.

The observation probability function ψ used in HMM can be modeled as a multivariate
normal distribution by a Gaussian Mixture Model:

ψ(o|λ) =

M∑
i=1

wipi(o|λi) (5.9)

where pi(), i = 1, . . . ,M is a mixture component, λi is a subset of λ associated to i-th
mixture component and wi is the weight of the i-th component. Given an N -dimensional ob-
servation vector o, each mixture component is modeled as an N -dimensional normal probability
distribution:

pi(o) =
1

(2π)
N
2
√
det Ci

exp

(
−1

2
(o− µi)TC−1

i (o− µi)
)

(5.10)

where Ci is a covariance matrix of size N ×N , µi is a mean values vector of length N .

With GMM, the subset λi of λ parameters associated to i-th mixture component is de�ned
as λi = (wi,µi,Ci).

The optimal number of mixture componentsM must be determined experimentally. In real
world applications some simpli�cations are made when using GMMs, such as the Ci matrices
are assumed to be diagonal. This can reduce the amount of data needed in the training stage
and speed up the calculation.
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5.2.2 Details on HMM Training and Recognition

Commonly used Baum-Welch algorithm [RJ86] is used to train the HMM parameters. The
algorithm uses an iterative expectation-maximization (EM) algorithm to �nd a HMM which
is a local maximum in its likelihood to have generated a set of training observation sequences.
The training is a batch process where example observations of a given sign are used as inputs
to this algorithm.

In the recognition process a set of trained HMM models (for each sign or sub-unit) is used
to decode the input observation sequence O via the Viterbi algorithm. The result consists of
a sequence of most probable signs W , or sub-units, together with their respective starting and
ending positions. In case of isolated sign language recognition, only a subset of W containing
one sign is considered. Beside the original Viterbi algoritm, a functionally equivalent Token
Passing algorithm [YRT89] [YEG+06] is widely used.

5.2.3 Fusion Strategies

To increase the quality of a recognition system, multiple information sources can be com-
bined together. To handle multiple information streams that are present in sign language, like
left and right hand movements and shapes, and head movements and expression, independent
modeling of each stream can be employed.

The sign modeling, as described in previous sections, implicitly uses the given sequence of
observations O in the form of one feature vector for each video frame. The feature vector is
usually concatenated from three particular feature subvectors belonging to two hands and head,
and each subvector can be another concatenation originating from di�erent feature descriptors.
This type of fusion, performed at feature level, is called early fusion or feature fusion [AHEK10].
For example, hands positions, RDF and LBP hand feature descriptors and AAM-based features
can be all merged into a single feature vector, which represents the signer state in the examined
microsegment. This fusion approach is advantageous that it can utilize the correlation between
multiple features from di�erent modalities and requires only one learning phase.

However, the time asynchrony between the streams is hard to represent. The opposite type
of fusion, performed at decision level, is called late fusion. Several recognition subsystems pro-
vide resulting decisions based on individual feature subsets. Those decisions are then combined
and analyzed to obtain a �nal decision.

Both approaches can be combined. For example, in [ABCA09], a sequential belief-based
fusion was proposed, at �rst using a decision of a HMM with fused manual and non-manual
features, and in case of a hesitation another HMM with only non-manual features was used to
make the �nal decision in a cluster of similar signs.

There are various extensions to HMMs that explicitly model several processes occurring
in parallel, thus staying in between the early and late fusion: middle fusion. In [VM99],
parallel HMM (PaHMM) is presented, which models the parallel processes independently in
a way that they can be trained independently too. PaHMM were shown to be more scalable
than previously used factorial HMMs (FHMMs) [GJ97] or coupled HMMs (CHMMs) [BOP97],
which require training examples of every conceivable combination that can occur in parallel.
The most recent work [TKM09] brought product HMM into SLR (�g. 5.14), which has been

38



CHAPTER 5. CURRENT APPROACHES AND METHODS

previously successfully applied in audiovisual speech recognition, allowing two streams to be
in asynchrony within the model but forces them to be in synchrony at the model boundaries.
It also permits to control the degree of asynchrony between the streams. This particular work
presented promising results for SLR.

Figure 5.14: Example of a product HMM with 2 streams and 4 states in each stream. The
movement and handshape streams are denoted by Mx and Hy, where x, y are the states of the

movement and handshape stream model respectively. [TKM09]
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5.3 Language Modeling

Sign
modeling

Language
modeling

Decoding

The task of the language modeling
module is to compute an estimate of
the a priori probability P (W ) for any
given sequence of signsW . This prob-
ability P (W ) is used in the next stage
by the decoding algorithm.

Due to a limited amount of train-
ing data available, this thesis is pri-
marily focused on sign modeling prob-
lems. Thereby only a brief overview
is given.

In the case of isolated sign lan-
guage recognition, the most common is uniform language model which assigns the same prob-
ability P (W ) to each sign from the vocabulary. Thus the whole recognition process is based
on the sign modeling only.

In the second case of continuous sign language recognition a broad range of the language
model types can be used [GMW97]:

uniform language model The same probability is assigned to each sign. This implies the
probability of any sentence W having exactly N signs: P (W ) = (1/V )N , where V is the
number of signs in the vocabulary.

�nite state language model The set of legal sign sentences W is represented as a �nite
state network (or regular grammar). Each path through the network generates a legal
sign sequence.

n-gram language models All sign sequences are possible. The probability of the predicted
sign depends only on the n− 1 immediate predecessor signs. A special case when n = 0
is called zerogram language model and is equal to the uniform language model described
above.

All the language model types are technically ready to be incorporated into sign language
recognition systems. However, there is a lack of available training data. This is in contrast to
the �eld of automatic speech recognition, where, for instance, the language model can be build
from the data automatically mined from the web [vHSV11].
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5.4 Sign Decoding Methods

The decoding algorithm, depicted as a module in �g. 5.1, �nds the most probable sequence
of signs Ŵ for given observation sequence O :

Ŵ = arg max
W

p(O |W )P (W ) (5.11)

The �rst factor p(O |W ) is provided by Sign modeling module, the second P (W ) by Lan-
guage modeling module.

For high number of possible sequences W the direct and exhaustive optimization of the eq.
5.11 is impossible. In such a case only a limited fraction of most promising hypotheses can be
evaluated.

As the probability densities provided by the sign and the language models are not necessarily
commensurable, the equation 5.11 is modi�ed in the real world applications:

Ŵ = arg max
W

p(O |W ) P (W )β γL

= arg max
W

log p(O |W ) + β logP (W ) + L logγ (5.12)

where the parameter β is called language model weight, γ is sign insertion penalty and L is
the number of signs in the current hypothesis W .

The γ and β parameters are estimated experimentally. The language model weight β is
used to balance the in�uences of the language and sign models. The sign insertion penalty γ
is used for adjusting the ratio between the number of the insertion and the deletion errors (see
next section 5.4.1).

5.4.1 Accuracy Evaluation

The quality of a recognition system is mostly evaluated by the Levenshtein distance [Lev66],
which is de�ned as a minimum number of edit operations needed to transform the recognized
sequence of signs Ŵ into the reference utterance Wref , which contains N signs. The edit
operations allowed are insertion, deletion and substitution. Denoting the number of insertions
I, the number of deletions D, the number of substitutions S and the length ofWref , two widely
used measures are de�ned: correctness corr and accuracy acc:

corr =
number of correct signs

N
=
N −D − S

N
· 100% (5.13)

acc =
number of correct signs− I

N
=
N −D − S − I

N
· 100% (5.14)

Instead of the acc measure, the word error rate WER can be used:

WER = 100− acc =
number of edit operations

N
=
D + S + I

N
· 100% (5.15)
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reference: KDY LOUCIT_SE CHUTNAT HORSI LOUCIT_SE HORSI DIVKA AUTO PLZEN

recognized: KOLENO PLZEN HORSI NEJHORSI DIVKA AUTO KOLENO PLZEN

error type: D S S - D S - - I -

N = 9, D = 2, S = 3, I=1 ⇒ corr = 44.4%, acc = 33.3%, WER = 66.7%

Table 5.2: Example: correctness and accuracy calculated on a synthetic sentence

Example of a acc, corr and WER calculation on a random synthetic sentence is shown in
tab. 5.2.

One common problem in the �eld of sign language recognition is the di�culty to com-
pare results with di�erent authors, mainly due to use of di�erent corpora and absence of an
agreed benchmarking corpora, although there are some attempts for hand tracking evaluations
[DFN10].

5.4.2 Con�dence Intervals

The accuracy acc is an important measurement of system quality, but it does not make any
statements about the stability of the performance. For example, we could be interested in an
interval of accuracy in which the recognition system provides 95% of the results over the time.
Con�dence intervals (CI) are tools used in statistics that allows to estimate probability that
the observed value will fall in a con�dence interval.

There are many methods for CI estimation. For a result set with normal distribution
N (µ, σ2), about 68.3% of the results lies in the interval (µ−σ, µ+σ), 95.5% in (µ−2σ, µ+2σ)
and 99.7% in (µ− 3σ, µ+ 3σ). This is known as three-sigma rule, or empirical rule.

However, this approach is not suitable for the recognition accuracies, where the distribution
is non-gaussian. In such a case or when the distribution is unknown, a bootstrap method
proposed in [BN04] can be used. The method is intuitive, precise, easy to use and makes no
assumption about the distribution of errors. It can be applied to �nd con�dence intervals on
word error rate WER in speech recognition evaluations.

The core idea of the bootstrap method is to create replications of a statistic by random
sampling from the dataset with replacement (so-called Monte Carlo estimates) [BN04]. The
original dataset (of recognition results) is divided into s segments and sampled randomly B
times, typically B = 103 . . . 104. The point estimate is computed from these samples. Finally,
B point estimates are used to determine the con�dence interval, for example the value P−0.05

which is the 2.5 percentile and P0.05 which is the 97.5 percentile construct the 95% con�dence
interval (P−0.05, P0.05). Despite the simplicity, the method works well in most cases.
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5.5 Search by Example

The aim of a search by example system, alternatively sign look-up system, is to allow a user
to perform a sign or a component of it, and to search in a sign language database on the basis
of features extracted from the user performance [EFH+12].

Although there are many sign language dictionaries using video to present sign lemmas 1,
most of them allow to search lemmas based on either groupings according to basic hand shape
or typing the gloss in the case of bilingual dictionaries. This makes the search task di�cult for
the dictionaries having a large number of lemmas.

In the Czech Sign Language online dictionary (http://signs.zcu.cz) [CHL+10], SignWrit-
ing or HamNoSys symbols can be used for the search. Despite the usefulness, the drawbacks
are that the search works only for manually annotated lemmas with SignWriting or HamNoSys
notation. The second is that many of the users are not familiar with those notation systems.

