
University of West Bohemia

Faculty of Applied Sciences

DOCTORAL THESIS

2012 Dipl.-Ing.(FH) Michael Steindl, M.Eng.

Západočeská univerzita v Plzni
Fakulta aplikovaných věd

VYHODNOCENÍ A URČENÍ POŘADÍ
INTEGRACE V KOMPONENTOVĚ

ORIENTOVANÝCH VESTAVĚNÝCH
SYSTÉMECH

Michael Steindl

disertační práce
k získání akademického titulu doktor

v oboru Informatika a výpočetní technika

Školitel: Doc. Ing. Stanislav Racek, CSc.

Katedra: Katedra informatiky a výpočetní techniky

Plzeň 2012

University of West Bohemia
Faculty of Applied Sciences

EVALUATION AND DETERMINATION OF
INTEGRATION ORDERS IN COMPONENT

BASED EMBEDDED SYSTEMS

Michael Steindl

Doctoral Thesis

in partial fulfillment of the requirements for the degree of
Doctor of Philosophy

in specialization
Computer Science and Engineering

Supervisor: Doc. Ing. Stanislav Racek, CSc.

Department: Department of Computer Science and Engineering

Pilsen 2012

Abstract

Embedded software systems are getting more and more complex. The de-
mand for new features and functions led to an increasing complexity in the
design and development of these systems. One answer to handle this complex-
ity is component-based development, in which systems are built of individual
independent software components. These components shall work together to
provide the set or specified subset of the capabilities the final system will pro-
vide. One important aspect of the component-based development approach is
software integration. Individual components have to be put together and their
interactions have to be verified. The crucial point of integration is the order in
which components are combined. State-of-the-art approaches (eg. top-down or
bottom-up integration) are only coarse guidelines and rely strongly on integra-
tors expertise. More elaborate methods in which an algorithm is used to derive
an integration order are only available for object-oriented software and cannot
be directly used in procedural programming languages, eg. the language C. To
deal with these challenges, parameters are identified the software integration
process is subjected to and metrics are developed in order to evaluate a certain
integration order. Furthermore, an optimization approach based on simulated
annealing is presented which is used to derive an integration order with respect
to the proposed parameters in a powerful and reliable manner.

Zusammenfassung

Die Komplexitaet eingebetteter Systeme steigt kontinuierlich. Mit dem Bedarf
an neuen Funktionalitaeten nimmt der Anspruch an den Design- und Entwick-
lungsprozess dieser Systeme immer mehr zu. Ein vielversprechender Ansatz
diesem Anspruch zu begegnen ist die komponentenbasierte Entwicklung. Hier-
bei werden Systeme aus moeglichst unabhaengigen Einzelkomponenten aufge-
baut, die im Zusammenspiel die Anforderungen an das Gesamtsystem erfu-
ellen. Ein wichtiger Aspekt bei diesem Ansatz ist die Software Integration,
bei der die einzelnen Komponenten zu einem funktionierenden Gesamtsystem
zusammengesetzt und die Interaktionen untereinander getestet werden. Der
entscheidende Punkt hierbei ist die Reihenfolge mit der dies geschieht. Ue-
bliche Ansaetze, wie z.B. Top-Down oder Bottom-up Integration bieten lediglich
grobe Richtlinien und sind stark von der Expertise des jeweiligen Integrators ab-
haengig. Algorithmische Ansaetze, welche eine praezise Reihenfolge vorgeben,
sind bisher nur fuer Objekt-orientierte Software verfuegbar und koennen nur
sehr eingeschraenkt fuer prozedurale Programmiersprachen (z.B. C) verwen-
det werden. Aufgrund der sehr starken Verbreitung prozeduraler Program-
miersprachen werden in dieser Arbeit Parameter und Metriken definiert, mit
den Integrationsreihenfolgen fuer prozedurale Programmiersprachen bewertet
werden koennen. Zusaetzlich wird ein Optimierungsverfahren auf Basis des
Simulated Annealing Ansatzes vorgestellt. Mit diesem Verfahren kann zuver-
laessig eine praezise Integrationsreihenfolge auf Basis der definierten Parameter
gewonnen werden.

Abstrakt

Vestavěné poč́ıtačové systémy jsou stále složitěǰśı. Požadavky na nové vlast-
nosti a funkce vedly ke vzr̊ustaj́ıćı složitosti proces̊u návrhu a vývoje těchto
systémů. Jeden zp̊usob jak zvládnout tuto složitost je komponentově oriento-
vaný vývoj, při kterém jsou systémy stavěny z jednotlivých nezávislých soft-
warových komponent. Tyto komponenty muśı spolupracovat při zajǐstťováńı
množiny nebo podmnožiny služeb, které by ćılový systém měl poskytovat. Je-
den d̊uležitý aspekt komponentově orientovaného př́ıstupu je softwarová in-
tegrace. Jednotlivé komponenty muśı být sestaveny a jejich interakce muśı
být ověřeny. Kĺıčovým bodem integrace je pořad́ı, ve kterém jsou použité
komponenty kombinovány. Současné př́ıstupy (např. integrace top-down nebo
bottom-up) poskytuj́ı pouze hrubé postupy a silně spoléhaj́ı na zkušenost návrháře.
Vı́ce propracované algoritmické metody jsou dostupné pouze pro objektově ori-
entovaný software a nemohou být př́ımo použity v procedurálńıch programovaćıch
jazyćıch, např́ıklad v jazyce C. V předložené disertačńı práci jsou identifikovány
parametry integračńıho procesu a jsou navrženy metriky umožňuj́ıćı vyhodno-
ceńı určitého pořad́ı integrace komponent. Dále je prezentován optimalizačńı
př́ıstup, založený na tzv. simulovaném ž́ıháńı, který lze využ́ıt k odvozeńı
pořad́ı integrace komponent efektivńım a spolehlivým zp̊usobem.

To Paul and Kathrin

Acknowledgements

Many people have either directly and indirectly contributed to this thesis. I
would like to take the opportunity to thank all of them for their support. First
and foremost, I would like to sincerely thank my supervisors Doc. Ing. Stanislav
Racek, CSc. and Prof. Dr. Juergen Mottok for their guidance, invaluable
suggestions, continued encouragement and support during these years. I am
also very grateful to Prof. Dr. Michael Niemetz, Prof. Dr. Hans Meier and
Ing. Premek Brada, MSc, PhD for their time spend on reviews and fruitful
discussions. Special thanks go to my former colleagues at the University of
Applied Sciences Regensburg, Dr. Michael Deubzer, Dr. Martin Hobelberger
and Michael Schorer for their friendship, encouragement and helpful advice
over the years. I will never forget the time we spent on joint research and
conference travels, as well as the fruitful discussions and the social activities
in the evenings. Finally, my very special thanks belong to Monika and Alfons
Steindl for their warm support and for always believing in me all these years.

Contents

Contents xii

List of Figures xv

Abbrevations xix

1 Introduction 1
1.1 Motivation . 1

2 State of the Art Software Integration Strategies 4
2.1 Component-based software development 4
2.2 Integration strategies . 6

2.2.1 Non-formalized approaches . 7
2.2.2 Formalized approaches . 9

2.3 Discussion of presented approaches . 13
2.4 Goals of the thesis . 18

3 Parameters of Software Integration 19
3.1 Reference systems . 19
3.2 Test Effort . 19

3.2.1 Adaptability of existing approaches to C-written component-based
embedded software . 21
3.2.1.1 Approach by Kung et al. 21
3.2.1.2 Approach by Tai & Daniels 21
3.2.1.3 Triskell strategy . 22
3.2.1.4 Approach by Le Traon et al. 22
3.2.1.5 Approach by Briand et al. 23

xii

CONTENTS

3.2.1.6 Approach by Malloy et al. 23
3.2.1.7 Heuristic Approaches . 24
3.2.1.8 Results . 24

3.2.2 Considering test drivers . 25
3.2.3 Considering stub complexity . 26

3.3 Integration test complexity (ITC) . 27
3.3.1 General issues of integration testing 28
3.3.2 Modeling integration test complexity 29

3.3.2.1 Test complexity of a dependency 29
3.3.2.2 Test complexity of the complete system 34

3.3.3 Test complexity versus Test effort 35
3.4 Integration schedule . 36

3.4.1 Component/Resource release time and deadline 37
3.4.2 Risk, Criticality . 38
3.4.3 Modeling planning effort for a software integration order 39

3.4.3.1 Scheduling parameters . 39
3.4.3.2 Calculating the planning effort for integration 41

4 Deriving an integration order in a component-based embedded system
using simulated annealing 45
4.1 Simulated annealing . 46

4.1.1 Configuration . 46
4.1.2 Rearrangement . 47
4.1.3 Annealing schedule . 47
4.1.4 Cost function . 48

4.2 Minimizing the test effort . 49
4.2.1 Minimizing the number of stubs . 49

4.2.1.1 Cost function . 49
4.2.1.2 Case study . 49
4.2.1.3 Summary . 52

4.2.2 Minimizing overall stub complexity 52
4.2.2.1 Cost function . 52
4.2.2.2 Case study . 52
4.2.2.3 Summary . 54

4.3 Optimizing test effort and integration test complexity 56

xiii

CONTENTS

4.3.1 Cost function . 56
4.3.2 Case study . 57
4.3.3 Summary . 58

4.4 Optimizing integration schedule . 60
4.4.1 Cost function . 60
4.4.2 Case study . 60
4.4.3 Summary . 70

4.5 Optimizing integration schedule and stub complexity 71
4.5.1 Cost function . 71
4.5.2 Case study . 72
4.5.3 Summary . 74

4.6 Optimizing test effort, integration testability and schedule 75
4.6.1 Cost function . 75
4.6.2 Case study . 75
4.6.3 Summary . 75

5 Conclusion 79
5.1 Conclusion . 79
5.2 Pros and Cons . 80
5.3 Further work . 81

References 83

Author’s Publications 91

xiv

List of Figures

1.1 Evolution of automotive engine control units (ECUs) [20]. Within 14 years,
time-to-market and the ECU price have been roughly cut to a half whereas
the need for ROM is increasing drastically. 2

2.1 Dependency between two components were component C2 depends on C1 . 6
2.2 Integration of component C2 which depends on a not available component

(C1.) . 6
2.3 Test driver needed to stimulate the interaction between C1 and C2 and to

observe the test results. 6
2.4 Bottom-up integration in the first and second stage 8
2.5 Top down integration in the first and second stage 9
2.6 Classification of available integration strategies. 14
2.7 Results of the survey, conducted among software developers in the automo-

tive industry([29],[55]). It shows the usage of common integration techniques. 17
2.8 Results of the survey, conducted among software developers in the automo-

tive industry ([29],[55]). It shows common integration faults. 17

3.1 Dependency graph of the embedded data logger reference system with 16
components and 26 dependencies. 20

3.2 Normalized number of stubs needed for integration 25
3.3 V development process for component based embedded systems [23]. . . . 28
3.4 Dependency graph of four involved components, the ECU State Manager

(EcuM), the Diagnostic Event Manager (Dem), the Function Inhibition
Manager (Fim) and the the Diagnostic Communication Manager (Dcm) . . 30

3.5 Sequence diagram of the initialization of the Function Inhibition Manager
(Fim). 30

xv

LIST OF FIGURES

3.6 Top-down and bottom-up integration of the Function Inhibition Manager.
Components are added stepwise, the new one in each step is gray shaded.
The interfaces under test (IUT) at each step are shown with broken lines. . 31

3.7 Test of the gray shaded dependency in case of top-down integration. Test
data (represented by the dotted line) test data must be passed through the
EcuM and the Dem. 32

3.8 Test of the gray shaded dependency in case of bottom-up integration.Test
data (dotted line) can be directly applied to the interface under test. . . . 33

3.9 Test effort against test complexity of 4× 106 possible integration orders. . 36
3.10 Iterative V-Model Process . 38
3.11 Planning effort for the integration and testing of a component against time.

Integrating a component between rc and dc produces the smallest effort
defined as 0. The planning effort for integration rises linearly if integration
begins below rc and/or exceeds dc. The maximum reasonable effort occurs
if integration reaches the absolute limits Rc and Dc as is defined as 1. To go
beyond the absolute limits Rc and Dc is not possible by definition, therefore
the effort then rises to infinity. 41

3.12 Graphical representation of the timing parameters presented in Table 3.3 . 43
3.13 Occurring effort for integration caused by schedule in two different integra-

tion orders. 44

4.1 Normalized number of stubs needed for integration 51
4.2 Distribution of the resulting number of specific stubs of the autosar system

using simulated annealing. 51
4.3 Sample of 4 × 106 integration orders of the embedded data logger. The

minimum test effort occurring in this sample is ET E(min) = 0.375, the
lowest occurring test complexity is ET C(min) = 0.525. 57

4.4 Optimization results of the embedded data logger. 1000 values were calcu-
lated for each configuration. 58

4.5 Optimization results of the embedded data logger including the multi ob-
jective results. 58

4.6 Integration sequence of five components optimized by using the proposed
simulated annealing approach with the objective to minimize the maximum
occurring value Êc(t) (Equation 4.5) The corresponding parameters are
shown in Table 4.10. 61

xvi

LIST OF FIGURES

4.7 Integration sequence of five components optimized by using the proposed
simulated annealing approach with the objective to minimize the mean
value Es(t) (Equation 4.6). The corresponding parameters are shown in
Table 4.11. 61

4.8 Top-down integration sequence of the embedded data logger introduced in
Section 3.1 with respect to schedule constraints according to Table 4.13
without optimization. 62

4.9 Integration sequence of the embedded data logger equipped with the tim-
ing parameters of Table 4.13 and optimized by the simulated annealing
approach with the objective to minimize the maximum occurring value
Êc(t) (Equation 4.5) The corresponding parameters are shown in Table 4.14. 63

4.10 Integration sequence of an embedded data logger equipped with the timing
parameters of Table 4.13 and optimized by the simulated annealing approach
with the objective to minimize the mean value Es(t) (Equation 4.6). The
corresponding parameters are shown in Table 4.15. 64

4.11 Top-down integration sequence of the embedded data logger introduced in
Section 3.1 with respect to schedule constraints according to Table 4.17
without optimization. 66

4.12 Integration sequence of the embedded data logger equipped with the tim-
ing parameters of Table 4.17 and optimized by the simulated annealing
approach with the objective to minimize the maximum occurring value
Êc(t) (Equation 4.5) The corresponding parameters are shown in Table 4.18. 66

4.13 Integration sequence of an embedded data logger equipped with the timing
parameters of Table 4.17 and optimized by the simulated annealing approach
with the objective to minimize the mean value Es(t) (Equation 4.6). The
corresponding parameters are shown in Table 4.19. 67

4.14 Integration sequence of the embedded data logger equipped with absolute
timing constraints (Table 4.21) and optimized by the simulated annealing
approach with the objective to minimize the maximum occurring value
Êc(t) (Equation 4.5). The corresponding parameters are shown in Table 4.22. 69

4.15 integration sequence of the embedded data logger equipped with absolute
timing constraints (Table 4.21) and optimized by the simulated annealing
approach with the objective to minimize the mean value Es(t) (Equation
4.6). The corresponding parameters are shown in Table 4.23. 69

xvii

LIST OF FIGURES

4.16 A sample with 105 possible integration orders was generated and the cor-
responding schedule mean value and the stub complexity were calculated.
These solutions are plotted as points. Furthermore, 50 optimization runs
with square addition were performed and the results marked with ’x’.
The optimization results with the corresponding single objective function
are marked with lines. The horizontal line represents the minimum stub
complexity, the vertical line the minimum planning effort. 72

4.17 A sample with 105 possible integration orders was generated and the cor-
responding schedule mean value and the stub complexity were calculated.
These solutions are plotted as points. Furthermore, 50 optimization runs
with linear addition were performed and the results marked with ’x’. The
optimization results with the corresponding single objective function are
marked with lines. The horizontal line represents the minimum stub com-
plexity, the vertical line the minimum planning effort. 73

4.18 A sample with 105 possible integration orders was generated and the cor-
responding schedule mean value and the stub complexity were calculated.
These solutions are plotted as points. Furthermore, 100 optimization runs
with square addition were performed and the results marked with ’x’.
The optimization results with the corresponding single objective function
are marked with lines. The horizontal line represents the minimum stub
complexity, the vertical line the minimum planning effort. 73

4.19 A sample with 105 possible integration orders was generated and the cor-
responding schedule mean value and the stub complexity were calculated.
These solutions are plotted as points. Furthermore, 100 optimization runs
with linear addition were performed and the results marked with ’x’. The
optimization results with the corresponding single objective function are
marked with lines. The horizontal line represents the minimum stub com-
plexity, the vertical line the minimum planning effort. 74

4.20 A sample with 106 possible integration orders was generated and the corre-
sponding parameters were calculated. These solutions are plotted as points.
Furthermore, 100 optimization runs with the proposed objective function
and the results marked with ’x’ . 76

4.21 Results presented in Figure 4.20 with additional sphere segment for better
visualization. 77

xviii

Abbrevations

NST Number of stubs
NT D Number of test drivers
ET E Test effort including test drivers
ESC Overall stub complexity
ESC Normalized overall stub complexity
ET C Test complexity
EC Planning effort for a single component
ES Planning effort for the overall integration

xix

Chapter 1

Introduction

The integration of software components is an important aspect of embedded system devel-
opment. This thesis addresses the software integration process with a particular emphasis
on the integration strategy which describes the order of component integration. This in-
troduction presents the motivation behind this work, basic concepts, problem formulation
and contributions.