Considering that most of the sign language dictionaries contain videos with a signer per-
forming a single sign or some longer utterances, sign language recognition methods can be
employed for the searching purposes.

In [ANS+10], an application that lets the user submit a video of a sign as a query, and
presents the most similar signs from the manually annotated database, was proposed, based
only on hand centroids and dynamic time warping. In [WSM+10], a similar tool is proposed,
with the search based on features extracted from hand motion and hand appearance. The sim-
ilarity between signs was measured by a combination of dynamic time warping and a similarity
measure based on hand appearance. In user-independent experiment, with a vocabulary of
1113 signs, the correct sign was included in the top 10 matches for 78% of the test queries.

In [ECG+11], a Search-by-Example proof-of-concept prototype is presented that uses an
interactive sign recognition system based on depth images from Kinect device to perform search
in four language corpora, with sign dependent recognition rates above 70% on 984 signs.

1A Lemma is the dictionary form of a word.
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6 | Automatic Sign Language
Recognition: Proposed
Approach and Results

This chapter reveals contributions and results of this work, particularly in video analysis and
sign modeling. Multiple approaches for the sign language recognition task are introduced and
their performances are compared. Then, proposed the search by example system is introduced
and evaluated.

6.1 Data

All the experiments were performed on two own corpora described in section 4.1:

UWB-06-SLR-A [CHv07] 25 di�erent isolated signs, recorded by 15 signers, each sign re-
peated 5 times.

UWB-07-SLR-P [CHT08] 378 di�erent isolated signs, recorded by 4 signers, each sign re-
peated 5 times

After the manual veri�cation of the corpora, some �awed videos were removed from the
sets, such as videos where the signer was smiling or where the direction of sight was wrong.

Only the frontal views were used, which results in the same recording conditions as are used
in sign language dictionaries, which are partly targeted by this work. Thus, all investigated
methods should be applicable for other recordings and corpora that contain one signer recorded
from the front view.

In many works, the datasets are split into training and testing subsets, and used in all
experiments invariably. Here, the datasets are provided as a whole and are split on demand,
for example by a cross validation approach.

The processing of both corpora resulted in some intermediate datasets that can be used
elsewhere:

UWB-06-SLR-A hand corpus is an image set of 74009 pairs of left and right hand images
(see examples in �g. 6.1), extracted by the tracking process from videos in UWB-06-SLR-A
corpus, with manual veri�cation.
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Figure 6.1: UWB-06-SLR-A hand corpus: examples of hand pair images

UWB-07-SLR-P hand corpus has the same properties, but contains 128677 pairs of
images from UWB-07-SLR-P corpus.

6.1.1 Image Normalization

The videos in datasets were normalized before further processing. Face detector, described
in section 5.1.2, was applied for each video, resulting in a set of bounding boxes that enclose
image part containing a face. Since the videos contain always only one signer, maximally one
bounding box is expected in each frame. From all the bounding boxes in all frames from one
video a mean bounding box was calculated, corresponding to the average position of the face.

All videos were normalized so that the mean face position established an origin of new co-
ordinate system and the width of the mean face bounding box determined new scale. After the
normalization, all sign realizations are performed in the same coordinate system (see example
in �g. 6.9).

6.2 Feature Extraction

In this section, several approaches for feature extraction from videos containing sign lan-
guage utterances are described. As was theoretically described in Video Analysis section 5.1,
the goal is to transform the video sequence into a series of observations O = o0,o1, . . . , where
each observation is represented by a feature vector oi.

The Eigensigns method (section 6.2.1) uses no high-level knowledge about the content of
images and the features are directly based on pixel values. This approach was used in several
works (see section 5.1.6).

Before employing higher level features, it is necessary to perform head and hands tracking,
which is described in section 6.2.2. This tracking information is employed in calculation of
manual component features extracted from hands (see section 6.2.3), and in calculation of
non-manual features extracted from face (section 6.2.4).

6.2.1 Eigensigns

The eigensigns method was used as a baseline method for feature extraction. The method
is based on appearance-based approach described in section 5.1.6. Since the UWB-06-SLR-

46



CHAPTER 6. PROPOSED APPROACH AND RESULTS

A and UWB-07-SLR-P corpora used for experiments were recorded under invariable lighting
contitions, this method does not fail due to illumination variance. Another requirement of the
method is to use position normalized images (as described in section 6.1.1).

In the experiments, the images were normalized to �xed sizes: 60x60, 80x80 and 100x100
px. To optimize calculation of transformation matrix P (eq. 5.2), only pixels with non-zero
prior probability to contain skin color values are considered (�g. 6.2a). In UWB-07-SLR-P,
only 59% of pixels contain at least one skin color value through all the frames in all the videos,
the remaining 41% of pixels can by ignored. This greatly lowers the dimension of covariance
matrix S.

The mean shape and resulting principal components (eigensigns) can be seen in �gures 6.2b
and 6.2c.

Now, any image can be represented as a linear combination of k eigensigns, which span a
k-dimensional subspace of the original image space by choosing a subset of eigenvectors. This
resulting subspace, so-called sign space (analogous to face space used in eigenface method), has
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Figure 6.2: Visualization of eigensigns method applied on a subset of UWB-07-SLR-P dataset
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Figure 6.3: Absolute di�erence L2 norm of original image and PCA backprojected image in
dependence of k principal components (dimension).

its origin in the mean sign and the axes are the eigensigns.

The problem of determining k [PNJS05] was solved experimentally. For few randomly
selected images, the absolute di�erence L2 norm was calculated for source image and image
backprojected from PCA projection, where k principal components were used. This L2 norm
corresponds to reconstruction error, i.e. it explains how much image information is lost de-
pending on selected k. The dependence of the norm on k is shown in �g. 6.3 as mean results
for 100 random images from UWB-06-SLR-A dataset, image size 60x60 px, where PCA was
computed on 10000 images. The graph shows that selecting k larger than 2000 brings no much
better backprojected image and that for k < 300 the error grows rapidly. The results in the
graph suggest to use k around 300 as a compomise between low dimensional representation of
the image and reconstruction error.

Visualization of backprojected images for di�erent k is shown on �g. 6.4. It con�rms that
for k < 300 much information is lost, mainly in hand areas, which are crucial for successful
sign recognition.

The sign space represents well images similar to those on which the principal components
were computed. Any other content can be represented in this sign space too, but the projection
into this subspace does not represent these images well. This can be seen in �g. 6.5, where
synthetic images containing a circle in di�erent positions are projected to signing space and
backprojected to original image space and visualized. It is evident and expected that the linear
combination of eigensigns, used to represent the original synthetic image, does not work well
for these images of di�erent content. Similar situation with erroneous representation would
happen for images with signing person performing signs in di�erent locations and poses that
were not present in the image set from which the eigensigns were computed. Thus, for reliable
representation of all signs from whole dataset it is crucial to compute eigensigns from large
number of images.

The Eigensigns method used as a baseline method for appearance-based feature extraction
is only one example of possible similar methods using orthogonal linear transformation that
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Figure 6.4: PCA: visualization of backprojected images for di�erent k. The grayscale images
are visualized using a color map for a better insight.

Figure 6.5: Top: source synthetic image, bottom: PCA backprojected image.

transforms the image space into a new space. Another method available is Linear Discriminant
Analysis (LDA), which transforms original image space in such way that the discrimination
between classes is maximized [Fod02]. Experiments performed in [Dre12] showed that PCA
typically outperforms LDA based feature space dimension reduction in the �eld of sign language
recognition. All these methods use low level appearance-based approach to extract features
from the source image without any other knowledge about the content.
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6.2.2 Head and Hands Tracking

To allow feature extraction of higher level hand and head features, it is required to segment
parts of image belonging to those body parts. A novel approach that separates head and hands
segments, and combination of tracking and hand classi�cation was employed. The approach
produces two results:

hand tracking and segmentation All hand areas in the image are segmented, tracked and
identi�ed whether the area belongs to left or right hand, or to an area with occlusion of
both hands.

head segmentation and occlusion removal Head area is segmented and in a case of oc-
clusion with hands, the head area is approximated by best matching template, so that
the resulting head image is never covered by an occlusion.

Figure 6.6: Example of head and hands separation process. Top: original frame, middle:
resulting separated image with head (is approximated during occlusion), bottom: resulting

separated image with hands.

An example is shown in �g. 6.6, where occlusion of both hands and the head is present.
The detailed description of the algorithm follows.

Occlusion Detection

Before the head and hands separation step, the following rule-based method is used to mark
frames with possible occlusion. It is needed for the collection of face templates. The method
determines the numbers of coherent skin-color regions (blobs) that are present in the signing
space. With the prior knowledge about the dataset, it is known that the video contains exactly
one blob corresponding to the face. No prior assumption is posed about the hands that can be
even outside of the video frame. A rectangular area, called signing space, is placed in manually
designated position with respect to the face mean position. All subsequent processing is done
only in the signing space and the rest of the image content is ignored. In terms of image
processing, the signing space is a region of interest (ROI) .
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Figure 6.7: Occlusions of hands and head

The �gure 6.7a depicts all possible combinations of hand presence in the signing area and
number of visible blobs (skin color regions). When the number of hands plus one face equals
the number of blobs, no occlusion is present in the frame (see the cases in �g. 6.7a on the
diagonal). An occlusion occurs in the other cases when the number of visible blobs is lower.

The identi�cation of the �rst and last frame of the occlusion is performed as simple com-
parison between number of blobs and expected number of hands that are present in the signing
space, as depicted in �g. 6.7a. The �gure 6.7b is an example of this process, where the
top graph displays number of visible blobs B in the signing space during the time. The
middle �gure shows maximal number of hands that can be present in the scene, the val-
ues are based on the analysis of number of skin color regions in time, and are calculated as
min(max(Bpast),max(Bfuture)) − 1, where Bpast denotes vector with number of blobs in the
previous frames and Bfuture in the following frames. For a two-handed sign, the values can be
maximally 2, for one-handed maximally 1.

The �nal result, which identi�es frames standing before and after possible occlusion, as
seen in the bottom �gure 6.7b, where the number of potential occlusions is computed from the
values in the middle and top graph:

number of potential occlusions in frame = max number of hands − (number of blobs − 1)
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Frames, where the number of potential occlusions is greater than zero, determine frames
with any kind of occlusion (hand+hand or head+hand) or frames where a hand left temporarily
the signing space. In these frames the following separation algorithm is employed, using face
templates from the frames just before and after this occlusion.