1.1 Motivation

Embedded software systems are getting more and more complex. An example for this is
given by the automotive industry: up to over 100 microcontrollers in a premium car is
the normal case and about 80 % of all the innovations in modern cars are achieved by
software [49] which leads to an increasing number of functionalities realized by software
(Figure 1.1). The number of line of code has increased from zero to to tens of millions
within the last 30 years and about 270 functions a user interacts with are implemented
by software in modern cars [14]. Also the cost of software is growing, a study by Mercer
Management Consulting and Hypovereinsbank quantifies the value percentage of software
in a car in 2010 by 13% (in comparison with 4% in 2000) [41, 32]. Additionally, more and
more responsible challenges like safety- and security-critical scenarios are tackled which
lead to high demands on software dependability, maintainability and testability [67].

During the last years, approaches have been emerged that aimed to cope with this
challenges. One of these approaches is the use of component-based software develop-
ment which has proven to support the development of complex software solutions [63]. In
component-based software development, systems are built of individual independent soft-

1

1. Introduction

16 bits DS

8 bits GS

16 bits GS

32 bits DS

32 bits GS
Time-to-Market

ECU Price

ROM slopes vs. technology
One point = one customer release

9
0

9
2

9
4

9
6

9
8

0
0

0
2

0
4 Ye

a
r

400 000

800 000

1 200 000

1 600 000

ROM (byte)

Figure 1.1: Evolution of automotive engine control units (ECUs) [20]. Within 14 years,
time-to-market and the ECU price have been roughly cut to a half whereas the need for
ROM is increasing drastically.

ware components. These components shall work together to provide the set or specified
subset of the capabilities the final system will provide. A major requirement which is
attended to component-based software development is the reuse of existing components
[54]. To build up a system by use of components which are already tested and proved in
other systems leads to shorter development times and a higher reliability [33],[36]. In fact,
automotive software functionalities are subjected to only little changes between the vehicle
generations, they actually differs mostly not more than 10% [14]. Therfore, a substantial
part of software may be reused.

However, typically much more than 10% of software is modified in a new vehicle. Due
to high cost pressure on hardware parts, software is strongly optimized to a certain hard-
ware configuration and cannot be ported to new hardware with reasonable effort [14].
Additionally, the reuse objectives often differ between OEMs and suppliers and are not
as standardized as needed for the use of eg. software product lines [14, 72]. Given that
the total number of software components in an active General Motors car is about 1200
[48], a significant portion of new components must be integrated to a system at each de-
velopment step. Furthermore, there is a shortage of adequate methods and strategies for
the integration of those components, especially for determining an order of integration. It

2

1. Introduction

should be mentioned that simply tryout every possible integration order and choose the
best is hardly possible since there are n! integration orders for n components. Therefore,
for example, there exist about 2.4× 1018 possibilities when only 20 components should be
integrated.

This thesis deals with the evaluation and determination of an integration order in a
component-based embedded systems and is divided into four main chapters. Chapter I
introduces the motivation behind this work. In Chapter II, the necessary background
needed to understand the thesis is presented. Furthermore the state of the art in the world
and the goals of the thesis are described. Chapter III introduces the parameters software
integration is subjected to and Chapter IV presents a simulated annealing approach to
derive an integration order with respect to these parameters. The thesis concludes with a
conclusion and further work.

3

Chapter 2

State of the Art Software Integration
Strategies

A software integration strategy is needed to provide software testers a guideline to perform
software integration testing activities in a rational way. It usually describes an order in
which components are integrated and tested [26]. There are several approaches to devise
integration test orders which could be basically divided into two groups: formalized and
non-formalized approaches. Non-formalized approaches (eg. [5], [26], [6]) are depending
heavily on the expertise of the integrator whereas formalized strategies offer a more distinct
description of the integration sequence. This makes formalized approaches more suitable
to situations, where integration has to be carried out with a limited understanding of
the complete system. This is the case in many of the complex software systems in the
automotive industry.

In the following, the basic concepts in component based software development are
described. After that the current state of the art for deriving an integration order is
presented. The chapter concludes with a discussion of the presented approaches and defines
the goals of the thesis.

2.1 Component-based software development

In the terms of component-based software engineering, a software system is a set of com-
ponents connected to each other in order to provide a set of features. Four main principles
are covered by this approach [22]:

1. Reusability: Components may be reused in different systems

4

2. State of the Art Software Integration Strategies

2. Substitutability: Different implementations of a component may be used

3. Extensibility: The functionality of individual components may be increased

4. Composability: Components may be composed to provided a desired functionality

There is a lively discussion about what is exactly a component. A very general definition
for a component is formulated by Brown in [15]: A component is an independently deliv-
erable piece of functionality providing access to the services through interfaces. However,
Kopetz claims in [40], that an ideal component is a self-contained computer with its own
hardware (processor, memory, communication interface, interface to the controlled object)
and software (application programs, operating system), which performs a set of well-defined
functions within the distributed computer system. Since this work deals with software in-
tegration, the expression component is used for software components only and the widely
accepted definition given by Szyperski [68] in 2002 is used: A software component is a unit
of composition with contractually specified interfaces and explicit context dependency only.
A software component can be deployed independently and is subject to composition by third
parties.

Among many other challenges in component-based software development (eg. [21]),
components must be put together to form the entire software system. Therefore com-
ponents must be integrated which can be illustrated as a mechanical process of wiring
components together. In [34], software integration is defined as the process of combining
software components, hardware components, or both into an overall system. To interact
with each other, the interfaces of components are connected by dependencies. If a compo-
nent C2 uses one or more service(s) of another component C1, the formulation C2 ”depends”
on C1 is used (Figure 2.1). The testing of these dependencies, called integration testing,
insures the consistency of component interfaces and whether the components pass data and
control correctly, which results in successful integration of dependent components [25]. In
other words, integration testing ensures the correct interaction between already tested
components. Software integration and integration testing are often used synonymous and
are not distinguishable in literature.

If a system should be integrated and several components not available yet, this com-
ponents can be replaced by stubs. In [34] a stub is defined as a skeletal or special-purpose
implementation of a software module, used to develop or test a module that calls or is oth-
erwise dependent on it and, second, as a computer program statement substituting for the

5

2. State of the Art Software Integration Strategies

c1 c2

Figure 2.1: Dependency between two components were component C2 depends on C1

body of a software module that is or will be defined elsewhere. In Figure 2.2, the integration
of a component (C2) which depends on a component which is not available yet (C1).

Stub c2

Figure 2.2: Integration of component C2 which depends on a not available component (C1.)

To perform integration testing, components must be stimulated with test data and the
test results must be observed (Figure 2.3). To achieve this, another special component
implementation is necessary, a test driver. A test driver is defined as a software module
used to invoke a module under test and, often, provide test inputs, control and monitor
execution, and report test results [34].

c1 c2
Test
Driver

Figure 2.3: Test driver needed to stimulate the interaction between C1 and C2 and to
observe the test results.

An integration strategy describes the order in which components are integrated and
thus integration testing is performed.

2.2 Integration strategies

In the following state of the art integration strategies are presented. One integration
strategy has an exceptional position: big bang integration. Big bang integration is not an
integration strategy in a classical meaning. All components are built and brought together
in the system without regard for inter-component dependencies or risk. This leads to

6

2. State of the Art Software Integration Strategies

difficulties in fault identification. If a failure is encountered, all components are equally
under suspicion.

In [5], big bang integration is characterized by Beizer as follows:

In its purest (and vilest) form, big bang integration is no method at all - ’Let’s
fire it up and see if it works! It doesn’t of course.

There are only a few situations where big bang integration is indicated:

• The system is stabilized, i.e. only few components were added or changed since the
last passed test.

• The system is small and testable, i.e. all components have passed the component
test.

• The system is monolithic and cannot be exercised separately.

Since in complex embedded systems none of these situation is present in most cases, big
bang integration is not a proper solution and it usually creates more problems than it
solves. Due to this, big bang integration is not further considered in this document.

2.2.1 Non-formalized approaches

Non-formalized approaches are very generic guidelines to derive an integration order and
are based either on an architectural or on a functional view on the system. Well-known
strategies such as bottom up (Figure 2.4) or top down (Figure 2.5) integration are repre-
sentatives of architectural sight. Bottom up integration achieves stepwise verification of
the interfaces between tightly coupled components. Components with the least number
of dependencies are integrated first. When these components pass, their test drivers are
replaced with their clients and another round of integration begins. This strategy is suited
for responsibility-based designs and systems of components with stable and robust interface
definitions. Bottom up integration is also widely used if a project is started from scratch.
In the top down approach the order of integration is reversed in comparison with the bot-
tom up pattern. The top level component is coded first and the unavailable lower level
components are implemented by stubs. After that, the stubs are replaced stage wise by
full implementations and the next lower level of components is stubbed. As a combination

7

2. State of the Art Software Integration Strategies

Time

1

2

3

4

Test
stage

Verified
component

Component
under test

driver Component
not available

Interface
under test

(a) First stage

Time

1

2

3

4

Test
stage

Verified
component

Component
under test

driver Component
not available

Interface
under test

(b) Second stage

Figure 2.4: Bottom-up integration in the first and second stage

of bottom-up and top-down integration, outside in integration can be used. The integra-
tion is started both from the hardware and from the user/environment interaction side
simultaneously, an increasing number of stubs and test drivers are needed in this strategy.

Representative strategies which are based on a functional view of the system are use case
driven , test case driven, risk driven and schedule driven integration. In test case driven
integration, components associated to a specific test case are identified and integrated. A
welcome side effect of this pattern is the generation of statistical data on test coverage.
Use case driven integration means that the focus of the integration order is to complete
designated features of the software system. In [25], risk driven integration is referred to a
prioritization of components on a continuum of most critical to least critical to not critical.
This is also known as hardest first integration or critical module integration. Weak interface
specifications between components or runtime requirements of interconnected components
imply high risks during integrations. Also modules which were hard to implement can be
integrated at the beginning so that the time for fixing problems is as long as possible. In
schedule driven integration, components are integrated according to a fixed release plan.
Since the implementation of the components is also following this schedule the components
are integrated as they become available (first come first serve). This strategy is widely used
but could lead to a increasing number of testdrivers and stubs and increases the complexity

8

2. State of the Art Software Integration Strategies

Time

4

3

2

1

Test
stage

Verified
component

Component
under test

stub Component
not available

Interface
under test

driver

(a) first stage

Time

4

3

2

1

Test
stage

Verified
component

Component
under test

stub Component
not available

Interface
under test

driver

(b) second stage

Figure 2.5: Top down integration in the first and second stage

of integration tests.

2.2.2 Formalized approaches

Formalized strategies are able to calculate a certain integration order based on a system
model and at least one objective function. Many work has been done on this field in
the context of object oriented software, often referred as inter-class integration test order
(ICITO) or class integration test order (CITO) [42]. Approaches presented in literature
differ in their objective function and if either graph-based algorithms or heuristic algorithm
are used to solve it.

Almost all formal approaches presented in literature have the objective to minimize the
number of stubs needed for the integartion. Since it is not always possible to construct a
stub that is simpler than the component which should be replaced, stubs become error-
prone and require not neglectable testing effort [44, 13]. Also automated stub generation
is only possible for very simple stubs, and that kind of stubs consume not much effort
anyway. Due to this, minimizing stubs could improve the development process.

Comprehensive work in this field has been proposed by Kung et al. in [42]. Their
solution is based on a dependency graph, which is a directed graph G(V,E) where V is a

9

2. State of the Art Software Integration Strategies

set of nodes representing the classes and E is a set of edges representing the dependencies
between this classes. Kung et al. proposed that, if this graph G has no cycles, a topolog-
ical sorting algorithm could be used to derive an integration order in which no stubs are
needed. If cycles appear, they are removed by identifying strongly connected components
(SCCs) and temporarily removing edges between related classes. Those edges are identi-
fied by an association relation between the related classes, since this relation represents the
weakest coupling between the two related classes of three kinds: inheritance, aggregation
and association [65, 42]. If more than one association is a possible edge to remove a cycle,
a random selection is performed. For each removed edge a stub is needed.

In [70], Tai and Daniels stated that finding a minimum set of edges in a cyclic digraph
for deletion in order to produce an acyclic digraph is an NP-complete problem and, fur-
thermore, deleting a minimum number of association edges for breaking all cycles does not
necessarily imply finding a test order that requires a minimum number of stubs. In their
approach, a major and a minor-level number is assigned to each class. Since the major-
level number only takes inheritance and aggregation dependencies into account, there is
no cycle and a topological sorting algorithm can be applied [13].The minor-level numbers
are assigned in a second step based on association dependencies. In this step, cycles may
appear. In order to identify the class that should be stubbed, a weight is assigned to each
edge in a SSC. This weight is defined as the sum of incoming dependencies of the origin
node and the number of outgoing dependencies of the target node. Tai and Daniels pro-
posed to remove edges with higher values to break cycles, since they assumed that edges
with higher value will break more cycles. However, as Briand et al. showed in [13], this
must be not always true.

In [45], Vu Le Hanh et al. present a strategy called Triskell. The classes which partici-
pate in as many cycles as possible are stubbed first. If classes belong to the same number
of cycles, the one which its incoming association edges belong to more cycles than the
other is stubbed (cf.Kung). The next criterion, in case of equality, the class with the lower
incoming degree in the cycle is stubbed, followed by an arbitrary order.

The approach of Le Traon et al. [46] uses the Tarjan algorithm [71] to identify compo-
nents which belong to a cycle (SSCs). To identify the dependencies to remove, a weight for
every node within a SSC is computed and the incoming edges of the node with the max-
imum weight are removed. The weight is defined as the sum of the number of incoming
and outgoing front edges, which are edges going from a node to an ancestor. As Briand
et al. [13] stated, this method is not deterministic in two ways. First, the weight depends

10

2. State of the Art Software Integration Strategies

on the starting edge of the search algorithm, second, there is no specification what class
should be stubbed if there are more than one with the same weight.

Briand et al. [13] have improved Le Traons work by taking the kind of relationship
between classes into account. They calculate the weight of each association dependency
using a modified version of Tai and Daniels’ definition, and then break the association
dependency with the highest weight. In [73] Wang et al. pointed out that in contrast to
Traon’s approach Briand et al. ’s approach does not break inheritance and aggregation
edges and the weight is calculated more precisely as in Tai and Daniels solution.

In [50] Malloy et al. present a strategy that is driven by a parametrized cost model.
First, SCCs are identified and then a weight for each edge in a SCC is calculated. In the
third step, edges with the smallest weights are removed from the SSC. If no cycles are
left, a topological sort is applied to derive the integration order. In order to determine
the weights, edges are classified into six groups, association, composition, dependency,
inheritance, owned element and polymorphic. Each group has a fix weight, based on their
estimation of the cost of stub construction for untested classes. Inheritance edges eg. are
assigned with a high weight, which makes it unlikely that an inheritance edge will be chosen
to break cycle whereas association edges are assigned with a small weight.

All solutions presented so far have the objective to minimize the global number of stubs.
Briand and Abdurazik ([13],[1]) stated that the effort for testing is hardly appreciable by
this number only. They proposed to take the stub complexity into account, since for a
specific stub it may be sufficient to return a simple fixed or random value but it may also
be possible to return more specific values which require some algorithmic computations.

One of the first researchers that addresses this issue explicitly was Briand et al. in [11].
They used a genetic algorithm and coupling metric to try to break cycles by removing
edges that will reduce the complexity of stub construction. A genetic algorithm (GA) is
an optimization technique that has the ability to search for a global optimum and avoid
getting stuck in a local optimum. The complexities of stubs are computed on the level of
coupling they involve. Briand et al. as well as others stated that breaking compositions
and inheritance relationships would likely lead to complex stubs, due to this they are
considered as unbreakable. For remaining dependencies, coupling measure is done in two
ways: The number of attributes A locally declare in the target class and the number of
methods M locally declare in the target class. Based on this coupling measure, a cost
function is defined and a GA is used to find a global minimum.

This approach is extended by Abdurazik and Offutt in [1]. Their solution uses a more

11

2. State of the Art Software Integration Strategies

detailed coupling measurement. By using UML diagrams, nine different types of coupling
are identified: Association Coupling, Aggregation Coupling, Composition Coupling, Usage
Dependency Call Coupling, Global Coupling, Inheritance Coupling, Interface Realization
Coupling, External Coupling and Exception Coupling. For each coupling type, coupling
measures are defined to measure the dependencies between two classes in terms of four
attributes: (i) the number a of distinct variables used, (ii) the number of distinct methods
called (including constructors), (iii) the number of parameters sent, and (iv) the number
of return value types. This four measures are aggregated to one which is called test stub
complexity. The authors distinguish between two kinds of stub complexity: specific test
stub complexity and total test stub complexity. The reason for this is that certain methods
or variables of a server class can be used by a number of clients in the same way. In this
case, creating one stub for the server class can satisfy the needs of several clients. The node
weight represents the total stub complexity of a class, and the edge weight represents the
specific stub complexity of a server class to the client class that is connected by the edge.
This coupling measure is added to the cost function defined by Briand et al. in [11] and
a heuristic algorithm is presented to determine the nodes and edges with minimum total
weight to remove so that there are no cycles and a topological sort could be applied. In
contrast to Briand, Abdurazik and Offutt allow inheritance and composition relationships
to be removed, but assign big constant weights as their stub complexity.