Head and Hands Separation

The method described in section 5.1.3 [GCD10], that resolves hand over face occlusion, is
used to segment hands in the image. In contrast to the original method, template matching
method is used to match face template and the source image. Because the position of the signer
is normalized in the source video, the searching window is limited to the area where the head
can occur. In extension to the original method another template of the head after the end of
the occlusion is used. This partly reduces constraint of this method that the head appearance
should not change much during the occlusion. Both templates are used in further processing
and the one with the highest template matching score is used. The head template images are
rotated in several angles to allow head rotation in the image plane.

source image skin color filter edge filter (1)

head template

source image

edge filter (2)

edge filter (2) edge orientation difference

subtraction of source image and head template, grayscale filter

addition

smoothing, thresholding

hand segmentation

Figure 6.8: Occlusion resolving schema. Top: head template matching. Bottom: hand
segmentation.
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The whole proposed hand and face segmentation process is depicted in �g. 6.8.

If the number of skin color areas decreased between two adjacent frames, then a hand
either left the signing area or occluded with another hand or with the face. In all cases this
is considered as �rst frame where a possible occlusion started, even when the hand left the
signing area. In such a case the result of the hand segmentation is an empty frame.

In the opposite case when the number of skin color areas is increased, either a hand entered
the signing area or left an occlusion with another object.

The novel idea is to separate any source frame into two independent image channels, �rst
containing the head and the second the hands. In non-occlusion image, the separation is
straightforward because the head position is known and hands are visible as standalone blobs.
If occlusion is present, the proposed separation process is performed. The best matching
template is used as an approximation of the appearance of the occluded face and is used as the
�rst output channel. The hand segmentation is used to �nd the pixels corresponding to the
hands and are used as the second output channel.

Each of the two channels can be used in later stages of sign language analysis. It allows using
more trivial methods for hand tracking that expect no occlusion with head. Likewise, methods
for head expression analysis, that fail when the head is occluded, can be used seamlessly. This
is a huge advantage but for the price that some information from the face expression can be
lost by approximation of the head appearance by the template during the occlusion.
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Hands Tracking

The hand tracking is performed in video frames where the face area was removed by the
previously described algorithm and thus the frames contain only hand areas. When a hand
enters the signing space, which is discovered by detection of new skin color region, new object
tracking is established with simple rules. In the subsequent frame, the nearest skin color region
to the previous position is associated with the tracked object. In case of collision, i.e. when
multiple objects are associated with the same object, the tracking of all objects is suspended
and objects in the current frame establish new tracking.

The result of this simple tracking is a set of tracks, each following a movement of one skin
color area, which can consist of one hand or an occlusion of two hands. For example, in �g.
6.10 there are 5 tracks, where two hands moved up, then occluded, separated again and moved
down. Now, the only missing information of each track is the association to either left or
right hand. Hand classi�cation is employed to associate the tracks to particular hands, and is
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Figure 6.9: Examples of hand tracking, one-handed sign CESKE BUDEJOVICE. Black cross is the
origin of the coordinate system placed in the center position of the head. In the left �gure, the
trajectory is shown together with few hand contours randomly selected in the time sequence.
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Figure 6.10: Examples of hand tracking, two-handed sign AUTOBUS with hand occlusion.
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described in the following.

Hand Classi�cation

Having two time aligned sequences of skin color regions as a result of the previous tracking
algorithm, with a prior knowledge that one corresponds to the left hand and another to the
right hand, the task is to associate each region with either left or right hand. Having two
sequences and two hands, there are only two possibilities, either the �rst sequence is associated
to the left hand and the second to the right hand, or vice versa. To solve this task a binary
classi�er and majority voting rule [KHDM98] are employed.

Several feature types were used for the description of the skin color region (see table 6.1).
The feature vector used for the classi�cation either consists of features calculated from one
skin color region or from two regions where the individual feature vectors were concatenated
into one single vector. The performance of both approaches was measured and the results
are summarized in table 6.1. The column "single" corresponds to the �rst case where only
features of the examined region are used for the classi�cation and no information about the
second region is used. The column "pair" is the second case, where features corresponding to
examined region and the second region are concatenated into a single feature vector. Thus, the
second hand adds more information about the context in which the �rst hand occurred (�g.
6.11).

The expectation to have higher accuracy for the classi�cation based on observation of both
hands was con�rmed by the experiment. The evaluation dataset was automatically created by
the tracking method applied to the UWB-06-SLR-A and UWB-07-SLR-P corpora with manual
veri�cation. The resulting hand corpora were described in section 6.1.

A classi�er based on Support Vector Machines (SVM) and implemented by [Mil] is used
for the supervised classi�cation. This particular implementation uses a Stepwise Discrimi-
nant Analysis (SDA) dimension reduction method and nonlinear SVM [Bur98] with Radial
Basis Function (RBF) as a kernel function. The parameters of RBF are obtained by a grid
search algorithm that measures the classi�cation accuracy for each considered combination of
parameters and picks the combination that performs best.

The training set contained 2000 or 10000 randomly selected hand pair samples, denoted as
N . The resulting classi�cation accuracy is based on random permutation cross-validation with
3 repetitions.

feature description

examined hand region

context hand region

feature description

classification
based on observation 

of single hand

classification
based on observation 

of two hands

decision: right hand

decision: left hand

original image

correct label: left hand

Figure 6.11: Example of left-or-right hand classi�cation for two input images. First classi�-
cator uses only one image for the decision, the second uses both images.
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UWB-06-SLR-A UWB-07-SLR-P

single pair single pair

N = 2000
normalized central moments ηi 65.70 52.85 51.05 69.71
Hu moments Ii 50.15 51.70 50.63 50.00
LBP (radius 2, 64x64px, uniform) 77.90 82.60 80.27 83.55
HOG (cell 8x8, 112x112px) 74.47 73.19 73.35 75.75
hRDF (72 angles) 74.84 78.21 70.60 73.79
x,y position 88.92 94.30 95.96 97.32
LBP + position 74.57 99.31 94.64 98.45

N = 10000
LBP 89.47 93.81 86.20 90.29
LBP + position 99.08 99.83 98.51 99.11

Table 6.1: Hand classi�cation accuracy [%]. "Single" column uses only features calculated
from one hand region, "pair" uses features from both hand regions. N denotes number of

samples in the training set.

The results in table 6.1 show that the best result was obtained for feature vector consisting
of concatenation of LBP features and position features. The uniform LBP features were using
radius 2, calculated from normalized hand image resized to 64x64 pixels. The position feature
vector (x, y) is collected from normalized coordinate system that was described in section 6.1.1.
The best classi�cation accuracy was 99.83% for UWB-06-SLR-A hand corpus and 99.11% for
UWB-07-SLR-P hand corpus.

For some applications it can be useful to classify the hand based only on features calculated
from the hand region and without availability of the position. In such a case the best results
were 93.81% for UWB-06-SLR-A and 90.29% for UWB-07-SLR-P hand corpus. This shows
that the position is important information used for hand classi�cation.

The classi�er described above can be applied for hand regions that were segmented by
the head and hand separation algorithm. It is expected that the image contains one or two
hand regions only. The robustness can be increased by majority voting that classi�es the hand
tracked sequences as a whole.

The tracking algorithm guarantees that the tracked blob cannot be confused with another,
thus the whole tracked sequence certainly contains the same hand. At �rst, the hand classi�er
is applied to each frame of the sequence. In some, the classi�cation fails, as is depicted on
an example in �g. 6.12. The frames where the classi�cation results of both hand tracks were
identical are ignored from further processing, because the classi�er was confused in one of the
tracks, thus this frame probably contain some peculiar hand con�guration that was not seen
during the training of the classi�er. Then a simple majority voting decision rule is applied to
both hand tracks. Thus, the association of tracked hand blobs to either left or right hand was
found.
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Figure 6.12: Example of majority voting used for hand classi�cation of two time aligned
hand tracks. "L" denotes classi�cation of given blob as left hand, "R" as right hand. Identical

classi�cation results in the pair of hands are ignored from majority voting �nal decision.

6.2.3 Manual Component Features

This section describes several methods for feature extraction of manual sign component
that were implemented and their performance was measured in the recognition process. A
common goal is to describe a segmented hand region by a feature vector that can be used in
later processing stage. The trajectories of the hand movements, which are a part of the sign
manual component, are already known from the previous hand tracking step.

As the number of hands present in the signing space di�ers during the time, i.e. can be
one or two, the question arises how to properly built feature vectors in both cases. When two
hands are visible, the two resulting feature vectors are concatenated into a single feature vector,
preserving the order of hands. In the second case, when only one hand is visible, there are
several possible approaches. The basic approach is to use "empty" feature vector for hidden
hand, e.g. to use vector �lled with zeros, but this can cause some discontinuities of feature
values in time when the hand enters or leaves the signing space. The approach employed in
this work considers duplication of feature vector of the visible hand for the hidden hand, thus
the feature vector of the hidden hand is the same as of the visible hand. This suppresses some
discontinuities in the series of feature vectors.

Local Binary Patterns - LBP

Given an image with hand, the Local Binary Patterns (LBP) method is used to extract a
feature vector from the source image that was normalized to size of 64 pixels. As was described
in section 5.1.4, the LBP method has some parameters that must be manually adjusted:

radius Values from 1 to 4 were examined. Generally, the best performance was obtained with
values 2 or 3.

uniformity In all the experiments the uniform LBP variant was used. It is more robust and
generates lower dimensional feature vector than the non-uniform variant.

neighborhood Fixed 8-neighborhood was used in all the experiments.

The �gure 6.13 shows examples of LBP calculation for two di�erent images. For each pixel
in the image a pattern number (0 to 59) is calculated and is depicted by a di�erent color.
Additionally, a binary mask shows which pixels are used and which are ignored. The resulting
histogram of the pattern numbers is shown at the bottom.
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The same images are used in another example shown in �g. 6.14 with the same parameters
except the non-uniform variant is used. The comparison of the binary masks shows that the
non-uniform variant is ignoring a lower number of pixels, which is an expected behavior.
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Figure 6.13: Examples of Local Binary Patterns calculation, uniform variant with radius 1
and 8-neighborhood. (left) sample image 1. (right) sample image 2.
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Figure 6.14: Examples of Local Binary Patterns calculation, non-uniform variant with radius
1 and 8-neighborhood. (left) sample image 1. (right) sample image 2.
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Histogram of Oriented Gradients - HOG

This method, described in section 5.1.4, was employed in analogous way as previously
described LBP for hand feature extraction. The parameters that were examined are: 4 or 8 for
number of orientations, and 8 or 16 for the cell size. The block size was �xed to size 1x1 which
results in the lowest possible dimensional feature vector, but without robustness in di�erent
light conditions, which is not needed for the used data. The source image was normalized to
the size of 64 pixels.

The examples in �gure 6.15 show di�erent HOG results for di�erent number of orientation
and cell size values on 128px image.