An improvement of this approach is done by Wang et al. in [73]. They stated that their
solution reduces the complexity by 15.5% and increases the speed by 5.8 times in contrast
to Abduraziks and Briands approach. To achieve this for each dependency relationship,
its inter-class coupling information (ICCI) includes two aspects: (1) the number of distinct
accessed attributes; (2) the number of distinct called methods (including constructors) [11].
This leads to a more conservative coupling measurement. A random interative algorithm
is presented to minimize the stub complexity.

Additionally to the minimizing stubs objective, Borner et al. stated in [9] that the
testability of a system could be improved when designated dependencies are selected and
integrated a priori. More detailed, Borner proposed that several error-prone dependen-
cies are identified by analyzing former versions of the software. These manually selected
dependencies should be integrated in an early stage of the integration process in order
to extend the time for testing. Therefore, components are divided into two groups. All
components with dependencies marked as error-prone belong to the first group, component
without such dependencies to the second one. The groups are disjoint, if components can

12

2. State of the Art Software Integration Strategies

be assigned to both groups, they should be assigned to the first group. The integration
process starts with the first group. In order to derive an optimal integration order, the
cost function provided by Briand in [11] is adopted and a simulated annealing algorithm
is used to find a global optimum.

Another approach using a heuristic algorithm is presented by Cabral et al. in [18].
The authors formalized the class integration problem as a multi-objective optimization
problem. The optimization functions are based on the same coupling measures used in
the works of Briand et al. in [12] and [11], the attribute complexity and the method
complexity. Also, following Briand et al. , inheritance and composition dependencies
cannot be broken. Based on these measures and constraints, the problem is presented as a
search for an integration order that minimizes two objectives, the method and the attribute
complexities. To archive this, a multi-objective ant colony optimization algorithm is used.
The authors stated that their approach presents better results in complex cases compares
with the genetic algorithm used by Briand in [11].

Figure 2.6 sums up the presented approaches for deriving an integration strategy.

2.3 Discussion of presented approaches

The non-formalized approaches presented in section 2.2.1 are still state of the art when it
comes to integration of embedded software. However, these are very informal guidelines
and mainly motivated by testing issues. Furthermore they implicitly imply an acyclic
system. If cycles appear it depends solely on integrators choice which component should
be stubbed. As advantages of the bottom-up integration strategy the early examination of
hardware-software interfaces and the simple test of error handling in case of faulty input
values are mentioned, because they can be easy injected by test drivers. The advantages
of the top-down integration strategy are accordingly the early examination of high level
components and the simple test of error handling in case of faulty return values because
they can be easily created by stubs.

The main drawback of these strategies is testing becomes difficult over multiple stages.
In case of bottom-up it may difficult at higher stages getting low level components to return
values necessary to get complete coverage respectively in case of top-down it may difficult
to exercise low level components sufficiently because with increasing integration level it
becomes more difficult to create proper test situations. In both cases a various number
of stubs and test drivers are needed to get a proper test coverage. An approach which

13

2. State of the Art Software Integration Strategies

Integration
Strategies

Non-
formalized

Approaches

Formalized
Approaches

Big bang

Bottom up

Top down

Outside in
(Sandwich)

Use case
driven

Test case
driven

Architectural Functional

Minimizing
Test effort

Optimizing
Test focus

Risk driven

Schedule
driven

Figure 2.6: Classification of available integration strategies.

14

2. State of the Art Software Integration Strategies

addresses this problem is the Outside-in integration strategy at the cost of an increasing
number of stubs and test drivers needed for integration.

None of this approaches supplies a precise practice to determine an effective integration
order, the selection of the next component to integrate depends heavily on the integrators
experience.

The formalized approaches presented above supply a precise integration order with two
main drawbacks. First they are mainly restricted to object oriented software and, second,
they solely focus on minimizing stubs. The only exception here is the approach presented
by Borner in [9], in his approach specific components or dependencies could be selected to
be integrated a priori. Although the usage of object oriented software is proposed by many
researchers (eg. [3], [69]), procedural languages , eg. the language C, are still used in hard
real-time domains like automotive powertrain. Furthermore the need of test drivers is not
considered in any available approach.

In all approaches presented in this work only a single component is allowed to be inte-
grated at a single integration step. There may be the possibility to avoid stubs completely
and to integrate all components which are part of a cycle in a single integration step. Such
components could be identified eg. by Tarjan’s algorithm and an optimized integration
order in that way would integrate as less as possible components in a single step. However,
this approach is not further considered due to several reasons. First, the number of com-
ponents a cycle comprises is unpredictable. Reactive embedded systems usually contain
several control loops and there might be a high number of components which have to be
integrated in a single step. Furthermore, stubs and test drivers highly facilitate testing
which is further discussed in Section 3.3. And, last but not least, this thesis deals with
multiple objective for software integration therefore stepwise integration is a more feasible
approach.

A survey was conducted by the Laboratory for Safe and Secure Systems (Regensburg
University of Applied Sciences) among automotive tier 1 suppliers. The survey was pub-
lished in [29] and [55]. Software development decision makers of twenty companies have
answered questions about their software development process. The questions were espe-
cially aimed at their integration process and how they define the integration steps for their
software projects. The survey was focused on the order of integration of the components
and which problems appear during the integration process.

Figure 2.7 illustrates which integration strategies are most widely used. The survey
shows that schedule-driven integration makes up the biggest part of the used integration

15

2. State of the Art Software Integration Strategies

strategies. This means that the integration order is given by the project schedule and no
other constraints are considered. Schedule-driven integration is followed up by bottom up
and feature driven integration. Bottom up as well as top down or inside out are mainly
coarse guidelines for the integration. The selection of the next component to integrate
depends heavily on the integrator’s expertise. In this work, such strategies are called non-
formalized. The feature driven integration strategy integrates components according to
their allocation to product features. Individually considered, this is also only a coarse
guideline because there is no prediction on how to integrate components within one fea-
ture. The risk driven strategy, which is used in approximately 30 percent of the projects,
integrates critical components in a early stage of integration. Due to this the time to test
such components is extended. Despite the described disadvantages, Big bang integration
is still used commonly.

Figure 2.8 depicts common integration faults which are roughly divided into three
groups: static component faults, dynamic component faults and methodical faults. Incom-
patible data type of components and semantic interface error belong to the static compo-
nent faults. This is still a problem, despite the growing usage of architecture description
languages like UML or AADL, where interfaces can be defined strictly.

Dynamic component faults like violation of timing constraint or overrun in hardware
resources are also a problem at the integration stage.

The major part of errors are methodical errors. Methodical errors are errors which are
not detected at the integration process but in other stages in the development process.
The survey shows that one of the biggest cause for an error is a faulty component. This
is by definition not an integration problem but rather a problem of the unit test. Also
the faulty/missing documentation should not be handled during the integration process.
Problems with stubs or wrong component version also belong to this group, but they play
a minor part.

16

2. State of the Art Software Integration Strategies

0

1

2

3

4

0

2

4

6

8

10

12

14

16

18

20

Big Bang Bottom-up Top-Down Inside Out Schedule Driven Risk driven Feature driven

u
sa

ge
 r

at
e

n
o

. o
f

p
ar

ti
ci

p
an

ts

Integration Strategies

never 1 2 3 4 always 5 Mean Value

Figure 2.7: Results of the survey, conducted among software developers in the automotive
industry([29],[55]). It shows the usage of common integration techniques.

0

1

2

3

4

0

2

4

6

8

10

12

14

16

18

20

faulty components faulty/missing
documentation

incompatible data‐
types

interface semantic
error

violation of timing
requirements

overrun in
resources

problems with
Driver/Stub

wrong component
version

fa
u
lt
 r
at
e

n
o
.
o
f
p
ar
ti
ci
p
an

ts

Integration Faults

rare 1 2 3 4 often 5 Mean Value

Figure 2.8: Results of the survey, conducted among software developers in the automotive
industry ([29],[55]). It shows common integration faults.

17

2. State of the Art Software Integration Strategies

2.4 Goals of the thesis

As described in the previous section, the embedded domain has to deal with an continuously
growing complexity in their systems and thus systems a build up of individual components.
However, no sophisticated methods are available in the embedded domain to determine an
integration order which goes with a certain software project. The order of component
integration often depends on integrators expertise or is determined by the first come, first
serve principle. More elaborate strategies are tailored to object-oriented software and can
not be directly used.

To address this challenges, this work pursues the following objectives:

• The first objective is to identify parameters the software integration is subjected to
and to define metrics for each parameter in order to evaluate different integration
order strategies.

• The second objective is to develop methods and algorithms for optimizing an inte-
gration order with respect to the defined parameters.

• The third objective is to validate the developed approaches on real life examples.

18

Chapter 3

Parameters of Software Integration

This chapter describes the parameters which affect the integration order. In the following,
two real life systems are introduced and metrics for test effort, test complexity and planning
effort are described and evaluated on these systems. The chapter concludes with a summary
of the presented approaches.

3.1 Reference systems

In order to evaluate the proposed parameters, two reference systems are introduced. These
real-life examples are taken from the automotive industry. The first one represents an
embedded data logger for battery management and consists of 16 components and 23
dependencies. The dependency graph of this system is shown in Figure 3.1.

The second example is an automotive system with 72 components and 172 dependencies
including cruise control, window winder and additional control functions. This system was
extracted from an autosar model. These two real systems were used to evaluate the
proposed approaches.

3.2 Test Effort

The most common used criteria for evaluating an integration order is called test effort and
describes the effort for creating stubs needed during integration testing. There are several
approaches presented in literature to compute the test effort. The most obvious method
was proposed by the authors in [70] and [42], who suggested to simply count the number
of classes that need to be stubbed. Briand and Abdurazik ([13],[1]) stated that the effort

19

3. Parameters of Software Integration

c1

c7 c8c6

c0

c2

c3 c4

c12 c13

c5

c9 c10

c14

c11

c15

Figure 3.1: Dependency graph of the embedded data logger reference system with 16
components and 26 dependencies.

for testing is hardly appreciable by this number only, since this method assumes that all
stubs a equally difficult to create. Therefore they propose to take the stub complexity into
account, which is computed by the the number of attributes and the number of methods
locally declare in the target class. Another method for estimating the test effort was
proposed by Malloy et al. in [50]. The use a parameterized cost model for the estimation
of the cost of stub construction. This model defines six types of edges in an object-oriented
system and adds a constant weight to type of edge which is based on their estimation. This
approach was extended by Abdurazik and Offutt in [1], who defines nine typed of edges
based on explicit and implicit object-oriented class relationships. For each coupling type,
coupling measures are defined to measure the dependencies between classes in terms of
four attributes. However, all this metrics are specially tailored to object-oriented software
and have a limited expressiveness in the context of non-object-oriented software. In this
work, three different approaches for measuring the test effort are proposed. First, simply
the number of dependencies and the number of components to be stubbed in a certain
integration order are used. Referring to LeTraon et al. [46], the terms specific stub for
a stubbed dependency and realistic stub for a stubbed component are used. This most
general metric is used to compare available approaches which are ported to non-object

20

3. Parameters of Software Integration

oriented software. Next, the number of test drivers are taken into account additionally.
As already mentioned, test drivers are also an important part in software integration and
need effort for creation. Furthermore, the stub complexity is considered.

3.2.1 Adaptability of existing approaches to C-written component-
based embedded software

This section describes the adaptability of existing approaches to C-written component-
based embedded software. Note that not every solution is portable to C-written software
since they rely strongly on object-oriented concepts.

3.2.1.1 Approach by Kung et al.

In Kung et al. strategy [42], those edges are identified by an association relation between the
related classes in a strongly connected component (SSC), since this relation represents the
weakest coupling between the two related classes of three kinds: inheritance, aggregation
and association [65]. If more than one association is a possible edge to remove a cycle, a
random selection is performed. Since there are more enhanced strategies for edge selection
than do it randomly, the approach by Kung et al. is not further considered.

3.2.1.2 Approach by Tai & Daniels

In their approach [70], a major and a minor-level number is assigned to each class. Since
the major-level number only takes inheritance and aggregation dependencies into account,
there is no cycle and a topological sorting algorithm could be applied [13]. The minor-
level numbers are assigned in a second step based on association dependencies. In this
step, cycles may appear. In order to identify the class that should be stubbed, a weight is
assigned to each edge in a SSC. This weight is defined as the sum of incoming dependencies
of the origin node and the number of outgoing dependencies of the target node. In the
context of non-object-oriented software, every edge must be seen as an association relation
which is possible to break, since there are no different types of dependencies. Thus only
the minor-level numbers are relevant since major-level numbers are assigned to inheritance
and aggregation dependencies. This leads to only one major-level and Tai and Daniels
strategy could be used in the following way:

• identify strongly connected components (SCC)

21

3. Parameters of Software Integration

• assign a weight(di) to each edge in a SSC

• incrementally remove edges with highest weight until there are no more cycles

Tai and Daniels stated that the number of classes with the same level number is usually
small. However, due to case-studies, this may not be always true in a non-object-oriented
embedded system. Since in this work only one component is integrated at a single step, Tai
and Daniels suggestion to integrate all components which are connected by dependencies
with the same weight in a single step is not useful. Therefore, a random selection between
dependencies with the same weight is performed here.

3.2.1.3 Triskell strategy

The strategy proposed by Vu Le Hanh et al. in in [45] is a two-part strategy. Since resource
allocation is not considered here, only the first part is used. This method does not take
into account the type of relationship between components as a priority. To break a cycle,
the vertex that participates in as many cycles as possible is stubbed, if classes belong to
the same number of cycles the one which its incoming association edges belong to more
cycles than the other is stubbed (cf.Kung). In case of non-object-oriented software, this
criterion must be generalized to incoming edges. The next criterion, in case of equality,
the class with the lower incoming degree in the cycle is stubbed, followed by an arbitrary
order.

• progressively stub vertices, which participate in as many cycles as possible

• when two vertices belong to the same number of cycles, stub the vertex which its
incoming edges belong to more cycles than the other

• in case of equality the next criterion selects the vertex with the lower incoming degree,
followed by an arbitrary selection

3.2.1.4 Approach by Le Traon et al.

The approach of Le Traon et al. [46] uses the Tarjan algorithm [71] to identify components
which belong to a cycle (SSCs). To identify the dependencies to remove, a weight for every
node within a SSC is computed and the incoming edges of the node with the maximum
weight are removed. The weight is defined as the sum of the number of incoming and
outgoing front edges, which are edges going from a node to an ancestor. In the context of
non-object-oriented Le Traon et al. strategy could be used in the following way:

22

3. Parameters of Software Integration

• identify strongly connected components (SCC) by using Tarjans algorithm

• assign a weight(di) to each node in a SSC

• remove incoming edge of the node with the maximum weight

• recursively call the procedure above for every nontrivial SSC (more than one vertex)

Since there is no specification what class should be stubbed if there are more than one
with the same weight, a random selection is performed.

3.2.1.5 Approach by Briand et al.

Briand et al. [13] have improved Le Traons work by taking the kind of relationship between
classes into account. They calculate the weight of each association dependency using a
modified version of Tai and Daniels’ definition, and then break the association dependency
with the highest weight. In [73] Wang et al. pointed out that in contrast to Traon’s
approach Briand et al. ’s approach does not break inheritance and aggregation edges and
the weight is calculated more precisely as in Tai and Daniels solution. Since there are
no different types of dependencies in non-object-oriented software, Briand et al. approach
differs from Tai and Daniels in this case of application only in the definition of the weight-
function. Therefore, it could be applied in a similar way.

• identify strongly connected components (SCC) by using Tarjan algorithm

• assign a weight(di) to each edge in a nontrivial SSC

• remove the edge with the maximum weight

• recursively call the procedure above for every nontrivial SSC (more than one vertex)

3.2.1.6 Approach by Malloy et al.

In the strategy presented by Malloy et al. in [50], edges are classified into six groups,
association, composition, dependency, inheritance, owned element and polymorphic. Since
this classification makes only sense in an object-oriented software, this strategy was not
ported.

23

3. Parameters of Software Integration

3.2.1.7 Heuristic Approaches

Since minimizing stubs at software integration is a NP-complete problem [70], heuristic
approaches have been studied. One of the first researchers using such algorithms was Briand
et al. in [11]. They used a genetic algorithm (GA) and coupling metric to try to break cycles
by removing edges that will reduce the complexity of stub construction. After cycles are
broken the top-sort algorithm is applied to derive the test order. The complexities of stubs
are measured in two ways: The number of attributes locally declare in the target class and
the number of methods locally declare in the target class. Based on this coupling measure,
a cost function is defined and a GA is used to find a global minimum. All available heuristic
solutions (eg. [1],[11],[9]) use this weigh function with some individual extensions. Since
this weight-function is specially tailored to object-oriented software, solutions based on this
function could not be applied to non-object-oriented software without major modifications.

3.2.1.8 Results

The ported approaches described in the previous section were applied to the two reference
system presented in Section 3.1. The needed number of realistic stubs (stubbed compo-
nents) and specific stubs (stubbed dependencies) in each case are presented in the Tables
3.1 and 3.2. The best result in each case is bold-faced.

Briand LeTraon Tai & Daniels Triskell

realistic stubs 4 6 6 3
specific stubs 4 7 7 5

Table 3.1: Number of realistic and specific stubs needed for the integration of the data
logger system with 16 components and 26 dependencies (Figure 3.1).

Briand LeTraon Tai & Daniels Triskell

realistic stubs 17 25 32 23
specific stubs 26 39 77 39

Table 3.2: Number of realistic and specific stubs needed for the integration of the autosar
system with 72 components and 177 dependencies.

For a better comparability in the graphical representation, the results are normalized
with respect to the size of the system (Figure 3.2(a) and 3.2(b)). In detail, the normaliza-
tion is done by dividing the actual number of stubs by the maximum possible number of

24

3. Parameters of Software Integration

stubs. The maximum possible number of stubs is given by the number of components in
the system for realistic stubs and the number of dependencies for specific stubs respectively.

 0

 0.2

 0.4

 0.6

 0.8

 1

Briand LeTraon Tai & Daniels Triskell

N
or

m
al

iz
ed

 n
um

be
r

of
 s

tu
bs

Normalized number of realistic stubs
Normalized number of specific stubs

(a) Data logger

 0

 0.2

 0.4

 0.6

 0.8

 1

Briand LeTraon Tai & Daniels Triskell

N
or

m
al

iz
ed

 n
um

be
r

of
 s

tu
bs

Normalized number of realistic stubs
Normalized number of specific stubs

(b) autosar system

Figure 3.2: Normalized number of stubs needed for integration

The results indicate that the approach presented from Briand et al. and the Triskell
strategy presented by Vu Le Hanh et al. obtain favorable results in terms of non-object
oriented software. Since the Triskell strategy temporarily removes components in order to
remove cycles whereas Briands strategy removes dependencies, Triskell may lead to a lower
number of realistic stubs whereas Briands approach may result in a lower number of specific
stubs. In case of the approaches presented by Tai&Daniels and Le Traon, a significantly
number of classes, and dependencies respectively, with the same weight appear. Since a
random selection is performed in this case, less good result are obtained by this approaches.

3.2.2 Considering test drivers

The number of test driver which are needed for integration testing is unattended in all
available approaches. However, since test drivers are also involved during testing embedded
software, they must be also considered. Therefore, the test effort ET E is defined as the
number of real stubs NST plus the number of test drivers NT D which are needed for
integration. For a better comparability of systems with different size, this number is
normalized. To achieve this, the number of stubs plus the number of test drivers is divided
by twice the number of components C since in the worst case each components must be

25

3. Parameters of Software Integration

replaced by a stub and a test driver. Equation 3.1 depicts this relationship.

ET E = NST +NT D

2C (3.1)

3.2.3 Considering stub complexity

Briand and Abdurazik ([13],[1]) stated that the effort for testing is hardly appreciable by the
number of stubs only. They proposed to take the stub complexity into account, since for a
stub it may be sufficient to return a simple fixed or random value but it may also be possible
to return more specific values which require some algorithmic computations (c.f. Section
2.2.2). However, to take the number of variables locally declared in the target component,
as proposed by Briand et al. in [11] for object oriented software, is not reasonable for
embedded systems since many variables here are globally defined. Also to take the kind of
dependency as measurement, as proposed by Abdurazik and Offutt in [1], is only applicable
in object-oriented software. An approach for estimating the stub complexity in non-object-
oriented software is the usage of requirements based values, as eg. function points. Function
points were defined by Albrecht in [2] and are a reliable and proven solution to estimate
the size of a component. Another approach, which is used in this work, is to use the
number of interfaces of a stub in order to determine its complexity. Note that the number
of interfaces of a component must not be equal to the number of its dependencies, because
multiple interfaces may be served from another individual component which would result
in a single dependency. Since a double number of interfaces will produce more than the
double complexity, because interactions between these interfaces must be also taken into
account, the following polynomial is used to estimate the stub complexity.

The complexity vi for a stub i is calculated as follows:

vi = αn+ βn2 (3.2)

where n represents the number of interfaces of a stub i. The polynomial factors α and
β are application specific and have to be determined according the intended application.

26

3. Parameters of Software Integration

The overall stub complexity is defined as the sum of the complexities of all stubs.

ESC =
∑

vi (3.3)

3.3 Integration test complexity (ITC)

Another important criteria for an integration order is testing. Integration testing is one of
the time-consuming parts of software development, it requires up to 40% of total system
development cost and effort [59]. In [74], Watson stated that a sophisticated integration
strategy highly facilitates testing and reduces effort, therefore integration testing is strongly
connected to the used integration strategy, which determines the order in which components
are integrated. In fact, state-of-art integration strategies are mainly motivated by testing
issues. As already mentioned, advantages of the bottom-up integration strategy are the
early examination of hardware-software interfaces and the simple test of error handling
in case of faulty input values, because they can be easily injected by test drivers. The
advantages of the top-down integration strategy are accordingly the early examination of
high level components and the simple test of error handling in case of faulty return values
because they can be easily created by stubs. However, these approaches are very informal
guidelines relying strongly on integrators expertise. The main drawback of both strategies
is that testing becomes difficult over multiple stages. In case of bottom-up it may difficult
at higher stages getting low level components to return values necessary to get complete
coverage. Respectively, in case of top-down it may difficult to exercise low level components
sufficiently because with increasing integration level it becomes more difficult to create
proper test situations [5]. In both cases a various number of additional stubs and test
drivers are needed to obtain a proper test coverage. The formalized approaches, which are
mainly aimed to minimize the test effort (described in Section 3.2), do not consider testing
over several stages. They do not even take test drivers into account, which are needed to
stimulate the system and increase the test effort in general.

In this section, the integration test complexity of a system related to its integration
order is analyzed. Therefore general issues of integration testing are presented and a novel
metric for measuring the integration test complexity is presented.

27

3. Parameters of Software Integration

3.3.1 General issues of integration testing

In general, the integration test focuses on testing the interaction of components assuming
that the details within each module are accurate (verified by module test). Figure 3.3
depicts integration testing in the V development process for component based embedded
systems.

System
Requirements

System Design Integration
Testing

System
Testing

Select
Components

Adapt
Components

Module
Testing

Figure 3.3: V development process for component based embedded systems [23].

In [27], the authors state that an interface can be fully describe by the following char-
acteristic [66]:

• Interface signature (name, data type, return type)

• Interface direction

• Synchronous/asynchronous interface

• Physical range

• Error return values

• Availability of diagnosis mechanism

• Pre- and postconditions

• Invariants

• Required refresh cycle of parameters

• Required response time

28

3. Parameters of Software Integration

• Reentrant functionality

• Synchronization structure

• Dynamic behavior

• Required hardware

Based on the results from Wu et al. [75] and Jung et al. [35], integration testing may
contain the following checks:

• Check if the correct methods/functions are called in the the designated components.

• Check if type inconsistencies (eg. 32-bit integer or 16-bit integer) exist.

• Check if numerical inconsistencies (eg. prefix ”Mega” means 1,000,000 or 1,048,576)
exist.

• Check if physical inconsistencies (eg. metric or imperial units) exist.

• Check if global constraints (eg. timing constraints, hardware constraints) are violated.

3.3.2 Modeling integration test complexity

Integration test complexity can be interpreted as the relative ease and expensive of reveal-
ing software integration faults [7] and generally based on the increasing test complexity
with increasing integration level. In order to introduce the proposed metric for integration
test complexity, a small real life system based on the autosar Function Inhibition Man-
ager (FIM) is used. In Figure 3.4, the dependency graph of four involved components, the
ECU State Manager (EcuM), the Diagnostic Event Manager (Dem), the Function Inhi-
bition Manager (Fim) and the the Diagnostic Communication Manager (Dcm), is shown.
The sequence diagram in Figure 3.5 depicts the initialization of the Function Inhibition
Manager.

3.3.2.1 Test complexity of a dependency

Integration testing actually means to test the dependencies between the components.
Therefore, integration test complexity depends on the complexity of a certain dependency.

29

3. Parameters of Software Integration

Ecu
M

Dem Fim

Dcm

Figure 3.4: Dependency graph of four involved components, the ECU State Manager
(EcuM), the Diagnostic Event Manager (Dem), the Function Inhibition Manager (Fim)
and the the Diagnostic Communication Manager (Dcm)

<<module>>
EcuM

<<module>>
Dem

<<module>>
Fim

Dem_Init()

Dem_Init()

FiM_Init(const FiM_ConfigType*)

Dem_GetEventStatus(Dem_EventIdType,
Dem_EventStatusExtendedType**)

Dem_GetEventStatus()

Fim_Init()

<<module>>
Dcm

Dcm_Init()

Dcm_Init()

Figure 3.5: Sequence diagram of the initialization of the Function Inhibition Manager
(Fim).

30

3. Parameters of Software Integration

Ecu
M

Stub Stub

c d

Ecu
M

Dem Stub

c d

Ecu
M

Dem Fim

c d

b

Stub

a

Ecu
M

Dem Fim

c d

b

Dcm

a

Test
Drv.

Dcm

a

Test
Drv.

Dem Test
Drv.

c

b

Dcm

a

Test
Drv.

Dem Fim

c d

b

Dcm

a

Ecu
M

Dem Fim

c d

b

Dcm

a

Stub

a

Top-down

Bottom-up

Figure 3.6: Top-down and bottom-up integration of the Function Inhibition Manager.
Components are added stepwise, the new one in each step is gray shaded. The interfaces
under test (IUT) at each step are shown with broken lines.

31

3. Parameters of Software Integration

For illustration, two possible integration orders of the system presented in Figure 3.4 are
discussed.

In Figure 3.6, bottom-up and top-down integration of the Function Inhibition Manager
is shown. Note that top-down integration needs no test drivers, whereas bottom-up integra-
tion goes without stubs. In the following, the test of the interaction between the Diagnostic
Event Manager (Dem) and the Function Inhibition Manager (Fim) will be examined closer.
This dependency is marked with (b) in Figure 3.6.

<<module>>
EcuM

<<module>>
Dem

<<module>>
Fim

Dem_Init()

Dem_Init()

FiM_Init(const FiM_ConfigType*)

Dem_GetEventStatus(Dem_EventIdType,
Dem_EventStatusExtendedType**)

Dem_GetEventStatus()

Fim_Init()

Stub

Dcm_Init()

Dcm_Init()

Figure 3.7: Test of the gray shaded dependency in case of top-down integration. Test data
(represented by the dotted line) test data must be passed through the EcuM and the Dem.

Figure 3.7 and 3.8 depict the test of this dependency in bottom-up and top-down
integration respectively. The dotted line in each figure represents the test data path. In
case of top-down integration (Figure 3.7), test data must be passed through the EcuM
and the Dem. This makes testing more complex, since eg. the stimulation of the Fim with
wrong data in order to test its error handler is hardly possible since a possibly existing error
handler in the EcuM avoid this. In case of bottom-up integration (Figure 3.8), testing this

32

3. Parameters of Software Integration

Test
Driver

<<module>>
Dem

<<module>>
Fim

FiM_Init(const FiM_ConfigType*)

Dem_GetEventStatus(Dem_EventIdType,
Dem_EventStatusExtendedType**)

Dem_GetEventStatus()

Fim_Init()

Figure 3.8: Test of the gray shaded dependency in case of bottom-up integration.Test data
(dotted line) can be directly applied to the interface under test.

dependency becomes more easy since test data can be easily injected by the test driver and
the results can be observed. Therefore, roughly speaking, the less test drivers and stubs
are involved when testing a certain dependency, the more complex testing becomes. In the
following, a formal definition of this relationship is given.

The system is described as a directed graph G(V,E) where V is a set of nodes rep-
resenting the components and E is a set of edges representing the dependencies between
components. The number of components which are potentially involved during the test of
an edge E = {vx, vy} can be calculated by the number of edges incident to vx, denoted as
dG(vx)) plus the number of edges incident to vy, denoted as dG(vy). As already mentioned,
testing can be improved if not all components incident with vx or vy are fully implemented
(denoted as real components) but rather stubs or test drivers. Therefore, the test complex-
ity of E = {vx, vy} is defined as the quotient of real components incident to vx and vy and
the number of all components incident to vx and vy. Note that at least two components
must be real, the start node and the end node of the edge under test. Equation 3.4 depicts

33

3. Parameters of Software Integration

this relationship.

c(x,y) = dG(vx)(real) + dG(vy)(real)− 2
dG(vx) + dG(vy)− 2 (3.4)

The scalar cx,y describes the test complexity of the dependency between the components
Cx and Cy. Note that the test complexity of a dependency without any stubs or test drivers
(worst case) is 1, the best case is 0.

Example: In order to exemplify the integration test complexity of a dependency, the
complexity of the dependency (b) of the Function Inhibition Manager (Figure 3.6) for
top-down and bottom-up integration is calculated.

• Top-down: In case of top-down integration, 3 components are incident with the
Dem, 2 of them are fully implemented (real), one is a stub. Furthermore, 2 compo-
nents are incident with Fim, both are real. Therefore, the test complexity can be
calculated as follows:

cb = 2 + 2− 2
3 + 2− 2 = 0.66

• Bottom-up: In case of bottom-up integration, also 3 components are incident with
the Dem and 2 of them are fully implemented (real) and one is a test driver. How-
ever, 2 components are incident with Fim, but only one is real. Therefore, the test
complexity can be calculated as follows:

cb = 2 + 1− 2
3 + 2− 2 = 0.33

As for the result, the complexity of testing this dependency is less complex in case of
bottom-up integration compared with top-down. Note that the test effort is equal in both
cases.

3.3.2.2 Test complexity of the complete system

Since integration testing in general means testing of more than one dependency, the inte-
gration test complexity ET C is introduced. Integration test complexity describes the test
complexity of a complete system and is defined as the sum of all individual dependency test

34

3. Parameters of Software Integration

complexities divided by the number of dependencies in the system. Equation 3.5 depicts
this relationship.

ET C =
∑
cx,y

|E|
(3.5)

Example: In order to exemplify the test complexity of a complete system, the integration
test complexity of the Function Inhibition Manager (Figure 3.6) for top-down and bottom-
up integration is calculated.

• Top-down:

ET C = ca + cb + cc + cd

4 = 1 + 0.66 + 0 + 1
4 = 0.665

• Bottom-up:

ET C = ca + cb + cc + cd

4 = 0 + 0.33 + 1 + 1
4 = 0.583

As a result, bottom-up integration provides less test complexity compared with top-
down integration with equal test effort.

3.3.3 Test complexity versus Test effort

Based on the considerations above, integration testing has three key questions:

1. How many stubs are needed during integration testing?

2. How many test drivers are needed during integration testing?

3. How complex integration testing becomes?

Question 1 and 2 are questions of test effort. Each stub and each test driver must be
constructed and increases the effort for testing. On the other hand, each additional stub
or test driver reduces the test complexity of the system. Therefore, test complexity and
test effort are contrary goals. In order to illustrate this relation ship, a sample of 4× 106

possible integration orders are taken from the two reference systems presented in Section
3.1. For each integration order, The test effort ET E (including test drivers, as defined in
Section 3.2.2) and the integration test complexity ET C was calculated. Figure 3.9 depicts
the test effort ET E against the integration test complexity ET C for both systems.

35

3. Parameters of Software Integration

(a) Data logger (b) autosar system

Figure 3.9: Test effort against test complexity of 4× 106 possible integration orders.

The results verify the assumption that improving the test complexity and minimizing
the test effort are contrary goals. On the other hand, in case of the data logger system, the
test complexity differs over 30% at minimal test effort. This means that the test complexity
of this system can be reduced up to 30% without additional effort for stubs and test drivers
if a more ellaborate integartion strategy is choosen. In case of the autosar system only
3% are possible, on the other hand, the test complexity of this system can be reduced
significantely with only a small increase of the test effort.

3.4 Integration schedule

Often the project schedule is the crucial factor in the software integration strategy. There
are several reasons why a component shall be integrated at a certain point in time. For
example, a component is simply not available till then or it should be integrated as early as
possible in order to extend time for testing. In addition, components may have deadlines
till they shall be integrated because some individual functionality must be available then.
Determining an integration order manually is hardly possible in large scale embedded
systems since timing constraints are often conflicting and compromises must be found.
The following section provides an overview of schedule requirements and presents a metric
to evaluate an integration order against these requirements.

36

3. Parameters of Software Integration

3.4.1 Component/Resource release time and deadline

In automotive industries, the software development process is often based on the iterative
V-Model process. In this process, a software product is partitioned in several releases, which
are delivered at specific points in time during the product development. In every release
a specific set of features is implemented. The components, which are associated to each
product feature, are integrated in every iteration to form the entire release of the software
product. This process, illustrated in Figure 3.10, leads to several individual schedules
which must be met throughout the software development process. Since every release is
associated to a specific date, an individual deadline for each component can be derived
from the date of the release this specific component belongs to. Obviously, if a component
belongs to more than a single feature, the deadline is determined by the earlier release.
Furthermore, components are not arbitrary available. Since modern complex automotive
software systems cover many physical domains, eg. combustion process, communication
or fluid mechanics, the developers of specific components are not interchangeable as a
general rule. This restricts the number of developers which could be assigned to a specific
component and the development of components could not be parallelized at will. This leads
to the following constraints: First, each components has a date when it became available
(release time). If a specific component should be integrated before this date, additional
effort must be spend eg. to speedup component development or creating a stub. Second,
each component has a deadline when it must be integrated. Violating the deadline could
lead to serious problems eg. reduced functionality or even contract penalties.

Referring to software integration, also the availability of resources is strongly related to
the availability of components. Since integration includes testing, human as well as techni-
cal resources must be available when a certain component should be integrated. As already
mentioned, modern complex software systems cover many physical domains. Therefore,
the integration and integration testing of a certain component may only be done by a
specialist corresponding to the physical domain on reasonable terms. Those specialists are
not arbitrarily available, therefore the availability of certain developers must be considered
during integration planning. Additionally, often physical test benches are involved during
integration testing, eg. engine test benches or hardware-in-the-loop systems. Since this
test equipment may be used be more than one development department, the usage of such
technical resources must be coordinated.