Additionally to hand feature extraction, the HOG feature descriptor was applied to the full
normalized source image with whole signer, containing hand and head blobs. This approach
can be used directly without the need to process tracking, but it did not reach top performance
as can be seen later.
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Figure 6.15: Histogram of Oriented Gradients: gradient directions for cell size 8x8 pixels
(top), 16x16 (middle) and 32x32 (bottom). The left images show the resulting gradient direc-

tions, the right images show the directions in overlay with the source image.
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(a) Example image
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Figure 6.16: Example of DCT and inverse DCT calculation.

Figure 6.17: Inverse DCT using a N×N subset of DCT coe�cients. N = (30, 20, 15, 10, 5, 3).
The grayscale images are visualized using a color map for a better insight.

Discrete cosine transform - DCT

Discrete cosine transform (DCT) can be applied to the normalized input image and the
resulting subset of DCT coe�cients forms a feature vector. Such an approach is often used for
mouth feature description [C�06]. The DCT coe�cients with the highest values correspond to
the low spatial frequencies which are visualized in the �g. 6.16b in the top left corner of the
matrix. Thus, when only a subset of the DCT parameters is used, only the top left values are
selected, either in a zig-zag manner or as a top left submatrix, which is used in this work.

The �gure 6.17 shows several examples of inverse DCT calculated from a subset of DCT
coe�cients, when a top left submatrix with size N ×N is used. The examples show that using
a submatrix with size about 10 × 10 holds enough information about the hand shape for the
recognition tasks.

Hand Shape Radial Distance Function - hRDF

An extension to original RDF method (section 5.1.4), denoted as hRDF, is proposed in
this work with a goal to enhance the feature description of hand-shape like concave regions. In
addition to RDF, hRDF measures not only maximal extent from the centroid of the region to
the silhouette contour in several uniformly distributed directions, but adds additional measure-
ments. The �rst additional measurement is minimal extent from the centroid to the contour.
This value is the same as maximal extent in directions, where no concave region penetrates the
object. Another case, which is common in the �nger region, as can be seen in �gure 6.18c, the
maximal extent value di�ers from minimal extent.
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Figure 6.18: Hand Shape Radial Distance Function - hRDF

Until now, only the shape contour was described, without considering the pixel values inside
the region. The second additional measurement is the maximal extent from the centroid to
the pixel with value higher than 50% of the maximal pixel value in the region. This allows
to roughly describe the distribution of "bright" pixels in the region, as is shown in the �g.
6.18c as maximal extent to 50%. The resulting feature vector is a concatenation of the three
described measurements.

Radon Transform and GMM

Another hand shape descriptors proposed in this work are based on Radon transform where
a two-dimensional binary image is projected into one dimension in di�erent directions. A sum
of pixels is calculated over straight lines in each direction. In the example image with hand
mask image in �gure 6.19a, the sums of pixel values in direction 0◦ are calculated and the
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Figure 6.19: Example of Radon transformation, its histogram and modeled distribution.
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Figure 6.20: Radon transformation for di�erent angles of projection. The white points denote
the mean values of GMM that was used for the distribution modeling in the given direction.

results are shown in �gure 6.19b. In this direction, the result can be interpreted as a histogram
of pixel distribution in x axis.

The �rst considered feature descriptor based on the Radon transformation uses 4 di�erent
directions and the number of histogram bins is reduced to 20. This allows describing the pixel
distribution in the source image.

The second considered feature descriptor is based on the knowledge that maximal number
of regions in the image is two. The distribution of values in the histogram is modeled by
Gaussian Mixture Model (GMM) with 2 mixture components. For each angle used, the GMM
describes the distribution by a 6 dimensional vector, consisting of two mean values and four
values from a covariance matrix. These GMM parameters are estimated by the expectation-
maximization (EM) iterative algorithm and are used as the feature descriptor, denoted as
radon+gmm features. An example is shown in �gure 6.19c, where the distribution of the
values in the histogram is modeled by a GMM with two mixture components.

The �gure 6.20 shows the results calculated for all directions between 0◦and 180◦, from the
same source image (�g. 6.19a).

Although this feature descriptor discards a lot of information from the image, it has a nice
property that it can separate two occluded hand regions, as was seen in �g. 6.19a, by estimating
the center positions of each hand as the mean values resulting from the GMM model.

Other Basic Descriptors

To fully compare the recognition results of di�erent hand feature descriptors, some other
commonly used descriptors were considered.

A combination of simple scalar region descriptors was used, consisting of angle (angle of
the longer side of a minimum bounding rectangle), solidity (ratio of region area and convex
hull area), extent (ratio of area and bounding rectangle area), ratio (ratio of width and height
of the region).

Two other feature descriptors based on moments were used as well. The �rst uses a set of
normalized central moments, the second uses Hu moments consisting of 7 rotation, translation
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and scale invariant moment characteristics [SHB07].

6.2.4 Non-manual Component Features

The non-manual component of a sign that is contained in the face expression is modeled
by the Active Appearance Model (AAM) described in section 5.1.5 and an example of model
�tting was shown in �gure 5.11. The AAM was trained from UWB-SLR-07-P dataset only,
because the training stage of AAM require huge amount of manual work that is out of the scope
of the thesis. It was veri�ed that such a model �ts other faces from UWB-SLR-06-A corpus in
sense that the spatial placement of the model vertices is correct, but the appearance modeling
has some inaccuracies in case the appearance of the modeled target face is too di�erent from
the four faces in the training set. For example, the appearance of a male face with a beard is
not modeled well, because the model was trained on four female faces.

As was theoretically described, the property of the AAM is that the �tting can fail in case
of occlusion. This was solved by the previously described head and hand separation algorithm
(section 6.2.2) that approximates the face region by a template in case of occlusion. Thus, the
face region is never occluded and AAM �tting is seamless and robust.

The �rst feature descriptor that was based on AAM is a direct usage of �tted AAM pa-
rameters. The disadvantage is that some parameters describe the face appearance, which is
not desired for signer independent face description.

The second feature descriptor, denoted as aam-ext, removes these signer dependent pa-
rameters. From the AAM parameters, several distance measurements from shape model (the
triangular mesh) are performed and used in the resulting feature vector. The distances mea-
sured are: height and width of the outer and inner lips, and distance between eyelids for each
eye. Together, the resulting feature vector includes 6 parameters only. The advantage is that
such measurements are almost signer independent and the size of the feature vector is much
lower than of the �rst AAM feature descriptor.

64



CHAPTER 6. PROPOSED APPROACH AND RESULTS

6.3 Sign Language Recognition of Isolated Signs

In this section, the proposed sign language recognition system is described. As was already
shown in �gure 5.1, the system consists of four main modules. Video analysis is used for feature
extraction from sign language video, and is described in section 6.3.1. Sign modeling module,
that calculates an estimation of the likelihood p(W |O) is described in section 6.3.2.

Language modeling uses uniform language model for the experiments, thus it is not described
more in detail. As was already discussed, the collection of the data required for language
modeling of sign languages is a di�cult task and is not aimed by this work.

The last module containing a decoding algorithm was described in section 5.4. The available
implementation in HTK toolkit [YEG+06] was used as a reliable and proven implementation
that is widely used in speech recognition tasks. The same toolkit was used in the sign modeling
module, where both modules are tightly connected and optimized.

6.3.1 Video Analysis

The goal is to analyze both manual and non-manual components of the performed signs
that are present in video sequences. The result of the analysis is a feature vector extracted
from each video frame. The vector can be produced by a fusion of multiple feature vectors that
were calculated by di�erent methods.

The implementation used for non-manual component analysis through AAM was already
described in section 6.2.4.

The manual component analysis was performed by several methods that were described in
section 6.2. The methods with adjustable parameters were evaluated with multiple parameter
settings with a goal to �nd the best parameters fesible for the sign recognition task.

All the input frames are normalized and preprocessed by the skin-color segmentation
method. The performance of low-level methods that use whole image for feature extraction,
such as eigensigns, was compared with high-level methods that employ head and hand tracking
and features are extracted from hand regions. The results are presented in section 6.3.3.

The dimensionality and correlation of feature vectors was reduced by PCA (section 5.1.6)
where it was suitable.

6.3.2 Sign Modeling

The purpose and functionality of the sign modeling module was described in section 5.2. In
this work, Gaussian Mixture Model (GMM) was used as the observation probability function.
The optimal number of the mixture components was estimated from recognition results where
several numbers were evaluated, independently for each feature descriptor.

Number of HMM states used for sign modeling was estimated in a similar way and was the
same for all signs. The allowed transitions from i-th state were only to the same state or to
the subsequent i+1 state, such a transition network was depicted in �gure 5.13.

The �gure 6.21 shows an insight to a particular HMM model, where the (x,y) coordinates
of both hands are used as a feature vector. Such features allow meaningful visualization. Each
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Figure 6.21: Example of a HMM model associated to sign AUTOBUS, with 10 states, using
(x,y) coordinates of both hands as feature vector.

of the 10 depicted HMM states models the distribution of each coordinate by a GMM, where
the mean values and variances are depicted in the graph.

In order to improve the recognition performance, dynamic features that incorporate tempo-
ral derivatives of the feature vectors and are widely used in the �eld of automatic speech recog-
nition, can be computed from any kind of features and used for the recognition. The dynamic
features can measure changes of the original features and can improve recognition performance
for some types of features. The dynamic features computed as �rst order time derivatives are
denoted as ∆ features, velocity parameters, or delta coe�cients. The second derivatives are
denoted as ∆2 features, acceleration parameters, or delta delta coe�cients. Generally, the ∆
features can give a large gain while the ∆2 features add a smaller one. In this work, ∆2 symbol
denotes both velocity and acceleration parameters, while ∆ denotes only velocity parameters.
For example, the �gure 6.21b represents a sign model, having (x,y) coordinates as features.
The model represents only positions in the signing space in a time sequence. With ∆ features,
the model would represent the movement velocities and directions too, which is intuitively an
important feature that enhances the model and improves the recognition performance.
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6.3.3 Experiments

Both corpora UWB-06-SLR-A and UWB-06-SLR-P were used for the experiments. The
�rst contains higher number (15) of signers, but only 25 di�erent signs. The second was
contains only four signers, but 378 di�erent signs. 336 of signs were selected for the recognition
experiments, the remaining 42 signs were unsuitable for this experiment setup, for example
some of those signs were performed incorrectly by some speakers.

For each experiment, the used dataset was split into exclusive training and testing subsets.
The training set was used for training of HMM models and the testing set was used after for
the evaluation of the recognition performed on these HMM models.