37

3. Parameters of Software Integration

Abstraction

Layer 1

Abstraction

Layer 2

Abstraction

Layer N

R

R

R

R

Release NRelease 1 Release 2

In
t
e
g
r
a
t
io
n

In
t
e
g
r
a
t
io
n

In
t
e
g
r
a
t
io
n

R

R

R

R

R

R

R

R

Figure 3.10: Iterative V-Model Process

3.4.2 Risk, Criticality

A special case in integration scheduling occurs if certain components have a high potential
to fail. As Borner showed in [9], the integration process could be improved if critical
components are integrated in an early state of the process since an early integration extends
the time for testing. Critical components are eg. components which tend to be error-prone
or are located in vital positions in the software architecture. If such a vital component fail,
big parts of the entire software system are affected. Developers of software components are
facing several risks that the component will not fulfill its desired function, eg. timing risks,
system functionality risks or performance risks [64]. Various approaches are available how
to gather information about how stable a software component is. A very expressive metric is
the reuse factor. If a component is already used in a number of projects, there is a relatively
modest risk to fail in a new project. Furthermore, there are several statistical methods
available to identify error-prone components, eg. [4], [62], [57]. Also classic software metrics
as eg. Cyclomatic Complexity [52] or the Halstead-Metric [31] can be used to determine
the risk of a certain component. Moreover, in [56], the authors define several metrics to
calculate the criticality of software components, which can be used to determine the risk
of a certain component.

In order to extend time for testing and fixing problems an early deadline can be assigned
to error-prone components. Thus, such components are scheduled at the beginning of the
integration process.

38

3. Parameters of Software Integration

3.4.3 Modeling planning effort for a software integration order

An obvious solution to automatically derive an integration schedule is the usage of a
scheduling algorithm. For example, the problem of deriving an integration schedule can be
formulated as a resource-constrained project scheduling problem (RCPSP) [10]. At this,
software integration consists of n+1 activities (integration steps) where each activity has to
be processed in order to complete the project. Dependency constraints between components
may be handled as precedence constraints (force integration of a component k not to be
started before all necessary components k depends on are integrated) and performing the
activities requires resources with limited availability (test benches, integrators, etc).
However, several problems arise when using such an approach. First, a scheduling problem
is represented by an acyclic graph, a software system is acyclic only in the rarest of cases.
Although finding a minimum number of edges to delete to get an acyclic graph is a NP-
hard problem, there are solutions for this problem at least for object-oriented software ([70],
[13]). Also integrating all components of a cycle in a single step may be possible. However,
an integration schedule may not be feasible. They may be conflicting parts during the
integration, but in contrast to eg. assembling a machine, the integration order could be
changed in certain cases with additional effort (eg. create more stubs, spend overtime, etc).
This characteristic can be hardly modeled in a scheduling problem. Due to this, a novel
approach for modeling the schedule effort for software integration is presented.

3.4.3.1 Scheduling parameters

Based on the concepts of job scheduling we use the following time notation. Time is
relative and expressed in equidistant discrete time steps where a single point in a time
scale is defined as:

t : t ∈ T, t > 0 (3.6)

The physical representation of this abstract time steps can be fitted to the development
process requirements, eg. a single time step can represent an hour or a day. In contrast
to a typical scheduling problem, release times and deadlines are not hard in general. As
already mentioned, the integration of a certain component may be shifted on the time axis
with spending additional effort. On the other hand, some points in time are fixed and
must not be violated. This behavior can be compared with hard- and soft deadlines in
embedded real-time systems. Therefore, the following timing parameters are assigned to

39

3. Parameters of Software Integration

each individual component:

Component/resource release time: rc

Component/resource deadline: dc

Component/resource final release time: Rc

Component/resource final deadline: Dc

Estimated duration of component integration: ic

The time rc denotes the release time of a certain component or resource, dc denotes
the deadline for integration. These points in time could be shifted on the time axis with
spending additional effort. Additionally, components are labeled with a final release time
and a final deadline, Rc and Dc. These points in time can not be shifted and must be
strictly adhered to. The time frame ic denotes the estimated duration for integration and
testing. The following equations must be hold:

Rc ≤ rc (3.7)

Dc ≥ dc (3.8)

Dc −Rc ≥ ic (3.9)

In order to deal with multiple resources, individual time frames could be aggregated
and the intersections of the time frames can be used:

[rc, dc] = [rc1, dc1] ∩ [rc2, dc2] ∩ ... ∩ [rcn, dcn] (3.10)

[Rc, Dc] = [Rc1, Dc1] ∩ [Rc2, Dc2] ∩ ... ∩ [Rcn, Dcn] (3.11)

Note that the equations 3.7, 3.8 and 3.9 must be still valid.

40

3. Parameters of Software Integration

3.4.3.2 Calculating the planning effort for integration

As already mentioned, integration a component between rc and dc produces the smallest
planning effort for integration, defined as 0. The effort rises if integration begins below rc

and/or exceeds dc. The maximum reasonable planning effort occurs if integration reaches
the absolute limits Rc and Dc as is defined by 1. To go beyond the absolute limits Rc and
Dc is not possible by definition, therefore the effort then rises to infinity. The progression
of the effort between rc and Rc and dc and Dc is discussible. For a first approximation a
linear progression was chosen in this work. However, several progressions may be possible,
eg. quadratic progression. A quadratic progression may map the fact that small deviations
from schedule produce negligible effort whereas high deadline violations may be not toler-
able. Since the effort progression can be easily adapted to the entire development process,
in the following only the linear progression is discussed.

In Figure 3.11, the qualitative characteristic of the effort with a linear progression for
component integration and testing against time is plotted.

Figure 3.11: Planning effort for the integration and testing of a component against time.
Integrating a component between rc and dc produces the smallest effort defined as 0. The
planning effort for integration rises linearly if integration begins below rc and/or exceeds
dc. The maximum reasonable effort occurs if integration reaches the absolute limits Rc

and Dc as is defined as 1. To go beyond the absolute limits Rc and Dc is not possible by
definition, therefore the effort then rises to infinity.

For a quantitative description of the planning effort the following approach is used: Let

41

3. Parameters of Software Integration

tb denote the begin of the component integration and te the end with [tb, te] = ic. The sum∑
ic denotes the overall duration of the integration. The planning effort for integrating a

single component against time can be formulated as follows:

Ec(t) =

0, if tb ≥ rc ∧ te ≤ dc

rc−tb+te−dc∑
ic

if Rc ≤ tb < rc ∧ Dc ≥ te > dc

∞ if tb < Rc ∨ te > Dc

(3.12)

The planning effort for the overall integration is determined by the sum of individual
effort divided by the number of components to integrate denoted by C.

Es(t) =
∑
Ec(t)
C

(3.13)

Another important characteristic is the maximum occurring time shift:

Êc(t) = max(Ec(t)) (3.14)

Example: In order to exemplify the proposed metric, an example with 5 components is
illustrated. The following timing parameters are assumed for the individual components
(Table 3.3):

Component rc dc Rc Dc ic

C0 0 4 0 ∞ 1
C1 5 10 0 ∞ 3
C2 2 6 0 ∞ 2
C3 8 10 0 ∞ 1
C4 4 9 0 ∞ 3

Table 3.3: Timing parameters of a example system with 5 components. Note that the
absolute constraints are deactivated by setting Rc to zero and Dc to ∞.

In Figure 3.13, the results of two different integration orders are presents. In top-down
integration (Figure 3.13(a)), the maximum occurring effort is caused by C1 (Êc = 0.4)

42

3. Parameters of Software Integration

Figure 3.12: Graphical representation of the timing parameters presented in Table 3.3

since it should be integrated at t = 1 and becomes available not until t = 5. The effort
for the overall integration Es(t) = 0.14. In bottom-up integration (Figure 3.13(b)), the
maximum occurring effort is caused by C0 (Êc = 0.6) since it should be finished at t = 4
and is actually finished at t = 10. The effort for the overall integration Es(t) = 0.3. Based
on this metric, top-down integration causes less effort in relation to timing constraints.

43

3. Parameters of Software Integration

(a) Top-down integration of the example system.
The maximum occurring effort is caused by C1
(Êc = 0.4) since it should be integrated at t = 1
and becomes available not until t = 5. The effort for
the overall integration (Es(t) = 0.14) is represented
by the dotted line.

(b) Bottom-up integration of the example system.
The maximum occurring effort is caused by C0
(Êc = 0.6) since it should be finished at t = 4 and is
actually finished at t = 10. The effort for the over-
all integration (Es(t) = 0.3) is represented by the
dotted line.

Figure 3.13: Occurring effort for integration caused by schedule in two different integration
orders.

44

Chapter 4

Deriving an integration order in a
component-based embedded system
using simulated annealing

In Chapter 3, important parameters which affect the integration order were analyzed.
While these parameters and the corresponding metrics help system integrators to evaluate
a certain integration order, they will not provide an order which meets the corresponding
requirements.

To overcome this restriction, a novel approach for deriving an integration order is pre-
sented. The approach described in the following section optimizes an integration order
with respect to a single parameter as well as combinations of them. Since deriving an
integration order is a NP-hard problem, a heuristic optimization approach based on simu-
lated annealing (SA) was used. The method of simulated annealing is a suitable solution
for large scale optimization problems. When adapted efficiently to optimization problems,
simulated annealing is often characterized by fast convergence and ease of implementation
for real-world problems. For example, simulated annealing has effectively ”solved” the
famous traveling salesman problem (TSP) of finding the shortest cyclical itinerary for a
traveling salesman who must visit each of N cities in turn [61]. Also minimizing interfer-
ences among connecting wires in complex integrated circuits has been successfully done by
simulated annealing [58].

Simulated annealing is based on the analogy between finding a global minimum of
a cost function for a combinatorial optimization problem and the slow cooling down of
metal to its minimum energy state. Independently developed by Kirkpatrick et al. [37]

45

4. Deriving an integration using simulated annealing

and Černỳ [19], SA is based on an algorithm proposed by Metropolis et al. [53] which
describes the evolution of a solid to thermal equilibrium. In [43], Laarhoven describes
simulated annealing as follow: Initially, the control parameter (the temperature T) is given
a high value and a sequence of configurations of the combinatorial optimization problem is
generated as follows. As in the iterative improvement algorithm a generation mechanism
is defined, so that, given a configuration i, another configuration j can be obtained by
choosing an element from the neighborhood of i randomly. Let C denote the cost of a
configuration and ∆Cij = C(j) − C(i), than the probability for configuration j to be the
next configuration in the sequence is given by 1, if ∆Cij ≤ 0, and by exp(−∆Cij

kBT
), ∆Cij > 0.

Thus, there is a non-zero probability of continuing with a configuration with higher cost
than the current configuration. This process is continued until equilibrium is reached. The
temperature is lowered in steps, with the system being allowed to approach equilibrium
for each step by generating a sequence of configurations in the previously described way.
The algorithm is terminated if no deteriorations are accepted anymore.

In the following sections, the concept of simulated annealing is adapted to the integra-
tion order problem (IOP).

4.1 Simulated annealing

The problem of optimizing an integration order is formulated as a combinatorial minimiza-
tion problem with a discrete configuration space which represents the possible integration
orders. In general, SA could be adapted to an combinatorial optimization problem with
the definition of its four specific parts [61]:

• Configuration

• Rearrangement

• Annealing schedule

• Cost function

4.1.1 Configuration

The configuration represents a solution, including the initial solution, of the problem. The
components are numbered i = 0...C − 1, where C represents the number of components

46

4. Deriving an integration using simulated annealing

of the software system. The configuration spaces denotes all possible permutations of C.
Therefore a configuration is a permutation of the number 0...C−1, interpreted as the order
in which components are integrated. The initial solution is selected randomly.

4.1.2 Rearrangement

Rearrangement describes the mechanism for neighbor generation. An essential requirement
for simulated annealing is that the rearrangement mechanism provides a move from the
initial state to the optimal state in a sufficiently small number of steps. Based on the
configuration definition, a rearrangement function that swaps two arbitrary components
can get from any state (integration order) to any other state in (C − 1) steps. More
efficient sets of moves are strongly connected to specific problems and the corresponding
cost function. In the TSP, for example, it is expected that swapping two consecutive cities
in a tour have a moderate effect on its energy (length); whereas swapping two arbitrary
cities is far more likely to increase its length than to decrease it, even though an consecutive
swap may need more steps to the optimal solution (a consecutive swap needs n(n− 1)/2)
steps in contrast to (n − 1) steps when the cities are selected randomly) [76]. Other
approaches are mentioned eg. in [47].

The cost functions which are used in this work are strongly non-linear and depend not
necessarily on close neighborhood. For example, the schedule of a certain component is
completely independent of its direct neighbor. In order to provide a general solution for
different cost functions, the neighbor generation is done randomly.

4.1.3 Annealing schedule

The cooling schedule describes the temperature distribution. In [28], German and German
introduced a logarithmic cooling scheme. It has been proven that this schedule will lead
the system to the global minimum state with an infinite time to run [30]. Since finite
computing times are much more preferred in practical implementations, simpler schedules
are used. In this work, the most common exponential cooling schedule, which was originally
proposed by Kirkpatrick in [37], was used. This schedule is rather based on empirical rules
than on theoretical studies [43].

In general, four different parameter must be discussed in a cooling schedule.

47

4. Deriving an integration using simulated annealing

Start temperature of the algorithm Tmax :
Kirkpatrick proposes the following empirical rule for determining the initial value of the
temperature: Select a large value for Tmax and perform a number of transitions. If the
acceptance ratio x, defined by the number of accepted transitions divided by the number
of proposed transitions (number of steps at each temperature), is less than a given value
x0 (in [37] and [24] x0 = 0.8), double Tmax. In this work, Tmax was determined in this way.

End temperature of the algorithm Tmin :
The optimization process could be either stopped by limiting the number of of temperature
steps [8] or if no improvement (no new best solution) is found at one temperature [17].
The latter one was used in this work.

Number of steps at each temperature: I
On each step, the temperature must be held constant for an appropriate number of steps
in order to keep the system close to equilibrium. If this number is to small, the algorithm
is likely to converge to a local minimum. Selecting a value which depends polynomially on
the size of the problem has been found to work well in many real-world problems [8].

Attenuation factor: α
The attenuation factor indicates how much the temperature is decreased at each step.
Exponential cooling decreases the temperature in steps according to Tn+1 = αTn where
0 < α < 1. A good value for α is 0.95 which was first proposed by Kirkpatrick et al. in
[37], but also wildly used by others ([60, 8, 16]) and also in this work.

4.1.4 Cost function

The cost function describes the goal of the minimization. In case of the TSP, the cost
function may be simply the resulting length of the journey. In the following sections,
several reasonable cost functions with respect to the integration parameters described in
Section 3 are presented and evaluated on real life examples.

48

4. Deriving an integration using simulated annealing

4.2 Minimizing the test effort

As already mentioned, almost all formal approaches presented in literature have the ob-
jective to minimize the the test effort, which actually means to minimize the number of
stubs needed for the integration (c.f. Section 3.2). Additionally to minimize the number
of stubs, this work deals also with the objective to minimize the stub complexity.

4.2.1 Minimizing the number of stubs

4.2.1.1 Cost function

In order to minimize the absolute number of stubs, the following cost functions are defined.
Equation 4.1 is used to minimize the number of specific stubs, Equation 4.2 for minimizing
the number of real stubs.

Espec(o) =
C∑

i=1
di, (4.1)

where di represents the number of dependencies stubbed in a certain integration step. Since
a certain specific stub may be needed in different integration steps, each individual specific
stub must be counted only once.

Ereal(o) =
C∑

i=1
ci, (4.2)

where ci represents the number of components stubbed in a certain integration step.
Similar to specific stubs, each individual realistic stub must be counted only once.

4.2.1.2 Case study

In order to demonstrate the powerfulness of the presented approach, it was applied to the
two reference systems introduced in Section 3.1 and compared with the two best graph-
based results presented in Section 3.2.1. In Table 4.2 and 4.4 and Figure 4.1(a) and 4.1(b)
respectively, the obtained results are presented. The tables give the absolute number of
stubs which are needed for integration. The simulated annealing approach was applied with
two optimization goals, minimizing realistic stubs marked with SA(r) (Equation 4.2) and

49

4. Deriving an integration using simulated annealing

minimizing specific stubs denoted as SA(s) (Equation 4.1). Since simulated annealing is a
heuristic approach, it may yield different results on different runs. Each SA optimization
was run 10 times with nearly identical results and the best result is listed. In Figure 4.2,
the distribution of the resulting number of specific stubs in case of the autosar system is
presented exemplarily. For a better comparability the results presented in the Figures are
normalized to 1. The normalization is represented by the number of stubs divided by the
maximum possible number of stubs. The maximum number of stubs is given by the number
of components in the system or the number of dependencies respectively. Additionally, the
corresponding annealing schedules used for the optimization are listed (Table 4.1 and 4.3).

Parameter SA(s) SA(r)

Tmax 26.0 11.0
Tmin 0.13 0.09

α 0.08 0.8
Steps at each temperature 6100 6100

Table 4.1: Annealing schedules for the embedded data logger

Briand Triskell SA(s) SA(r)

realistic stubs 4 3 4 2
specific stubs 4 5 4 4

Table 4.2: Number of realistic and specific stubs needed for the integration of the data
logger system with 16 components and 26 dependencies (Figure 3.1).