For the signer dependent recognition, the items in the subsets are randomly selected from
the whole dataset. To estimate a suitable ratio between the number of items in training and
testing sets, a minor experiment that measured the recognition accuracy in dependence on
the ratio was performed on UWB-06-SLR-A corpora with radon+gmm features. The graph
6.22 shows the recognition accuracies with 95% con�dence intervals that were estimated by the
bootstrap method (described in section 5.4.2). It is evident that with more training data used,
the recognition accuracy is higher, but for the price of less con�dent accuracy measurement
due to low testing data quantity. As is shown in the �gure, the con�dence interval is wider
for lower number of testing data. The proportion that was selected for all further experiments
is 25% for the testing data and 75% for the training data. This ratio showed nearly the same
recognition accuracy, but had higher con�dence than the ratios with lower number of testing
data.

For the signer independent recognition, the data of one signer are used for testing and the
rest of signers is used for training.
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Figure 6.22: Recognition accuracy and its 95% con�dence interval depending on the train-
ing and testing data ratio. Experiment was performed on UWB-06-SLR-A corpora with

radon+gmm features.
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recognition accuracy [%] feature descriptor

signer dependent signer independent

SLR-A SLR-P SLR-A SLR-P with hand tracking

95.73 84.47 89.69 29.46 HOG hand features
93.03 83.51 92.12 26.87 (x,y) hand coordinates + ∆2

91.69 - 82.40 - (x,y) hand c., no head/hands separation + ∆
91.01 76.44 86.71 20.16 hRDF hand features + ∆
86.07 57.16 90.73 18.92 high level linguistic features
74.61 55.15 75.19 13.93 Hu moments

without hand tracking

98.65 93.19 94.23 27.85 LBP + ∆2

86.18 72.69 76.08 14.36 DCT
85.53 71.12 75.16 13.95 radon transformation

- 47.78 - - eigensigns
74.05 39.59 70.83 7.10 pixel values as features
46.87 43.24 12.27 1.43 AAM
29.37 24.47 8.32 1.34 AAM-ext

fusion of multiple features

95.51 91.54 95.06 32.47 (x,y) hand coordinates + LBP hand features
95.06 84.64 95.05 34.47 high level linguistic features + LBP hand features
95.73 84.21 90.80 29.46 (x,y) hand coordinates + HOG hand features
95.28 80.63 92.07 29.82 high level linguistic features + HOG hand features

Table 6.2: Accuracies for recognition of isolated signs. UWB-06-SLR-A corpus is denoted as
SLR-A, UWB-07-SLR-P as SLR-P.

All the results presented in the table 6.2 are based on random permutation cross validation
with 3 repetitions, i.e. every experiment was repeated 3 times based on di�erent random
selection of testing and training data, the �nal result is an average value of particular results.
The table summarizes experiments performed on both corpora and both signer dependent and
independent results. The feature extraction methods listed in the table are the best performing
from each group and their exact settings are discussed in the following. The �rst part of the
table presents recognition accuracies for feature extraction methods that employ hand and
head separation and hand tracking. The second part of the table presents methods where no
tracking was employed. The last, third part, addresses results for fused features from multiple
feature descriptors.

All methods were benchmarked in three di�erent settings: without delta coe�cients, with
delta (velocity) coe�cients ∆ and with delta delta (velocity and acceleration) ∆2 coe�cients.
All possible combinations of HMM parameters were benchmarked, namely number of HMM
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states (varying from 3 to about 13) and number of GMM mixture components (from 1 to about
13). Only the best performing con�gurations are presented in the table 6.2. Extended table
that includes these HMM parameters is in appendix A, together with detailed parameters of
particular feature extraction methods.

As was expected, the recognition accuracy is highly dependent on used feature descriptor
type. The interpretation of the results is that the best performing feature descriptors are
based on LBP, either applied to the whole image containing hand regions (denoted as "LBP")
or applied to each hand separately (denoted as "LBP hand features"). The accuracy for the
signer independent recognition was increased when a fusion of multiple feature descriptors was
used, in particular "LBP hand features" with either "hand coordinates" or "high level linguistic
features". In general, the experiments that make use of higher level features performed better,
the accuracy of low level methods ("eigensigns" and "pixel values as features") was much lower.
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Figure 6.23: Selected rows and columns from confusion matrix for most confused signs.
Experiment on UWB-07-SLR-P corpus, LBP + ∆2 features, HMM 6 states, GMM 8 mixture

components. FP denotes false positives for given sign, FN false negatives.

69



CHAPTER 6. PROPOSED APPROACH AND RESULTS

The experiments with the standalone "AAM" and "AAM-ext" features use only non-manual
component of the sign for the recognition (the manual component is ignored), so the recognition
accuracy is expected to be low. Nevertheless, the recognition rate shows that the non-manual
features contain some information that can be utilized for discrimination of the signs. Some
fused combinations of AAM features with other manual component features were used in other
unlisted experiments (AAM-ext + LBP, AAM-ext + high level linguistic features), but the
accuracy was slightly lower in comparison to the same features without AAM-ext. A question
arises why the use of non-manual face features reduced the recognition accuracy. One possible
explanation is that the face features were collected from all frames of the video and that some
of them contain more face movements that are not related to the sign, thus these movements
act as a noise. Additional issue is the resolution of the face region that can be insu�cient.

Since the UWB-07-SLR-P corpus contains more signs than UWB-06-SLR-A, the recognition
accuracy is lower for the same experiments. By deeper inspection of the confusion matrix in
�gure 6.23, where only rows and columns of the full confusion matrix corresponding to the

au
to

au
to

bu
s

br
no

br
ou

k
ch

la
pe

c
ch

ut
na

t
di

vk
a

du
m

dv
er

e
ho

rs
i

kd
e

kd
y

ko
le

no
le

ta
dl

o
lo

uc
it

se
m

im
in

ko
ne

ch
ut

na
t

ne
jh

or
si

os
tr

av
a

pl
ze

n
pr

ah
a

pr
es

sn
ih

sp
at

vl
ak F
N

predicted class

auto
autobus

brno
brouk

chlapec
chutnat

divka
dum

dvere
horsi

kde
kdy

koleno
letadlo

loucit se
miminko

nechutnat
nejhorsi
ostrava

plzen
praha

pres

snih
spat

vlak

FP

ac
tu

al
cl

as
s

19
18

17
17

17
14 2

17
19

18
17 1

18
17

18
18

19
18

3 14
17

18
18

16
17

20
18

20

0

0

0

0

0

0

0

0

0

0

3

2

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

2

3

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

lbp occlusion2 hands/lbp8r3uniform median IWH D2, hmm states 13, mixtures 5, diag, seed 1

Figure 6.24: Full confusion matrix. Experiment on UWB-06-SLR-A corpus, LBP + ∆2
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most confused signs are shown, some other conclusions can be stated. Some signs are confused
(DATUM (date) vs DEN (day), DO (to) vs ON (he)) because the manual component is the same or
very similar and the sign di�ers only in non-manual component. The fusion with AAM features
can resolve some confusion in such a case, but causes some other and the total accuracy is
lower with AAM. Other signs like SEDMDESAT (seventy) and OSMDESAT (eighty) are confused
because the hand con�guration di�ers only in one �nger and the feature descriptors are not
discriminative enough to resolve this small di�erence.

The signer independent accuracies are lower than for signer dependent, as expected. The
results for signer independent experiments on UWB-07-SLR-P corpus dropped rapidly in com-
parison to UWB-06-SLR-A. There are several possible reasons. The �rst is that for better
performing UWB-06-SLR-A, the training of the recognition system was based on data from 14
signers and the recognition on one signer. On UWB-06-SLR-A, only data from three signers
were used for the training. The next reason is that some signs from the same class were per-
formed di�erently by each signer, although a subset of the corpus was selected to avoid such
cases, for some signs this was overlooked and caused that the sign model was trained and tested
on di�erently performed signs.

A full confusion matrix for the best performing result on UWB-06-SLR-A corpus with LBP
+ ∆2 features is depicted in �gure 6.24. All confusions are for the sign pairs which di�er only
in non-manual component of the signs.

Last experiment, presented in �gure 6.25, demonstrated the use of PCA feature reduction
method, again on the best performing result on UWB-06-SLR-A corpus with LBP + ∆2 fea-
tures, where the original feature vector has dimension 177. The experiment shows that the
recognition accuracy remains high even when the dimension is highly reduced. For example,
when using only 20 dimensions instead of original 177, the accuracy drops from 98.65% to
97.3%. With such a reduced feature vector size, the training and recognition process gains
some speed.

6.3.4 Towards the Creation of Data-driven Sub-units

As was introduced in the section 5.2, the concept of sub-units uses HMM models repre-
senting units smaller than whole sign. The sign is represented as a concatenation of several
sub-units, which can be shared among multiple signs. The sub-units used for sign language
modeling are usually data-driven, i.e. are constructed by an analysis of the training data since
no linguistically proposed sub-units are available.

We proposed an unsupervised iterative method that serves as a �rst step for data-driven con-
struction of sub-units. The method employs Gaussian mixture models (GMM) (section5.2.1)
which has been well studied and examined in similar tasks in the �eld of automatic speech
recognition. The idea is to create a set of Gaussians, a pool, which models the distributions
of all the data present in the training set. Then, HMMs are built for each sign as a linear
combination of Gaussians from the pool. Thus, the HMM for each sign is fully de�ned only by
a weight matrixW , that contains weights representing the linear combination of the Gaussians
for each state. The number of states is estimated too and can be di�erent for each HMM.
Similar approach was studied in [VC99] for the �eld of automatic speech recognition.

The result of the proposed method is a set of HMMmodels, each modeling a single sign. The
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Figure 6.25: Example of PCA feature reduction method usage. Experiment on UWB-07-
SLR-P corpus, LBP + ∆2 features, HMM 6 states, GMM 8 mixture components.

di�erence from the HMMs that were used in this thesis for isolated sign language recognition is
that the observation probabilities are now modeled as a linear combination of Gaussians, that
are shared among all models.

The second step that creates proper sub-units was not realized in the scope of the thesis and
is left for future work. A clustering method is needed to identify similar HMM states among
all HMM models, i.e. states that have similar weights of Gaussians. After that, sequences of
the same states among all HMM models can be grouped and create sub-units as sequences of
HMM states, so that such a sequence can be used as a standalone HMM model that represents
a single sub-unit.

The proposed method consists of 5 steps:

1. Gaussian mixture pool generation
The training data in form of time series of feature vectors are sequentially modeled

(a) 1 component (b) 2 components (c) 4 components (d) 8 components (e) 16 components

Figure 6.26: Example of a Gaussian mixture pool generation. The images present GMMs of
sample 2D training data using 1, 2, 4, 8 and 16 components (Gaussians). The resulting pool

is a set of all 31 individual components.
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by 1, 2, 4, 8, . . . , 64 and 128 mixture components (Gaussians). The set of all 255
individual components is denoted as a pool. The distributions of the GMMs are estimated
by the expectation-maximization (EM) algorithm. A two dimensional example of such
a pool generated on 2D sample data is depicted in �g. 6.26, where the �rst image
shows estimated GMM with one component that models global distribution of data in
the feature space and the last GMM with 128 components that models distributions in
smaller clusters. A question arises, why the pool is built from components of multiple
GMMs and not only from the one with the most of the components. The answer is that
at the beginning it is not known whether the observation distributions will be "general"
or "speci�c". Thus, the method itself will choose which kinds of o�ered Gaussians are
needed, depending on the training data.