Parameter SA(s) SA(r)

Tmax 59.0 11.0
Tmin 0.13 0.06

α 0.08 0.8
Steps at each temperature 240 240

Table 4.3: Annealing schedules for the autosar system

50

4. Deriving an integration using simulated annealing

Briand Triskell SA(s) SA(r)

realistic stubs 17 23 16 9
specific stubs 26 39 25 38

Table 4.4: Number of realistic and specific stubs needed for the integration of the autosar
system with 72 components and 177 dependencies.

 0

 0.2

 0.4

 0.6

 0.8

 1

Briand Triskell SA(r) SA(s)

N
or

m
al

iz
ed

 n
um

be
r

of
 s

tu
bs

Normalized number of realistic stubs
Normalized number of specific stubs

(a) Data logger

 0

 0.2

 0.4

 0.6

 0.8

 1

Briand Triskell SA(r) SA(s)

N
or

m
al

iz
ed

 n
um

be
r

of
 s

tu
bs

Normalized number of realistic stubs
Normalized number of specific stubs

(b) autosar system

Figure 4.1: Normalized number of stubs needed for integration

Figure 4.2: Distribution of the resulting number of specific stubs of the autosar system
using simulated annealing.

51

4. Deriving an integration using simulated annealing

4.2.1.3 Summary

The results indicate that the proposed approach provides at least comparable results in
comparison to the graph-based solutions in case of specific stubs. In case of realistic
stubs, which denotes the number of components to be stubbed, the simulated annealing
approach obtains significantly better results on both reference systems. In Figure 4.2, the
distribution of the resulting number of specific stubs of the autosar system when applying
the proposed cost function is presented. The results show that the proposed approach is
a reasonable solution for minimizing the number of stubs in component-based embedded
system and can at least keep up with available solutions.

4.2.2 Minimizing overall stub complexity

4.2.2.1 Cost function

In order to minimize the overall stub complexity, the sum of all individual stub complexities
as defined in Section 3.2.3, Equation 3.3 is used. Therefore, the corresponding cost function
is defied as follows:

Ecompl(o) = ESC (4.3)

4.2.2.2 Case study

In order to evaluate the proposed cost function, random generated complexities were as-
signed to the components in the embedded data logger (Section 3.1). A uniform distribu-
tion of random values between 1 and 20 were calculated and assigned to the components
as shown in Table 4.5.

Component 0 1 2 3 4 5 6 7 8
Stub complexity 3 4 7 16 11 4 1 9 10

Component 9 10 11 12 13 14 15
Stub complexity 11 17 15 4 3 19 19

Table 4.5: Randomly generated stub complexities assigned to the individual components.
The mean value of all complexities m = 10.

52

4. Deriving an integration using simulated annealing

Table 4.6 shows the resulting stub complexity which occurs if components are integrated
with the objective to minimize the number of real stubs (c.f. Equation 4.2). Since the stub
complexity is not taken into account, component 7, which provides a high complexity, has
to be stubbed.

Int. order 10, 0, 15, 8, 2, 4, 1, 12, 5, 11, 3, 13, 9, 6, 14, 7
real Stubs 11, 7

Stub complexity 24
Tmax 11.0
Tmin 0.09

α 0.80
Steps 6100

Table 4.6: Resulting stub complexity which occurs if components are integrated with
the objective to minimize the number of real stubs (c.f. Equation 4.2). Since the stub
complexity is not taken into account, component 7 which provides a high complexity has
to be stubbed.

For the results presented in Table 4.7 the cost function for minimizing the stub com-
plexity was used (Equation 4.3) In this case, the complex component 7 has not to be
stubbed. Although 3 real stubs are needed in this case, the overall complexity is less than
in Table 4.6, since the more simple components 6 and 12 have to be stubbed instead of the
high complex component 7.

Int. order 10, 15, 7, 12, 0, 4, 8, 5, 2, 9, 1, 14, 3, 13, 11, 6
real Stubs 11, 6, 12

Stub complexity 20
Tmax 180.0
Tmin 0.58

α 0.80
Steps 5600

Table 4.7: Resulting stub complexity which occurs if components are integrated with
the objective to minimize the overall stub complexity (c.f. Equation 3.3). The complex
component 7 has not to be stubbed. Although 3 real stubs are needed in this case, the
overall complexity is less than in Table 4.6, since the more simple components 6 and 12
have to be stubbed.

53

4. Deriving an integration using simulated annealing

In some cases an individual component shall not be stubbed for different reasons. This
objective can be achieved by assigning an infinite complexity to the corresponding compo-
nents. In Table 4.8, a very high complexity (v = 100000, infinity is hardly possible for prac-
tical reasons) is assigned to the components 7 and 11. In the obtained integration order, the
corresponding components have not be stubbed. However, the resulting stubs differ widely
in their individual complexity. The maximum difference ∆v = v15−v6 = 0.19−0.01 = 0.18.

Int. order 11, 10, 7, 15, 12, 8, 0, 2, 1, 4, 3, 13, 5, 9, 14, 6
real Stubs 5, 15, 6, 12

Stub complexity 28
Tmax 8000.0
Tmin 0.67

α 0.80
Steps 4400

Table 4.8: In this case, very high complexities (v = 1000) are assigned to the components
7 and 11. The results indicate that component 7 and 11 have not to be stubbed. However,
the resulting stubs differ widely in their individual complexity. The maximum difference
∆v = v15 − v6 = 0.19− 0.01 = 0.18

In order to obtain more uniform individual stub complexities, square addition was
evalued. The corresponding cost function is shown in Equation 4.4.

Ecompl(o) =
∑

v2
i (4.4)

However, as shown in Table 4.9, there is no difference in the results when using square
addition of individual stub complexities instead of a linear addition in this system.

4.2.2.3 Summary

In this section an approach for taking the stub complexity into account was described.
Additionally to the proposed way to derive the individual stub complexities, many other
sources could be used, including information obtained from similar projects, developers
experience or requirement based values. The presented SA approach provides a powerful
and robust solution to derive an integration order with a minimum overall complexity. This

54

4. Deriving an integration using simulated annealing

Int. order 7, 12, 0, 11, 10, 8, 2, 4, 3, 5, 13, 9, 15, 14, 1, 6
real Stubs 12, 6, 5, 15

Stub complexity 394
Tmax 5300000.0
Tmin 2.2

α 0.80
Steps 4900

Table 4.9: In this case, also very high complexities (1000) are assigned to the components
7 and 11. In contrast to Table 4.8, the cost function defined in Equation 4.4 was used for
minimization. The results indicate that there is no difference, the components which have
to be stubbed and therefore the resulting stub complexity are equal to Table 4.8. The
difference in the stub complexity results only by square addition.

solution includes also the possibility to exclude components from stubbing by the use of
very high complexities. This may be a strong advantage against all graph based solutions.

55

4. Deriving an integration using simulated annealing

4.3 Optimizing test effort and integration test com-
plexity

As stated in Section 3.3, reducing the integration test complexity and minimizing the
test effort are contrary goals. In order to optimize both, a multi objective approach is
described in this section. Multi objective optimization deals with more than one objective
function and is defined in [38] as follows. Given an n-dimensional decision variable vector
x = x1, ..., xn in the solution space X, find a vector x∗ that minimizes a given set of k
objective functions z(x∗) = z1(x∗), ..., zk(x∗). As Konak et al. stated in [38], there are
two general approaches for solving a multi-objective optimization problem. The first is
to create a single scalar objective function by usage of eg. utility theory or weighted sum
method or to determine an entire Pareto optimal solution set or a representative subset.
In this work, the weighted sum method is used. Since no objective should be preferred,
equal weights are assigned. In order to make the results more comparable, equal stub
complexities are assumed, therefore only the number of realistic stubs and test drivers is
taken into account. However, the approach could be easily extended and the complexity
of stubs and even the complexity of test driver can be taken into account.

4.3.1 Cost function

In order to compare the obtained results, the following three objective functions were
applied to the embedded data logger system introduced in Section 3.1.

- Optimizing test effort: E(o) = ET E

- Optimizing test complexity: E(o) = ET C

- Optimizing both: E(o) =
√
E2

T E + E2
T C

The first one, optimizing test effort, optimizes the extended test effort as described in
Section 3.2.2. Additionally to the number of stubs, necessary test driver are also taken
into consideration. As already mentioned, equal stub complexity is assumed and only the
number of stubs is taken into account.

The second objective function optimizes the system test complexity as introduced in
Section 3.3.2.2. The third one optimizes both, the test effort and the system testability.

56

4. Deriving an integration using simulated annealing

In order to achieve a preferable uniform optimization of both objectives, the individual
weight are set to one and square addition is used.

4.3.2 Case study

Figure 4.3 illustrates a sample of 4 × 106 integration orders of the embedded data log-
ger. Note that this are only 0.00002% of all possible solutions. The minimum test ef-
fort occurring in this sample is ET E(min) = 0.375, the best occurring test complexity is
ET C(min) = 0.525. In Figure 4.4 the optmization results of minimizing the test effort and
optimizing the test complexity are shown. For each objective function, 1000 optimization
runs were performed and plotted. In case of optimizing the test effort (Figure 4.4(a)), the
optimization yields the same minimum value as the minimum value occuring in Figure 4.3.
In case of optimizing the test complexity, the optimization yields a slightly lower value as
the minimum value occuring in Figure 4.3. In Figure 4.5, the results of the multiobjective
optimization are presented. Following the multi objective approach, the test complexity
can be reduced for 16% with a increase in test effort of 17%, thus the presented multi
objective approach represents a good compromise between additional test effort and re-
ducing the test complexity. Since simulated annealing is a heuristic approach, each run
may yield different results. Figure 4.5 depicts also that the optimization results differ only
in a negligible way.

Figure 4.3: Sample of 4 × 106 integration orders of the embedded data logger. The min-
imum test effort occurring in this sample is ET E(min) = 0.375, the lowest occurring test
complexity is ET C(min) = 0.525.

57

4. Deriving an integration using simulated annealing

(a) Optimizing the extended test effort of the em-
bedded data logger.

(b) Optimizing the system test complexity of the
embedded data logger

Figure 4.4: Optimization results of the embedded data logger. 1000 values were calculated
for each configuration.

(a) Results of the multi objective optimization re-
sults in contrast to a stochastic sample

(b) Results of the different optimization goals. 1000
values were calculated for each configuration.

Figure 4.5: Optimization results of the embedded data logger including the multi objective
results.

4.3.3 Summary

The results indicate that minimizing the integration test complexity not necessarily in-
creases the test effort. The test complexity vary significantly with a constant test effort,
therefore the test complexity could be reduced without additional stubs or test drivers.

58

4. Deriving an integration using simulated annealing

The proposed multi objective approach provides a reasonable and stable way to derive a
compromise between these two contrary goals.

59

4. Deriving an integration using simulated annealing

4.4 Optimizing integration schedule

Determining an integration order which meets the schedule is hardly possible in large scale
embedded systems. Often schedule parameters are conflicting and compromises must be
found. In this section, an cost function for deriving an integration order with a minimum
planning effort is presented. The approach is based on the timing model presented in
Section 3.4.3.

4.4.1 Cost function

Referring to Section 3.4.3 there are two possible cost functions which denote the opti-
mization goal. On the one hand the overall effort for integration Es(t) and on the other
the maximum occurring effort Êc(t). In practice however, several small differences to the
optimal schedule cause usually less problems then a single big one. In order to verify this
assumption, both cost function were evaluated.

E(o) = Êc(t) (4.5)

E(o) = Es(t) (4.6)

4.4.2 Case study

In this section both optimization goals, minimizing the maximum occurring value (Equa-
tion 4.5) and minimizing the mean value Equation (4.6), are applied to three example
systems and the results are presented.

Experiment 1: The system defined in Table 3.3 was optimized. In Figure 4.6, this
system was optimized with the objective to minimize the maximum occurring value Êc(t),
In Figure 4.7 the same system was integrated with the objective to minimize the mean
value Es(t).

The results presented in Table 4.12 indicate that there is no difference between both
objective functions. Both lead to equal integration orders.

60

4. Deriving an integration using simulated annealing

Figure 4.6: Integration sequence of five components optimized by using the proposed simu-
lated annealing approach with the objective to minimize the maximum occurring value
Êc(t) (Equation 4.5) The corresponding parameters are shown in Table 4.10.

Tmax 3500.0
Tmin 11.0

α 0.80
Steps 36000.0

Table 4.10: Annealing parameter used to obtain the results presented in Figure 4.6

Figure 4.7: Integration sequence of five components optimized by using the proposed simu-
lated annealing approach with the objective to minimize the mean value Es(t) (Equation
4.6). The corresponding parameters are shown in Table 4.11.

61

4. Deriving an integration using simulated annealing

Tmax 80000.0
Tmin 110.0

α 0.80
Steps 36000.0

Table 4.11: Annealing parameter used to obtain the results presented in Figure 4.7

top-down min Êc(t) min Es(t)

Êc(t) 0.40 0.1 0.1
Es(t) 0.14 0.04 0.04

Table 4.12: Optimization results of the example system with 5 components defined in Table
3.3.

Experiment 2: The embedded data logger introduced in Section 3.1 was equipped with
timing parameters according to Table 4.13. In Figure 4.8 the corresponding planning
effort for top-down integration is shown. In Figure 4.9, this system was optimized with the
objective to minimize the maximum occurring value Êc(t), In Figure 4.10 the same system
was integrated with the objective to minimize the mean value Es(t).

Figure 4.8: Top-down integration sequence of the embedded data logger introduced in
Section 3.1 with respect to schedule constraints according to Table 4.13 without opti-
mization.

The results presented in Table 4.16 indicate that the maximum occurring value Êc(t)
is equal in both cases. However, the mean value Es(t) is significantly lower when using
Equation 4.6. In both cases the assumed high risk components (C2, C3, C4) are scheduled
to the beginning of the integration process.

62

4. Deriving an integration using simulated annealing

Component rc dc Rc Dc ic

C0 6 42 0 ∞ 4
C1 24 34 0 ∞ 4
C2 0 3 0 ∞ 3
C3 0 4 0 ∞ 4
C4 0 5 0 ∞ 5
C5 2 23 0 ∞ 3
C6 2 18 0 ∞ 5
C7 8 41 0 ∞ 2
C8 31 35 0 ∞ 2
C9 35 38 0 ∞ 1
C10 1 33 0 ∞ 1
C11 0 24 0 ∞ 3
C12 34 40 0 ∞ 1
C13 11 26 0 ∞ 4
C14 3 24 0 ∞ 1
C15 39 42 0 ∞ 1

Table 4.13: Timing parameters for the embedded data logger introduced in Section 3.1.
Note that the absolute constraints are deactivated by setting Rc to zero and Dc to∞. The
bold faced components (C2, C3, C4) are considered as high risk components, therefore
they are label with rc = 0 and the earliest possible deadline dc = ic.

Figure 4.9: Integration sequence of the embedded data logger equipped with the timing
parameters of Table 4.13 and optimized by the simulated annealing approach with the
objective to minimize the maximum occurring value Êc(t) (Equation 4.5) The corre-
sponding parameters are shown in Table 4.14.

63

4. Deriving an integration using simulated annealing

Tmax 710.0
Tmin 3.5

α 0.80
Steps 6300.0

Table 4.14: Annealing parameter used to obtain the results presented in Figure 4.9

Figure 4.10: Integration sequence of an embedded data logger equipped with the timing
parameters of Table 4.13 and optimized by the simulated annealing approach with the ob-
jective to minimize the mean value Es(t) (Equation 4.6). The corresponding parameters
are shown in Table 4.15.

Tmax 410000.0
Tmin 170.0

α 0.80
Steps 6100.0

Table 4.15: Annealing parameter used to obtain the results presented in Figure 4.10

top-down min Êc(t) min Es(t)

Êc(t) 0.455 0.159 0.159
Es(t) 0.178 0.065 0.020

Table 4.16: Schedule optimization results of the embedded data logger equipped with the
timing parameters defined in Table 4.13.

64

4. Deriving an integration using simulated annealing

Experiment 3: The embedded data logger introduced in Section 3.1 was equipped with
alternative timing parameters define in Table 4.17. In Figure 4.11 the corresponding sched-
ule effort for top-down integration is shown. In Figure 4.12, this system was optimized
with the objective to minimize the maximum occurring value Êc(t), In Figure 4.13 the
same system was integrated with the objective to minimize the mean value Es(t).

Component rc dc Rc Dc ic

C0 29 48 0 ∞ 5
C1 16 26 0 ∞ 3
C2 26 32 0 ∞ 5
C3 15 47 0 ∞ 4
C4 25 43 0 ∞ 3
C5 19 30 0 ∞ 1
C6 44 50 0 ∞ 6
C7 0 5 0 ∞ 5
C8 0 3 0 ∞ 3
C9 4 18 0 ∞ 3
C10 13 30 0 ∞ 3
C11 1 5 0 ∞ 1
C12 2 37 0 ∞ 1
C13 8 41 0 ∞ 4
C14 5 55 0 ∞ 5
C15 3 25 0 ∞ 3

Table 4.17: Alternative timing parameters for the embedded data logger introduced in
Section 3.1. Note that the absolute constraints are deactivated by setting Rc to zero and
Dc to ∞. The bold faced components (C7, C8) are considered as high risk components,
therefore they are label with rc = 0 and the earliest possible deadline dc = ic.