2. Initialization of HMM models
One HMM model is associated to each sign. The number of states is selected to be long
enough. In the previous experiments it was shown that the su�cient number of states is
below 15. Here, the length of 20 was selected, including special states 0 and 19 that are
shared among all HMMs and are denoted as S/E, that models "start/end" events that
appear before and after the sign. The i-th HMM model of the i-th sign is represented by
a weight matrix Wi = [wm,n]m=1,...,255;n=1,...,20, where row m denotes m-th component
from the pool and column n denotes n-th HMM state, thus the matrix element wm,n is
a weight of m-th component associated to the n-th state. The sum of weights adds up
to one in each state. The weights are initialized uniformly with the same values.

3. Estimation of number of HMM states
In each iteration, the weight matrixW is updated, following the maximum likelihood cri-
terion. The forward-backward algorithm is employed and counts, which of the Gaussians
from the pool were used in given HMM model. In this step, the left-right HMM topology
is used, but additionally transitions from each state to the last 19-th state is allowed.
The number of iterations was �xed to 5. After the iterations are �nished, the transition
probabilities from i-th state to the last 19th state are compared and the state associated
with the largest transition probability denotes new last state, that will be used for given
sign and the rest of the states is truncated, except of the last S/E state. Thus from now,
each HMM model has di�erent number of states, lower or equal to the initial number of
20 states. The purpose of this step is to estimate optimal number of states required for
each sign.

4. Weight matrix update
In this step, �ve iterations as in the previous step are used to update the weight matrix
W , but now the transitions are allowed only from i-th state to i-th or (i + 1)-th state,
no direct transitions to the last state are allowed. The purpose of this step is to update
weight matrix W having the number of HMM states �xed.

5. Weight matrix and GMM pool update iteration
This last step uses 5 iterations to update the weight matrix W , in the same way as in
the previous steps, but additionally the Gaussians in the pool are updated too, so that
the �nal Gaussians �t better the training data.

73



CHAPTER 6. PROPOSED APPROACH AND RESULTS

The results evaluated on UWB-06-SLR-A corpus are shown in the table 6.3. The "baseline"
column evaluates the proposed algorithm without the last "W and GMM pool update iteration"
step, thus the Gaussians in the pool are �xed. The "extended" column is a full version of the
algorithm including the GMM pool updates. For comparison the third column "original" adds
results from the same experiment performed with HMM models that were presented in section
6.3.3.

recognition accuracy feature descriptor

baseline extended original

72% 73% 97.3% LBP + ∆2, PCA 20 dimensions
74% 77% 96.9% LBP + ∆2, PCA 30 dimensions
73% 74% 91.7% (x,y) hand coord., no head/hands separation + ∆

Table 6.3: Accuracies for recognition of isolated signs using sub-units.

To conclude, the proposed algorithm showed promising results and the possibility that the
sub-units can be identi�ed from the data. The best achieved recognition accuracy was 77%,
which is lower than 96.9% achieved by the previous method.

6.4 Sign Language Recognition of Continuous Speech

The same system that was presented for sign language recognition of isolated signs, with
HMM models that use one model per sign, is used here for experiments with continuous speech.
The only di�erence is in language model that allowed only one sign sentences in the isolated
case. For the continuous speech a uniform language model is used, that allows to build sentences
of arbitrary lengths.

The HMM models are the same that were trained for isolated signs from UWB corpora.
The recognition accuracy was evaluated on utterances that were randomly generated from
isolated signs. For a given number of signs the utterance was generated by concatenation of
randomly selected single signs, where their feature vectors, already computed in the previous
step of isolated recognition, were concatenated. Thus, an unlimited number of arti�cial random
utterances can be generated. The system was evaluated on 1000 sentences of lengths uniformly
distributed between 1 and 20 for sign dependent experiments. Sign independent recognition
was evaluated on 100 random sentences per signer.

This experimental setup allows performing experiments on continuous recognition although
no continuous data are really available, but some aspects of the sign languages are ignored, such
as coarticulation e�ects, where each sign is in�uenced by neighbouring signs in the sentence.

Two best performing feature descriptors from the isolated recognition experiments were
used for continuous experiments. The results are shown in the following table 6.4.
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accuracy [%] / correctness [%] method

signer dependent signer independent

SLR-A SLR-P SLR-A SLR-P

97.19 / 97.57 86.00 / 90.91 86.89 / 88.27 19.79 / 24.78 LBP + ∆2

91.45 / 95.01 74.50 / 78.95 86.30 / 90.40 13.32 / 34.40 high level linguistic features
+ LBP hand features

Table 6.4: Recognition results for continuous sign recognition. UWB-06-SLR-A corpus is
denoted as SLR-A, UWB-07-SLR-P as SLR-P.

The accuracy evaluation uses accuracy and correctness, as described in section 5.4.1, where
correctness is similar to accuracy but ignores word insertion errors.

For the signer dependent recognition on UWB-06-SLR-A corpus the accuracy computed
on LBP + ∆2 features was 97.19% which is similar to the result in isolated recognition with
98.65%. In this case, the proposed system is able to identify number of signs in the utterance,
�nd their borders and correctly recognize the signs. With the UWB-07-SLR-P corpus that has
more signs, the recognition accuracy dropped from 93.19% in isolated case to 86.00% in the
continuous case.

For the signer independent recognition, the best accuracy achieved on UWB-06-SLR-A
corpus was 86.89% (95.05% was for isolated case). The most di�cult experiment, signer in-
dependent recognition on UWB-07-SLR-P corpus, where the accuracy in the signer dependent
case was already low (34.47%) dropped to 19.79%. The reasons are the same as was discussed
in the recognition of isolated signs. There are several possible ways how to increase the ac-
curacy: to use other feature extraction methods and their fusion, use adaptation techniques
to update the sign models for each signer, or use a language model better than the uniform
language model. This case of signer independent recognition on corpora with more than tens
of classes is similar to the �eld of automatic speech recognition where all the subtasks are still
under research.

As was already explained, the utterances for continuous recognition experiments were arti-
�cially generated by plain concatenation of single signs, where each sign starts and ends in the
neutral position. This makes the recognition task easier than in the real case where the sign
are performed continuously and with coarticulation e�ects.

An experiment that tries to remove the in�uence of the neutral position e�ect is presented
here. As was stated in [Ten10], "the results show that the stroke alone performs as well as
the entire sign". This indicates that the stroke (main "central" part of the sign) contains
enough information that can discriminate the signs. The proposed experiment measured the
recognition accuracy of randomly generated utterances, where the signs were truncated, i.e. a
part from the beginning and the same long part from the end of the sign were truncated and
only the central part was used in the utterance. The results for UWB-06-SLR-A corpus with
LBP + ∆2 features are shown in the following �gure 6.27.

The results show that after the truncation of preparation and retraction part of the sign the
recognition accuracy is still good, in the presented graph the accuracy dropped from 94.23%
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Figure 6.27: Accuracy for continuous sign language recognition on UWB-06-SLR-A corpus
with LBP + ∆2 features for di�erent truncations of the signs. For example, 50% value means

that 25% of the sign was truncated from the beginning and the same part from the end.

to 92.01% when 40% of the sign was truncated, or to 90.39% for 50%. With this result, the
proposed continuous recognition system was able to recognize whole sentences with signs where
the e�ect of "neutral position" was suppressed.

6.5 Search by Example

The search by example problem, described in general in section 5.5, is designed, implemented
and evaluated. The task is to perform searching in sign language videos based on the user-given
image of one or multiple hand, captured for example through a webcam. The result is a sorted
list of the videos containing the requested hand shapes.

Often, such systems used in other �elds are based on the query-by-example paradigm, where
various features are preliminarily extracted from the stored images or videos. The query is an
image, a set of images or a video, on which the same features are calculated and stored data
are retrieved and ranked with respect to their similarity with the search query.

The task can be formalized as follows. The set of NV sign language videos, each containing
one signer performing a single sign or a longer utterance, is denoted as V = [V1, V2, . . . , VNV

].
The user provides search query as a set of NQ images Q = [Q1, Q2, . . . , QNQ

], each containing
one hand. The result is a distance of the query input Q with indexed video dataset V, denoted
as D = [d1, d2, . . . , dNV

], where di is the distance between the query and i-th indexed video.
The indices of D with the lowest distances indicate the best matching videos for the given
query.

There are several design questions. How to extract features from the input imagesQ, how to
preprocess the dataset V so that the search is fast, and mainly, how to calculate the distance
vector D. The proposed method originated from text search engines, and is used in visual
search engines [CMPM11] where both the query and all indexed images are represented as a
sparse vector of visual word occurrences. Then, the similarity between the query vector and
each image vector is calculated. Similar approach is used for example in scene categorization
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problem [FFP05]. The whole process can be separated into indexing and searching phase, or
in analogous machine learning terms to training and testing phase. Both are depicted in �gure
6.28 and are discussed in the following section.

6.5.1 Indexing

As is shown in the �gure 6.28, the indexing consists of several steps. The �rst is hand
feature extraction. Here we employ tracking and manual component feature extraction methods
proposed in previous sections 6.2.2 and 6.2.3. All videos V are processed, resulting in a set of
feature vectors describing the hands present in the video. Denote VF = [V F

1 , V
F
2 , . . . , V

F
NV

],
where V F

i is a set of feature vectors describing hands in the i-th video.

Three di�erent hand feature descriptors were used and their performance was compared:
hRDF, HOG and LBP. Additionally, one combination of LBP+hRDF feature vectors was used.

With the available tracking and selected feature extraction method, the sets of feature
vectors VF can be computed.

Indexing / training Searching / testing

hand feature 
extraction

codebook 
generation

represent each 
hand by one 
codeword

store the 
codewords for 
each video

video 1 video N
V

... query 1 query N
Q

...

codewords 
in video 1

codewords 
in video N

V

...

compute distances

Figure 6.28: Scheme of the proposed search by example system, consisting of the indexing
and searching subsystem.
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The next step is codebook generation, where the feature vectors are converted to "code-
words" (the analogy comes from words in text documents), which produces a "codebook"
(analogous to a word dictionary). The codewords can be interpreted as representatives of sev-
eral similar hand images. To generate such codewords, k-means clustering was performed on
a subset of 20000 randomly selected feature vectors computed on the UWB-07-SLR-P hand
corpus images, which contains 257354 hand images, thus 7.77% of the available images were
used for the clustering. The number of the clusters k, codebook size, was �xed to k = 2000.
The codewords are de�ned as the centers of the learned clusters. Now, each image containing
a hand can be mapped to a certain codeword. Examples of hand images that are mapped to
the same cluster, based on hRDF features, is shown in �gure 6.29.