The results presented in Table 4.20 indicate that also in this case the maximum occur-
ring value Êc(t) is equal in both cases. Again, the mean value Es(t) is significantly lower
when using Equation 4.6. In both cases the assumed high risk components (C8, C7) are
almost scheduled to the beginning of the integration process.

Discussion: The experiments 1-3 have shown that minimizing the mean value Es(t)
leads to comparable results in the maximum occurring value Êc(t). The mean value itself,

65

4. Deriving an integration using simulated annealing

Figure 4.11: Top-down integration sequence of the embedded data logger introduced in
Section 3.1 with respect to schedule constraints according to Table 4.17 without opti-
mization.

Figure 4.12: Integration sequence of the embedded data logger equipped with the timing
parameters of Table 4.17 and optimized by the simulated annealing approach with the
objective to minimize the maximum occurring value Êc(t) (Equation 4.5) The corre-
sponding parameters are shown in Table 4.18.

Tmax 1100.0
Tmin 3.9

α 0.80
Steps 6400.0

Table 4.18: Annealing parameter used to obtain the results presented in Figure 4.12

Tmax 350000.0
Tmin 220.0

α 0.80
Steps 6500.0

Table 4.19: Annealing parameter used to obtain the results presented in Figure 4.13

66

4. Deriving an integration using simulated annealing

Figure 4.13: Integration sequence of an embedded data logger equipped with the timing
parameters of Table 4.17 and optimized by the simulated annealing approach with the ob-
jective to minimize the mean value Es(t) (Equation 4.6). The corresponding parameters
are shown in Table 4.19.

top-down min Êc(t) min Es(t)

Êc(t) 0.465 0.073 0.073
Es(t) 0.180 0.018 0.005

Table 4.20: Schedule optimization results of the embedded data logger equipped with the
timing parameters defined in Table 4.17.

67

4. Deriving an integration using simulated annealing

however, is significantly lower as shown in experiment 2 and 3. Therefore minimizing the
mean value Es(t) will be the better choice in most of the cases.

Experiment 4: This experiment deals with the proposed absolute deadlines and release
times. Therefore, the timing parameters defined in Table 4.13 are extended with absolute
constraints and presented in Table 4.21 . Since assigning infinity costs if Rc or Dc are
violated is hardly possible, the value 100000 is used as infinity.

Component rc dc Rc Dc ic

C0 6 42 0 42 4
C1 24 34 0 ∞ 4
C2 0 3 0 ∞ 3
C3 0 4 0 ∞ 4
C4 0 5 0 ∞ 5
C5 2 23 0 ∞ 3
C6 2 18 0 ∞ 5
C7 8 41 0 ∞ 2
C8 31 35 0 ∞ 2
C9 35 38 35 ∞ 1
C10 1 33 0 ∞ 1
C11 0 24 0 ∞ 3
C12 34 40 0 ∞ 1
C13 11 26 0 ∞ 4
C14 3 24 0 ∞ 1
C15 39 42 0 ∞ 1

Table 4.21: Timing parameters for the embedded data logger introduced in Section 3.1.
The parameters are equal to Table 4.13, except the absolute deadline added to C1 and the
absolute release time added to C9

In Figure 4.14, the integration sequence of the embedded data logger equipped with ab-
solute timing constraints (Table 4.21) and optimized by the simulated annealing approach
with the objective to minimize the maximum occurring value Êc(t) (Equation 4.5). Figure
4.15 presents the integration sequence with the objective to minimize the mean value Es(t)
(Equation 4.6). In Table 4.24, a comparison of three different integration strategies is given.
The results indicate that all absolute deadlines are met with both objective functions. Also

68

4. Deriving an integration using simulated annealing

Figure 4.14: Integration sequence of the embedded data logger equipped with absolute
timing constraints (Table 4.21) and optimized by the simulated annealing approach with
the objective to minimize the maximum occurring value Êc(t) (Equation 4.5). The
corresponding parameters are shown in Table 4.22.

Tmax 5100000.0
Tmin 3.3

α 0.80
Steps 6400.0

Table 4.22: Annealing parameter used to obtain the results presented in Figure 4.14

Figure 4.15: integration sequence of the embedded data logger equipped with absolute
timing constraints (Table 4.21) and optimized by the simulated annealing approach with
the objective to minimize the mean value Es(t) (Equation 4.6). The corresponding pa-
rameters are shown in Table 4.23.

Tmax 200000000.0
Tmin 200.0

α 0.8
Steps 6300

Table 4.23: Annealing parameter used to obtain the results presented in Figure 4.15

69

4. Deriving an integration using simulated annealing

top-down min Êc(t) min Es(t)

Êc(t) 0.455 0.159 0.159
Es(t) 0.178 0.058 0.021

Table 4.24: Schedule optimization results of the embedded data logger equipped with the
timing parameters defined in Table 4.21.

the assumed high risk components are again scheduled to the beginning of the integration
process. Of course, the effort is increased compared to the integration without absolute
timing constraints (4.20) since the solution space is restricted. This means, however, that
an increasing number of absolute timing constraints may increase the potential effort to
the point of infinity.

4.4.3 Summary

The results presented in this section show that the proposed cost function provides a
method to minimize the planning effort in software integration. It has been shown that
minimizing the mean value yields better results compared with minimizing the maximum
occurring value. The possibility to assign absolute deadlines and release times provides a
method to apply hard constraints which must be met. However, this constraints should be
sparsely used, since unfortunately choices may lead to an unfeasible schedule.

70

4. Deriving an integration using simulated annealing

4.5 Optimizing integration schedule and stub com-
plexity

Another reasonable optimization goal is to minimize the stub complexity (c.f. Section
3.2.3) and to minimize the schedule effort at the same time (Section 4.4). The main
difference to the multi objective optimization of test effort and test complexity presented
in Section 4.3 is that the optimization goals are independent and not contrary. Whereas
test effort and test complexity are contrary goals, meaning reducing one increases the other,
stub complexity and schedule effort are completely independent. In this section, a multi
objective approach with a linear combination and a square addition is evaluated.

4.5.1 Cost function

In order to obtain equal weights for both objective functions, the stub complexity presented
in Section 3.2.3 has to be normalized to 1. In order to achieve this, the sum of the
complexities of the stubbed components is divided by the sum of the complexities of all
components. Equation 4.7 depicts this relationship.

ESC =

S∑
i=0
vi

C∑
i=0
vi

, (4.7)

where vi represents the complexity which will occur of component i shall be stubbed
and S the number of stubs.

In order to optimize both objectives, the schedule cost function (Equation 4.6) and
the normalized stub complexity cost function (Equation 4.7) are added. In the following,
linear addition (Equation 4.8) and square addition (Equation 4.9) are evaluated.

E(o) = Es + ESC (4.8)

E(o) =
√
E2

s + E2
SC

(4.9)

71

4. Deriving an integration using simulated annealing

4.5.2 Case study

In the following, the cost functions were applied to the embedded data logger system. As
for the schedule, the timing parameters defined in Table 4.13 and the parameters defined
in Table 4.17 were used. In both cases, the values presented in Table 4.5 were used as stub
complexities. Both cost functions were applied in each case.

Figure 4.16: A sample with 105 possible integration orders was generated and the corre-
sponding schedule mean value and the stub complexity were calculated. These solutions
are plotted as points. Furthermore, 50 optimization runs with square addition were
performed and the results marked with ’x’. The optimization results with the correspond-
ing single objective function are marked with lines. The horizontal line represents the
minimum stub complexity, the vertical line the minimum planning effort.

Figure 4.16 and Figure 4.17 depict the result when using the timing parameters defined
in Table 4.13. A sample with 105 possible integration orders was generated and the corre-
sponding schedule mean value and the stub complexity were calculated. These solutions are
plotted as points. Furthermore, 50 optimization runs with square addition were performed
and the results marked with ’x’ (Figure 4.16). In Figure 4.17, the same sample was used
and 50 optimization runs with linear addition were performed. The optimization results
with the corresponding single objective function are marked with lines. The horizontal line
represents the minimum stub complexity, the vertical line the minimum planning effort.
The results indicate that both cost functions obtain favorable results compared with the
105 random solutions. However, linear addition produces significantly less variation com-
pared with square addition. The results obtained with linear addition are nearly identical
in each run.

72

4. Deriving an integration using simulated annealing

Figure 4.17: A sample with 105 possible integration orders was generated and the corre-
sponding schedule mean value and the stub complexity were calculated. These solutions
are plotted as points. Furthermore, 50 optimization runs with linear addition were per-
formed and the results marked with ’x’. The optimization results with the corresponding
single objective function are marked with lines. The horizontal line represents the minimum
stub complexity, the vertical line the minimum planning effort.

Figure 4.18: A sample with 105 possible integration orders was generated and the corre-
sponding schedule mean value and the stub complexity were calculated. These solutions
are plotted as points. Furthermore, 100 optimization runs with square addition were
performed and the results marked with ’x’. The optimization results with the correspond-
ing single objective function are marked with lines. The horizontal line represents the
minimum stub complexity, the vertical line the minimum planning effort.

73

4. Deriving an integration using simulated annealing

Figure 4.19: A sample with 105 possible integration orders was generated and the corre-
sponding schedule mean value and the stub complexity were calculated. These solutions
are plotted as points. Furthermore, 100 optimization runs with linear addition were
performed and the results marked with ’x’. The optimization results with the correspond-
ing single objective function are marked with lines. The horizontal line represents the
minimum stub complexity, the vertical line the minimum planning effort.

Figure 4.18 and Figure 4.19 depict the corresponding results when using the timing
parameters defined in Table 4.17. The results indicate that using square addition yields
very unilateral results. As for the stub complexity, the results are equal to the minimum
stub complexity obtained by single objective optimization. Linear addition produces more
even results.

4.5.3 Summary

The results presented in this section show that the proposed cost functions provide a
method to minimize the stub complexity and the planning effort for integration. However,
especially the square addition yields a high scatter in the results. Additionally, no exclusion
criteria (the absolute timing constraints Rc and Dc or a infinite stub complexity) were used
in this evaluation. Such criteria will reduce the number of possible solutions. In practical
problems, a decision maker which has insight to a certain problem will choose among
several optimization results the one which satisfies best [51].

74

4. Deriving an integration using simulated annealing

4.6 Optimizing test effort, integration testability and
schedule

In this section a multi objective optimization approach which optimizes three different
integration parameters is proposed. These optimization goals are the extended test effort
(Section 3.2.2), integration test complexity (Section 3.3.2.2) and schedule effort (Section
4.4).

4.6.1 Cost function

In order to obtain a suitable energy function, the multi objective approach presented in
Section 4.3 is extended by the maximum timing difference Êc(t).

E(o) =
√
E2

T C + E2
T E + Êc(t)2 (4.10)

4.6.2 Case study

In Figure 4.20, a sample with 106 possible integration orders was generated and the corre-
sponding parameters were calculated. These solutions are plotted as points. Furthermore,
100 optimization runs with the proposed objective function and the results marked with ’x’.
For a better visualization, a sphere segment is added to the results (Figure 4.21). The area
underneath the sphere houses better solutions. It can be seen that all 106 stochastic solution
are above the sphere. That indicates that the proposed multi objective approach obtains
favorable results compared with the 106 random generated integration orders. Furthermore
there is no variation in the 100 optimization runs. Therefore, the proposed optimization
approach is a useful way to derive an integration order with the proposed objectives.

4.6.3 Summary

In this section, a multi objective optimization approach with the three key parameters,
test effort, test complexity and planning effort, is presented. This approach could be easily
modified, eg. by using the schedule mean value instead of the maximum value. Also stub
complexity could be used instead of the number stubs and test drivers. This experiment
shows the promising scalability of the proposed approach. All optimization goals can be

75

4. Deriving an integration using simulated annealing

Figure 4.20: A sample with 106 possible integration orders was generated and the corre-
sponding parameters were calculated. These solutions are plotted as points. Furthermore,
100 optimization runs with the proposed objective function and the results marked with
’x’

76

4. Deriving an integration using simulated annealing

Figure 4.21: Results presented in Figure 4.20 with additional sphere segment for better
visualization.

77

4. Deriving an integration using simulated annealing

combined with favorable results. This implies that also future extensions can be added
without changing the optimization strategy.

78

Chapter 5

Conclusion

In this work, parameters for software integration and an approach for deriving an integra-
tion order based on these parameters using a simulated annealing algorithm are presented.
This chapter summarizes theses techniques and points out interesting issues for future work
on this topic.

5.1 Conclusion

The most important driver of innovation in modern cars are embedded systems. New-
generation cars contain a huge amount of features which would not be possible without
the support of electronic devices and their respective software. This demand for new
features and functions led to an increasing complexity in the design and development of
embedded systems. Due to this high complexity, the task of building such systems becomes
increasingly challenging and raises major concerns in critical application domains like the
automotive industry. In order to meet this challenge, component-based architectures where
introduced to automotive embedded systems. Despite the usage of eg. software product
lines, a significant portion of new components must be integrated in each development step.
This work contributes to the challenge of software integration and pursues the following
objectives:

• The first objective is to identify parameters the software integration is subjected to
and to define metrics for each parameter in order to evaluate different integration
order strategies.

• The second objective is to develop methods and algorithms for optimizing an inte-
gration order with respect to the defined parameters.

79

5. Conclusion

• The third objective is to validate the developed approaches on real life examples.

As for the parameters of software integration, three key parameters were identified:
test effort,test complexity and schedule effort. The integration test effort describes the
effort which must be spend on constructing stubs and test drivers. Recent state-of-the-art
approaches only consider the number of stubs needed for integration. In this work, three
different metrics are presented for determining the test effort. Simply use the number of
stubs, take the number of test drivers also into account or additionally assign complexi-
ties to these special implementations. The second key parameter is called test complexity
and describes the integration testability. This topic addresses the often mentioned dis-
advantage of hierarchical integration orders (eg. bottom-up or top-down) whereas testing
becomes difficult over several stages since test data must be passed through more and more
components. Simply speaking, the more stubs and test drivers are involved when testing
a certain interface, the more easy testing becomes. The third, and maybe the most rele-
vant, parameter is the integration schedule. Due to the presented survey, schedule driven
integration is wildly used in practice and is often done manually. In this thesis a formal
approach is presented how these timing constraints can be modeled.

In order to derive an integration order with respects to the proposed parameters an op-
timization approach based on simulated annealing was developed. In addition to minimize
the singe objectives test effort and schedule effort, reasonable combinations were evalu-
ated. It has been shown that minimizing the test effort and minimizing test complexity,
which are contrary goals, can be performed by the proposed approach in an sophisticated
and reliable manner. Also adding the schedule effort as objective yields favorable results.
Optimizing the stub complexity and the schedule effort, which are independent goals, is
also possible with good results.

5.2 Pros and Cons

The presented approach offers the user a variety of advantages. First, the solution is very
scalable. The described optimization goals can be individually used or combined in an
almost arbitrary way. The results of the case studies have shown that favorable results are
obtained in each case. Therefore, the user is allowed to choose the optimization goals which
fits his requirements as its best. The proposed parameters are based on a basic system
model which is available in almost all component based development processes, therefore no

80

5. Conclusion

additional effort is necessary to apply this solution. Furthermore, the presented approach
is open-ended, the proposed simulated annealing approach provides a robust solution.

However, the solution yields also a few drawbacks. The proposed metric for test com-
plexity is based on a simplified system model and it must be proven in practice if this
model is adequate. Also the stub complexity have to be evaluated in different software
projects and need some experience in order to obtain preferable results.

In general, finding an integration order may be an iterative process. Several optimiza-
tion runs with adjusted parameters may be performed during the development process
until a preferable result is obtained.

5.3 Further work

This section presents topics and implications which should be investigated further in order
to improve, refine and extend the techniques and methodologies presented in this thesis.

• Performance analysis and optimization: In this thesis no statement about the per-
formance of the proposed optimization approach is given. Roughly speaking, the
duration of an optimization run the embedded data logger with 16 components and
23 dependencies including the calculation of an reasonable annealing schedule is about
1 hour on an Intel Core 2 duo. The current implementation uses Python 2.7 and
the NetworkX graph library. While the implementation with Python is sufficient for
early experiments of the approach and easy to integrate in the development process,
a moderate performance gain could be expected from an implementation in C/C++.
Also some parallelization of the algorithm may be possible.

• User front end: At this time, only a experimental software version is available. Corre-
sponding parameters have to be manually added to text files, also the system model
has be created manually. Since this is very time-consuming and error-prone, a com-
fortable user front and is necessary. Additionally model transformers which which
can transform model from other domains, eg. autosar, to the required format. Also
a reasonable strategy for presenting results has to be developed. For this case, the
polar comparison introduced by Koenig et al. in [39] provides a promising approach.

• System model: The integration parameters presented in this work are based on the
dependency graph of the system. This model provides only generic information.

81

5. Conclusion

Since the used system models widely differs (Matlab Simulink, UML, etc.), this was
a reasonable approach in this work. However, it may be useful to adopt the proposed
parameters to a specific and more detailed system model in order to improve the
results.

In a nutshell, the proposed approach provides a modular design were individual objec-
tives of software integration could be combined and customized. The user is allowed to
select and optimize integration parameters in order to satisfy his demands at its best.