The �gure 6.30 shows a two dimensional PCA projection of the feature space and sample
images from the clusters at given locations. All three methods, hRDF, HOG and LBP are
shown, each of the methods has di�erent similarity results. Similar hand shapes should be
depicted near to each other, di�erent hand shapes far.

Finally, the indexation is completed by storing all the mapped codewords for each video
VC = [V C

1 , V
C
2 , . . . , V

C
NV

], computed from the feature vectors VF . Thus, i-th video is repre-
sented by a short vector V C

i containing indexes of codewords.

To add a new video to the search index, it is not necessary to repeat the whole training
process. The codebook can remain the same and only new codewords will be detected in the
video and stored.

Additionally, to speed up the search process, a rectangular distance matrix D = [dij ] of
dimension k is calculated, where the element dij is a Euclidean distance between the center of
i-th and j-th cluster. This is used whenever a distance between two codewords is needed.

6.5.2 Searching

The search query consists of NQ images Q = [Q1, Q2, . . . , QNQ
], each containing one hand.

The images are normalized and the same feature descriptor that was used for indexing is applied
to the query images. The codebook maps each feature vector into a codeword, which forms
a query represented by the codewords QC = [qC1 , q

C
2 , . . . , q

C
NQ

]. Now, the goal is to calculate
distances between the query codewords QC and indexed videos that are represented by sets of
codewords of the same codebook VC .

The distance between i-th query codeword qCi and j-th video codeword set V C
j , denoted as

dQij , is computed as a sum of distances between the i-th cluster and M nearest codewords in
V C
j . The selection of M was based on evaluation of the system and showed the best results for
M = 3, for all used feature descriptors. So, the best matching videos for the given query must

Figure 6.29: Example of 3 clusters resulted from k-means clustering based on hRDF features.
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(a) hRDF features (b) HOG features (c) LBP features

Figure 6.30: Two dimensional PCA projection of the feature space demonstrated on sample
images from the clusters.

contain the queried hand shapes or very similar ones at least three times each.

In case the query contains more than one query image, the computed distances dQij must be

combined and form a single �nal distance DQ
j . A simple sum of all dQij can be used, but better

results were obtained when the distances are interpreted as probabilities, multiplied together
and then reinterpreted back as a distance:

DQ
j = 1−

NQ∏
i=1

(1− dQij) (6.1)

Each factor 1−dQij can be interpreted as a probability that the i-th query codeword is present
in j-th video. This probability is not based on measurement or any distribution estimation,
only a naive relation is used considering that more distant codewords are less probable than
the closer ones. The feature space for all feature descriptors is normalized so that the distance
between any real feature vectors lies in interval < 0, 1 >, thus the same interval applies for dQij ,

which imply that the possible values of 1 − dQij are kept in < 0, 1 > and allows to interpret it
as a probability value.

Finally, when all the distances DQ
j between the query and j-th video are calculated, the

videos can be sorted depending on these distances, thus creating the result of the search.

If the feature descriptors are not rotation invariant, some level of rotation invariance can
be added by appending arti�cial query images generated from the original images by a rotation
transformation for several manually selected angles.

6.5.3 Evaluation

The evaluation was measured on UWB-07-SLR-P corpus, where the codebook was trained
on UWB-07-SLR-P hand corpus. Four di�erent hand feature descriptors were used: uni-
form LBP with radius 2 computed on normalized image with the size of 64 pixels, with 8-
neighborhood; HOG with 8 orientations and 8 pixels per cell, computed on normalized image
with the size of 112 pixels; hRDF with 72 angle bins, computed on normalized image with
the size of 100 pixels. LBP+hRDF is a fusion of two previously described feature descriptors,
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position of correct result for one hand search

method median mean top 1 top 5 top 10 top 20

LBP+hRDF 0◦ 5 19.1 28.5% 50.2% 62.7% 75.5%
10◦ 13 39.4 12.3% 30.3% 43.2% 60.8%
20◦ 18 49.7 8.2% 22.4% 34.1% 53.6%

HOG 0◦ 5 24.4 31.3% 51.3% 61.9% 74.0%
10◦ 18 48.1 8.8% 24.1% 36.6% 53.5%
20◦ 28 73.7 5.1% 15.5% 26.5% 43.5%

hRDF 0◦ 6 22.0 28.2% 48.4% 61.9% 74.5%
10◦ 14 37.8 13.1% 30.6% 43.4% 58.3%
20◦ 23 52.7 5.9% 21.2% 33.4% 47.7%

LBP 0◦ 9 26.4 22.0% 42.2% 53.9% 68.4%
10◦ 19 52.7 8.7% 21.7% 33.8% 52.3%
20◦ 28 71.6 6.9% 15.9% 23.6% 39.3%

normalized central moments ηi 0◦ 11 51.6 18.8% 38.8% 49.8% 64.4%

angle+solidity+extent+ratio 0◦ 17 63.8 15.1% 32.6% 42.4% 53.4%

Hu moments Ii 0◦ 26 97.5 10.8% 23.3% 30.9% 44.6%

Table 6.5: Search results - one hand query

where the resulting feature vector is a concatenation of single feature vectors.

The evaluation is based on selection of random search queries, performing the search and
measurement of the position in the result, where the sign from which the query images origi-
nated appears. Because the corpus contains several repetitions of the same sign, performed by
several signers, all these signs are expected to contain the same or similar hand con�gurations.
Thus, the result is considered as correct if the video contains the same sign from which the
query images originated. Only a subset of UWB-07-SLR-P corpus was used, containing 220
di�erent both-handed signs.

Several evaluation measurements were used. Median and mean positions indicate at which
position the correct sign appeared in the results. Top-N rates show in how many cases the
correct result appeared in �rst N results.

The tables 6.5 and 6.6 show the results based on evaluation of 601 random queries. The
�rst table is for queries containing one hand, the second is for two hand queries.

The search based on one hand queries achieved the best results with LBP+hRDF features,
with the median position of correct result on 5th position, but increased to 18 when 20◦rotation
invariance was considered. The results in this table show that all four presented feature de-
scriptors are more suitable for this task than normalized central moments, Hu moments or a
combination of scalar region descriptors.

The second table 6.6 with the result for two hand search shows that the performance
increased rapidly compared to the one hand case. The best hand descriptor was LBP+hRDF
when no rotation invariance was considered, hRDF otherwise. Despite very promising results
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position of correct result for two hand search

method median mean top 1 top 5 top 10 top 20

LBP+hRDF 0◦ 0 3.9 77.1% 91.6% 94.7% 97.1%
10◦ 2 9.2 46.0% 70.8% 83.2% 90.9%
20◦ 5 15.1 29.9% 54.1% 68.6% 83.7%

HOG 0◦ 0 3.9 75.3% 86.5% 91.5% 95.2%
10◦ 3 13.2 35.9% 60.0% 73.8% 83.1%
20◦ 9 28.6 15.3% 36.7% 53.4% 68.3%

hRDF 0◦ 0 3.2 72.8% 87.6% 93.3% 95.7%
10◦ 2 6.7 48.8% 73.2% 83.9% 91.3%
20◦ 4 13.2 30.9% 55.5% 71.5% 84.2%

LBP 0◦ 0 5.1 64.2% 79.7% 87.7% 92.3%
10◦ 4 18.0 34.1% 55.8% 70.8% 84.0%
20◦ 9 34.6 22.9% 40.3% 54.4% 66.9%

Table 6.6: Search results - two hand query

shown in this table, a human-based evaluation is needed. This arti�cial evaluation has both
advantages and disadvantages when compared to the real world usage. Some advantages are
�awless images directly retrieved from the corpus or the images coming from the same signers.
Disadvantage is for example the random selection of the query images, which can select some
common hand image which has no discriminative power; the human will usually try to build a
query from some discriminative hand images.
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In this work, a sign language recognition (SLR) system has been developed and evaluated,
both for recognition of isolated signs and continuous utterances. The SLR system uses statisti-
cal approach for the recognition tasks. Additionally, a search by example system for searching
in video data containing sign language utterances using a query consisting of one or multiple
hand images has been proposed and evaluated.

Both systems share some approaches and methods, and some are unique depending on the
application. They form a basis for experiments so that each system can be evaluated as a
whole. The focus was put into feature extraction methods, including robust hand tracking
resolving occlusions with face. Both manual (hands) and nonmanual (face) components of
signs were studied. Then, sign modeling that employs hidden Markov models and the �rst step
of data-driven construction of phoneme sub-units was designed and evaluated.

The novel search by example system based on image-based queries showed promising results
for the real world usage, for example in interactive sign language dictionaries.

All the original goals of the thesis were ful�lled:

Corpora preparation Two corpora of isolated sign recordings, UWB-06-SLR-A and UWB-
07-SLR-P, were collected. Both were recorded in laboratory conditions, by multiple
speakers with multiple repetitions, thus the corpora are directly targeted for SLR exper-
iments.

Automatic sign language recognition system was developed, based on hidden Markov
models which are widely used in speech recognition systems. The system is capable
to recognize both isolated and continuous utterances. The evaluation of the system was
performed on various features and their combinations on the UWB-06-SLR-A and UWB-
07-SLR-P corpora. The best achieved recognition accuracies of isolated signs were 98.65%
/ 95.06% (signer dependent / independent recognition) for the UWB-06-SLR-A corpora,
which consist of smaller number of signs but was recorded by higher number of signers
than UWB-07-SLR-P, where the best accuracies are 93.19% / 34.47%. The evaluation of
continuous utterances was performed on arti�cially generated utterances, with 97.19% /
86.89% accuracy for UWB-06-SLR-A and 86.00% / 19.79% for UWB-07-SLR-P dataset.
A deeper inspection on the results and a discussion why the results decreased for signer
independent recognition on UWB-07-SLR-P dataset was discussed in section 6.3.3.

Feature extraction Since special recording devices were avoided, the only considered sources
of data are digital cameras that provide series of image frames. Several existing and new
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approaches for feature extraction were examined and their performance in the classi�ca-
tion tasks was compared. Both low level image features and higher level appearance-based
features incorporating hand and head tracking were studied. Best recognition results in
particular tasks were achieved using local binary patterns (LBP), their fusion with hand
coordinates, and hRDF (hand shape radial distance function) shape descriptor that was
proposed in this work as an extension to earlier presented RDF shape descriptor.

Hand tracking and occlusion handling Because the hand position, orientation and its
con�guration are crucial features for recognition, an algorithm that separates head and
hand pixels was employed to ease further hand tracking and feature extraction. The
algorithm allows to interpolate face region during the occlusion with hand, and enables
the use of face extraction methods that fail in case of occlusion. The algorithm is an
extension of a recently published method.

Sub-units An iterative algorithm that serves as a �rst step for data-driven construction of
sub-units was proposed, employing Gaussian mixture models (GMM). Although the sub-
units were not identi�ed from the dataset, the algorithm created HMM models based on
shared observation probabilities among all the signs. Although the recognition accuracy
for such a HMM models was lower than with the independent models, the results showed
promising outcomes and the possibility that the sub-units can be constructed employing
clustering on the HMM states that were identi�ed by the proposed algorithm. During
the course of the work, systems based on similar principles were introduced by other
researchers [Kel10] or [TPM10], indicating high activity in this particular sub�eld of
SLR.

Feature selection and fusion The principal component analysis (PCA) method was applied
on the considered features, and its in�uence for the recognition was studied. Additionally,
feature fusion performed at feature level was studied, investigating di�erent combinations
of features, and showed better results in some recognition tasks.

Search by example Beyond the SLR system, searching in video corpora by user given ex-
ample was studied. The example consists of one or multiple images. The system searches
for the parts in videos that contain such hand con�gurations as given by the user. The
system was built and evaluated on the larger UWB-07-SLR-P corpus. When using one
image query, the median position of correct result was 5, which is acceptable for a user.
If some level of rotation invariance is considered for real world usage, the median position
decreased to 18. In such a case, at least two query images should be provided. Thus, the
median position is back at acceptable value 4. The conclusion is that two images contain-
ing a hand, used as a search query, provide good search results.
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Czech Sign Language online dictionary Complementary to the goals of the thesis, we
developed an online sign language dictionary with some unique functionalities. The
dictionary supports SignWriting and HamNoSys notations, even for search purposes; a
3D avatar that uses sign language synthesis system as an alternative to videos for sign
presentations. This online dictionary can serve as a source of additional data, both video
and linguistic, and as a platform where the results of this thesis can be applied into a
real-world system. 1.

7.1 Future Work

The �eld of automatic sign language recognition is growing rapidly. This thesis has covered
only a few of the problems of this di�cult �eld. The subtasks that were employed in this work
pose a good starting point for further research. Some interesting directions for future work are
discussed in the following.

The �rst direction is to utilize latest corpora, with continuous sign language utterances,
recorded with the purpose for SLR experiments. This would allow investigating e�ects of
grammar and coarticulation, where each sign is in�uenced by neighboring signs in the sentence.

The work on sign modeling can be extended by some modi�cations of HMMs, that allow
some level of asynchrony for standalone streams of hands and head features, such as product
HMM (as was discussed in section 5.2.3).

The feature extraction subtask can examine other existing feature descriptors, or create
new ones that are suitable for robust hand and face feature extraction.

As the hand tracking and occlusion handling is already performing well, some experiments
can be done in more unconstrained environments, for instance with multiple signers, under
di�erent lighting conditions etc. Other currently examined tracking methods use new input
devices that provide both RGB image and 3D depth map, thus the feature extraction can be
more robust.

Probably the largest potential for advances lies in sub-unit identi�cation and modeling, as
was discussed in section 6.3.4. The challenge is to identify the sub-units not only by data-driven
methods, but with cooperation with linguists.

Other big potential lies in creation of language models that can improve recognition accu-
racy for continuous SLR with large vocabularies. The main problem here is the data collection
and annotation.

1Czech Sign Language online dictionary is available in English at http://signs.zcu.cz, current production
version in Czech language is available at http://znaky.zcu.cz
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A | Appendix
Sign Language Recognition of
Isolated Signs: Extended Results

The table A.1 shows recognition accuracies for di�erent HMM con�gurations. The exper-
iment uses LBP + ∆2 features and UWB-06-SLR-A corpus. The table is presented as an
example how the number of HMM states and number of GMM mixture components a�ects the
recognition results.

HMM GMM components
states 1 2 3 4 5 6 7 8 9 10 11 12 13 14

3 68.99 85.17 85.62 91.91 92.36 92.58 93.93 93.71 93.71 93.03 94.38 94.38 94.61 94.83
4 77.53 86.74 91.24 93.03 94.61 94.83 95.28 95.06 95.06 95.51 95.73 95.51 95.96 95.51
5 83.60 92.13 93.26 94.61 95.06 95.73 95.96 96.18 96.63 96.18 96.40 95.96 96.18 96.40
6 87.87 93.48 95.73 95.51 94.83 96.40 96.18 95.96 95.96 96.63 96.85 96.85 96.85 97.30
7 89.21 94.38 95.96 95.96 96.85 96.85 97.08 96.63 96.63 96.85 96.85 97.08 97.30 97.30
8 90.34 95.96 96.18 97.30 96.18 96.63 96.63 97.08 96.85 97.08 96.85 97.53 98.20 97.98
9 90.56 95.06 95.28 96.18 96.85 96.85 97.30 96.63 96.85 96.63 96.85 97.08 97.08 97.30
10 90.34 95.51 95.73 95.73 95.73 97.30 97.08 97.30 98.43 97.75 97.98 97.98 97.98 97.75
11 91.01 95.51 96.40 96.85 96.85 96.85 96.63 96.63 96.40 95.96 96.40 96.40 96.85 96.85
12 91.24 95.96 96.85 97.30 97.53 96.85 96.85 96.63 97.30 97.08 96.63 97.75 97.75 97.08
13 91.46 96.85 97.30 97.30 98.65 98.20 97.75 97.30 97.08 96.85 96.85 96.85 96.40 96.18
14 91.91 95.73 97.08 96.18 97.08 97.75 97.30 96.63 96.63 96.63 97.08 96.85 96.85 97.08
15 91.91 96.40 96.63 96.85 96.40 96.85 97.30 96.40 96.40 96.63 97.08 97.08 96.85 97.08

Table A.1: Recognition accuracies for particular HMM con�gurations, best accuracy 98.65%
for 13 HMM states and 5 GMM mixture components. Experiment with LBP + ∆2 features

and UWB-06-SLR-A corpus.

The table A.2 shows extended results for recognition of isolated signs. The accuracies of
each experiment are presented together with HMM con�guration that performed best. The
con�guration consists of number of HMM states and number of GMM mixture components.
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recognition accuracy [%], HMM states, GMM components feature descriptor

signer dependent signer independent

SLR-A SLR-P SLR-A SLR-P with hand tracking

95.73, 11, 13 84.47, 9, 7 89.69, 9, 10 29.46, 7, 4 HOG hand features
93.03, 11, 13 83.51, 11, 10 92.12, 11, 2 26.87, 11, 8 (x,y) hand coordinates + ∆2

91.69, 13, 13 - 82.40, 13, 2 - (x,y) hand c., no hands separation + ∆

91.01, 9, 13 76.44, 7, 8 86.71, 11, 10 20.16, 5, 7 hRDF hand features + ∆
86.07, 13, 13 57.16, 13, 2 90.73, 11, 13 18.92, 11, 4 high level linguistic features
74.61, 11, 13 55.15, 10, 8 75.19, 13, 8 13.93, 9, 10 Hu moments

without hand tracking

98.65, 13, 5 93.19, 6, 8 94.23, 13, 8 27.85, 11, 3 LBP + ∆2

86.18, 10, 13 72.69, 13, 13 76.08, 9, 10 14.36, 7, 7 DCT
85.53, 13, 13 71.12, 13, 13 75.16, 11, 10 13.95, 8, 9 radon transformation

- 47.78, 8, 2 - - eigensigns
74.05, 11, 13 39.59, 12, 13 70.83, 9, 6 7.10, 6, 7 pixel values as features
46.87, 9, 13 43.24, 10, 13 12.27, 8, 9 1.43, 8, 10 AAM
29.37, 9, 13 24.47, 8, 12 8.32, 9, 2 1.34, 7, 5 AAM-ext

fusion of multiple features

95.51, 12, 10 91.54, 4, 12 95.06, 12, 10 32.47, 8, 11 (x,y) hand coordinates + LBP
95.06, 12, 13 84.64, 5, 11 95.05, 13, 11 34.47, 5, 3 high level linguistic feat. + LBP
95.73, 8, 8 84.21, 4, 9 90.80, 7, 8 29.46, 4, 4 (x,y) hand coordinates + HOG
95.28, 11, 11 80.63, 3, 11 92.07, 10, 3 29.82, 7, 3 high level linguistic feat. + HOG

Table A.2: Accuracies for recognition of isolated signs, together with number of HMM states
and number of GMM mixture components that performed best in every experiment.

The detailed con�gurations of methods that employ hand tracking are described here:

HOG hand features were computed on hand images normalized to 64px, using 4 orien-
tations and cell size 16x16. Other tested parameters were 8 orientations and cell size 8x8

(x,y) hand coordinates + ∆2 features have no parameters.

(x,y) hand coordinates, no head/hands separation + ∆ this hand tracking is using
a di�erent approach for hand tracking and was described in [HKCM11], this tracking is not
able to resolve occlusions.

hRDF hand features + ∆ was using 72 angle bins and hand images normalized to 64px.

High level linguistic features have no parameters.

Hu moments have no parameters.
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Con�gurations for methods that employ no hand tracking follows:

LBP + ∆2 the uniform LBP features were directly calculated from the whole image, from
which the face region was separated and ignored, without employing the tracking and without
using LBP for each hand separately. The LBP radius was set to 3, using 8-neighborhood.
Other tested radii were 1,2 and 4.

DCT was using 5x5 coe�cient submatrix, other tested values were ranging from 3x3 to
20x20. Additionally, the whole image was split into a 9, 16, 25 and 36 subimages that were
processed by DCT separately.

Radon transformation used 20 bins, other tested value was 100 bins. The number of
angles used for the radon projection was �xed to 4.

Eigensigns was using 60px normalized images. Other tested values were 40, 80 and 100px.
The PCA transformation matrix was trained from 233590 images.

Pixel values as features uses pixel values from a normalized image directly as the features.
The resolution of the images was 20px, other tested values were 15 and 10px.

AAM is a set of Active Appearance Model parameters that are used as a feature vector.
Thus, this result shows recognition results based on non-manual component only.

AAM-ext has no parameters.

Last summary presents con�gurations for methods that combine multiple features:

(x,y) hand coordinates + LBP used hand coordinates combined with uniform LBP
applied to the hand images normalized to 64px, with radius 2.

High level linguistic features + LBP used the same LBP as above, but combined with
high level linguistic features.

(x,y) hand coordinates + HOG combines hand coordinates with HOG features com-
puted for each hand on 64px normalized image, using 4 orientations and 16x16 cells.

High level linguistic features + HOG was using the same HOG features and above
but combined with high level linguistic features.
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