82

References

[1] A. Abdurazik and J. Offutt. Using coupling-based weights for the class integration
and test order problem. The Computer Journal, 52(5):557, 2009. 11, 19, 20, 24, 26

[2] A.J. Albrecht and J.E. Gaffney Jr. Software function, source lines of code, and devel-
opment effort prediction: a software science validation. Software Engineering, IEEE
Transactions on, (6):639–648, 1983. 26

[3] J. Axelsson. Holistic object-oriented modelling of distributed automotive real-
time control applications. In Object-Oriented Real-Time Distributed Computing,
1999.(ISORC’99) Proceedings. 2nd IEEE International Symposium on, pages 85–92.
IEEE, 1999. 15

[4] V.R. Basili, L.C. Briand, and W.L. Melo. A validation of object-oriented design met-
rics as quality indicators. Software Engineering, IEEE Transactions on, 22(10):751–
761, 1996. 38

[5] B. Beizer. Software system testing and quality assurance. 1984. 4, 7, 27

[6] R. Binder. Testing object-oriented systems: models, patterns, and tools. Addison-
Wesley Professional, 2000. 4

[7] R.V. Binder. Design for testability in object-oriented systems. Communications of
the ACM, 37(9):87–101, 1994. 29

[8] E. Bonomi and J.L. Lutton. The n-city travelling salesman problem: Statistical me-
chanics and the metropolis algorithm. SIAM review, pages 551–568, 1984. 48

[9] L. Borner and B. Paech. Integration Test Order Strategies to Consider Test Focus
and Simulation Effort. In Advances in System Testing and Validation Lifecycle, 2009.

83

REFERENCES

VALID’09. First International Conference on, pages 80–85. IEEE, 2009. 12, 15, 24,
38

[10] K. Bouleimen and H. Lecocq. A new efficient simulated annealing algorithm for the
resource-constrained project scheduling problem and its multiple mode version. Eu-
ropean Journal of Operational Research, 149(2):268–281, 2003. 39

[11] L.C. Briand, J. Feng, and Y. Labiche. Using genetic algorithms and coupling measures
to devise optimal integration test orders. In Proceedings of the 14th international
conference on Software engineering and knowledge engineering, pages 43–50. ACM,
2002. 11, 12, 13, 24, 26

[12] L.C. Briand, J. Feng, and Y. Labiche. Experimenting with genetic algorithms to devise
optimal integration test orders. Software engineering with computational intelligence,
page 204, 2003. 13

[13] L.C. Briand, Y. Labiche, and Y. Wang. An investigation of graph-based class integra-
tion test order strategies. IEEE Transactions on Software Engineering, pages 594–607,
2003. 9, 10, 11, 19, 21, 23, 26, 39

[14] M. Broy. Challenges in automotive software engineering. In Proceedings of the 28th
international conference on Software engineering, pages 33–42. ACM, 2006. 1, 2

[15] A.W. Brwan. Background information on cBD, 1997. 5

[16] R.E. Burkard and F. Rendl. A thermodynamically motivated simulation procedure
for combinatorial optimization problems. European Journal of Operational Research,
17(2):169–174, 1984. 48

[17] F. Busetti. Simulated annealing overview. World Wide Web URL www. geocities.
com/francorbusetti/saweb. pdf, 2003. 48

[18] R.D.V. Cabral, A. Pozo, and S.R. Vergilio. A Pareto ant colony algorithm applied to
the class integration and test order problem. In Proceedings of the 22nd IFIP WG,
volume 6, pages 16–29. 13

[19] V. Černỳ. Thermodynamical approach to the traveling salesman problem: An efficient
simulation algorithm. Journal of optimization theory and applications, 45(1):41–51,
1985. 46

84

REFERENCES

[20] Eppinger K. Claraz, D. and L. Berentroth. Reuse strategy at siemens VDO automo-
tive: The EMS 2 powertrain platform architecture. Ingenieurs de l ’ Automobile, page
767, 2004. xv, 2

[21] I. Crnkovic. Component-based software engineering: new challenges in software de-
velopment. Software Focus, 2(4):127–133, 2001. 5

[22] I. Crnkovic. Component-based software engineering for embedded systems. In Pro-
ceedings of the 27th international conference on Software engineering, pages 712–713.
ACM, 2005. 4

[23] I. Crnkovic, M. Chaudron, and S. Larsson. Component-based development process
and component lifecycle. In Software Engineering Advances, International Conference
on, pages 44–44. IEEE, 2006. xv, 28

[24] A. Dekkers and E. Aarts. Global optimization and simulated annealing. Mathematical
programming, 50(1):367–393, 1991. 48

[25] N.S. Eickelmann and D.J. Richardson. What makes one software architecture more
testable than another? In Joint proceedings of the second international software
architecture workshop (ISAW-2) and international workshop on multiple perspectives
in software development (Viewpoints’ 96) on SIGSOFT’96 workshops, pages 65–67.
ACM, 1996. 5, 8

[26] J. Gao, H.S.J. Tsao, and Y. Wu. Testing and quality assurance for component-based
software. Artech House on Demand, 2003. 4

[27] Vera Gebhardt, Gerhard M. Rieger, JÃĳrgen Mottok, and Christian GieÃ§elbach.
Funktionale Sicherheit nach ISO 26262: Ein Praxisleitfaden zur Umsetzung.
dpunkt.verlag GmbH, 1., auflage edition, 2 2013. 28

[28] S. Geman and D. Geman. Stochastic relaxation, gibbs distributions, and the bayesian
restoration of images. Pattern Analysis and Machine Intelligence, IEEE Transactions
on, (6):721–741, 1984. 47

[29] M. Hafner. Umfrage ”software-integration”. Embedded Software Engineering Report,
2010. xv, 15, 17

[30] B. Hajek. Cooling schedules for optimal annealing. Mathematics of operations re-
search, pages 311–329, 1988. 47

85

REFERENCES

[31] M.H. Halstead. Elements of Software Science (Operating and programming systems
series). Elsevier Science Inc., 1977. 38

[32] B. Hardung, T. Kölzow, and A. Krüger. Reuse of software in distributed embed-
ded automotive systems. In Proceedings of the 4th ACM international conference on
Embedded software, pages 203–210. ACM, 2004. 1

[33] M. Jaffar-ur Rehman, F. Jabeen, A. Bertolino, and A. Polini. Testing software compo-
nents for integration: a survey of issues and techniques. Software Testing, Verification
and Reliability, 17(2):95–133, 2007. 2

[34] F. Jay and R. Mayer. IEEE standard glossary of software engineering terminology.
IEEE Std, 610:1990, 1990. 5, 6

[35] M. Jung and F. Saglietti. Supporting Component and Architectural Re-usage by
Detection and Tolerance of Integration Faults. 2005. 29

[36] D. Karlsson. Verification of Component-based Embedded System Designs. 2006. 2

[37] S. Kirkpatrick, C.D. Gelatt, and M.P. Vecchi. Optimization by simulated annealing.
science, 220(4598):671, 1983. 45, 47, 48

[38] A. Konak, D.W. Coit, and A.E. Smith. Multi-objective optimization using genetic
algorithms: A tutorial. Reliability Engineering & System Safety, 91(9):992–1007, 2006.
56

[39] F. König, D. Boers, F. Slomka, U. Margull, M. Niemetz, and G. Wirrer. Application
specific performance indicators for quantitative evaluation of the timing behavior for
embedded real-time systems. In Proceedings of the conference on Design, automation
and test in Europe, pages 519–523. European Design and Automation Association,
2009. 81

[40] H. Kopetz. Component-based design of large distributed real-time systems. Control
Engineering Practice, 6(1):53–60, 1998. 5

[41] A. KRÜGER, G. WAGNER, N. EHMKE, and S. PROKOP. Wirtschaftliche betra-
chtungen und mögliche geschäftsmodelle für standard-software. VDI-Berichte, pages
1057–1071, 2003. 1

86

REFERENCES

[42] D.C. Kung, J. Gao, P. HsiaYasufumi, and C. Chen. On regression testing of object-
oriented programs. Journal of Systems and Software, 32(1):21–40, 1996. 9, 10, 19,
21

[43] P.J.M. Laarhoven and E.H.L. Aarts. Simulated annealing: theory and applications,
volume 37. Springer, 1987. 46, 47

[44] Y. Labiche, P. Thevenod-Fosse, H. Waeselynck, and M.H. Durand. Testing levels for
object-oriented software. 2000. 9

[45] V. Le Hanh, K. Akif, Y. Le Traon, and J.M. Jézéque. Selecting an efficient OO
integration testing strategy: an experimental comparison of actual strategies. ECOOP
2001-Object-Oriented Programming, pages 381–401, 2001. 10, 22

[46] Y. Le Traon, T. Jéron, J.M. Jézéquel, and P. Morel. Efficient object-oriented integra-
tion and regression testing. Reliability, IEEE Transactions on, 49(1):12–25, 2002. 10,
20, 22

[47] Shen Lin. Computer Solutions of the Traveling Salesman Problem. Bell System
Technical Journal, 44(10):2245–2269, 1965. 47

[48] K. Lind and R. Heldal. Categorization of real-time software components for code
size estimation. In Proceedings of the 2010 ACM-IEEE International Symposium on
Empirical Software Engineering and Measurement, page 26. ACM, 2010. 2

[49] D. Lohmann, W. Schroder-Preikschat, and O. Spinczyk. Functional and non-
functional properties in a family of embedded operating systems. In Object-Oriented
Real-Time Dependable Systems, 2005. WORDS 2005. 10th IEEE International Work-
shop on, pages 413–420. IEEE, 2005. 1

[50] B.A. Malloy, P.J. Clarke, and E.L. Lloyd. A parameterized cost model to order classes
for class-based testing of C++ applications. 2003. 11, 20, 23

[51] R.T. Marler and J.S. Arora. Survey of multi-objective optimization methods for en-
gineering. Structural and multidisciplinary optimization, 26(6):369–395, 2004. 74

[52] T.J. McCabe. A complexity measure. IEEE Transactions on software Engineering,
pages 308–320, 1976. 38

87

REFERENCES

[53] N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, and E. Teller. Equa-
tion of state calculations by fast computing machines. The journal of chemical physics,
21:1087, 1953. 46

[54] M. Morisio, M. Ezran, and C. Tully. Success and failure factors in software reuse.
Software Engineering, IEEE Transactions on, 28(4):340–357, 2002. 2

[55] J. Mottok. Bayerisches it-sicherheitscluster: Automotive forum. http://www.it-
speicher.de/itsecurity/, 2009. xv, 15, 17

[56] V.L. Narasimhan and B. Hendradjaya. A new suite of metrics for the integration
of software components. In Proceedings of the The First International Workshop on
Object Systems and Software Architectures (WOSSA’2004). Citeseer, 2004. 38

[57] T.J. Ostrand and E.J. Weyuker. How to measure success of fault prediction models.
In Fourth international workshop on Software quality assurance: in conjunction with
the 6th ESEC/FSE joint meeting, pages 25–30. ACM, 2007. 38

[58] R. Otten and L. Van Ginneken. The annealing algorithm, volume 37. Kluwer Academic
Publishers Boston MA., 1989. 45

[59] R. Paul. End-to-end integration testing. In Quality Software, 2001. Proceedings.
Second Asia-Pacific Conference on, pages 211–220. IEEE, 2001. 27

[60] B.R. Preiss. Data structures and algorithms with object-oriented design patterns in
C++. A1bazaar, 2008. 48

[61] W. Press, S. Teukolsky, and W. Vetterling. B. flannery,” numerical recipes in c, 1992.
45, 46

[62] J. Ratzinger, T. Sigmund, and H.C. Gall. On the relation of refactorings and software
defect prediction. In Proceedings of the 2008 international working conference on
Mining software repositories, pages 35–38. ACM, 2008. 38

[63] D. Rombach. Software nach dem baukastenprinzip. Fraunhofer Magazin, (1):30–31,
2003. 1

[64] J. Ropponen and K. Lyytinen. Components of software development risk: How to
address them? A project manager survey. Software Engineering, IEEE Transactions
on, 26(2):98–112, 2000. 38

88

REFERENCES

[65] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, W. Lorensen, et al. Object-oriented
modeling and design, volume 38. Prentice hall Englewood Cliffs (NJ), 1991. 10, 21

[66] Ian Sommerville. Software Engineering (Pearson Studium - IT). Pearson Studium, 9.
aktual. edition, 3 2012. 28

[67] M. Steindl, J. Mottok, and H. Meier. SES-based framework for fault-tolerant systems.
In Intelligent Solutions in Embedded Systems (WISES), 2010 8th Workshop on, pages
12–16. IEEE. 1

[68] C. Szyperski, D. Gruntz, and S. Murer. Component software: beyond object-oriented
programming. 2002. 5

[69] A. Taghipour and E. Taheripour. Object-oriented programming application in au-
tomotive door control performance. In Proceedings of the 7th WSEAS International
Conference on Applied Computer and Applied Computational Science, pages 353–357.
World Scientific and Engineering Academy and Society (WSEAS), 2008. 15

[70] K.C. Tai and FJ Daniels. Test order for inter-class integration testing of object-
oriented software. In Computer Software and Applications Conference, 1997. COMP-
SAC’97. Proceedings., The Twenty-First Annual International, pages 602–607. IEEE,
2002. 10, 19, 21, 24, 39

[71] R. Tarjan. Depth-first search and linear grajh algorithms. In Conference Record 1971
Twelfth Annual Symposium on Switching and Automata Theory, pages 114–121. IEEE,
1971. 10, 22

[72] S. Voget and M. Becker. Establishing a software product line in an immature domain.
Software Product Lines, pages 121–168, 2002. 2

[73] Z. Wang, B. Li, L. Wang, M. Wang, and X. Gong. Using Coupling Measure Technique
and Random Iterative Algorithm for Inter-Class Integration Test Order Problem. In
2010 34th Annual IEEE Computer Software and Applications Conference Workshops,
pages 329–334. IEEE, 2010. 11, 12, 23

[74] A.H. Watson, T.J. McCabe, and D.R. Wallace. Structured testing: A testing method-
ology using the cyclomatic complexity metric. NIST special Publication, 500:235, 1996.
27

89

REFERENCES

[75] Y. Wu and M.H.C. Dai Pan. Techniques for testing component-based software. In
iceccs, page 0222. Published by the IEEE Computer Society, 2001. 29

[76] Z. Zhang and X. Ke. Solving terminal allocation problem using simulated annealing
arithmetic. WSEAS Transactions on Systems, 7(12):1412–1422, 2008. 47

90

Author’s Publications

[1] M. Steindl, J. Mottok, H. Meier, F. Schiller, and M. Fruechtl. Migration of SES to
FPGA Based Architectural Concepts. In Softwaretechnik Trends, Gesellschaft fuer
Informatik, ISSN 0720-8928, 2009.

[2] M. Steindl, J. Mottok, H. Meier, F. Schiller, and M. Fruechtl. Diskussion des Einsatzes
von Safely Embedded Software in FPGA-Architekturen. In Proceedings of the 2nd
Embedded Software Engineering Congress, ISBN 978-3-8343-2402-3, pages 655-661,
December 2009.

[3] M. Steindl, J. Mottok, H. Meier, F. Schiller, and M. Fruechtl. Safeguarded Processing
of Sensor Data. In Proceedings of the 5th Embedded Real Time Software and Systems
Conference (ERTS2 2010), Toulouse, France, May 2010.

[4] M. Steindl, J. Mottok, and H. Meier. SES-based framework for fault-tolerant systems.
In Proceedings of the 8th IEEE Workshop on Intelligent Solutions in Embedded Sys-
tems (WISES), ISBN 978-1-4244-5716-8, pages 12–16, Heraklion, Greece, July 2010.

[5] M. Steindl, J. Mottok. Deriving an integration order in a component-based embedded
system using simulated annealing. In Proceedings of the NWK13, ISBN 978-3-86870-
436-5, Goerlitz, Germany, April 2012.

[6] M. Steindl, J. Mottok. Optimizing Software Integration Testing by Considering In-
tegration Testability and Test Effort. In Proceedings of the 10th IEEE Workshop on
Intelligent Solutions in Embedded Systems (WISES), ISBN: 978-1-4673-2464-9, Kla-
genfurt, Austria, July 2012

91

AUTHOR’S PUBLICATIONS

[7] M. Steindl, J. Mottok. Considering Schedule Requirements of Software Integration
in Component based Embedded System. In Proceedings of the 17th International
Conference on Applied Electronics, ISSN 1803-7232, Pilsen, Czech Republic, Sept.
2012

[8] M. Steindl, J. Mottok. Minimizing the Number of Stubs in Component-based Soft-
ware Integration by using Simulated Annealing. Submitted to the International
Conference on Software Engineering (ICSE),San Francisco, USA, May 2013.

[9] M. Steindl, J. Mottok. Optimizing Software Integration in Component-based Em-
bedded Systems by Using Simulated Annealing. Submitted to the IEEE Region 8
Conference EuroCon 2013, Zagreb, Croatia, July 2013.

92

	Contents
	List of Figures
	Abbrevations
	1 Introduction
	1.1 Motivation

	2 State of the Art Software Integration Strategies
	2.1 Component-based software development
	2.2 Integration strategies
	2.2.1 Non-formalized approaches
	2.2.2 Formalized approaches

	2.3 Discussion of presented approaches
	2.4 Goals of the thesis

	3 Parameters of Software Integration
	3.1 Reference systems
	3.2 Test Effort
	3.2.1 Adaptability of existing approaches to C-written component-based embedded software
	3.2.1.1 Approach by Kung et al.
	3.2.1.2 Approach by Tai & Daniels
	3.2.1.3 Triskell strategy
	3.2.1.4 Approach by Le Traon et al.
	3.2.1.5 Approach by Briand et al.
	3.2.1.6 Approach by Malloy et al.
	3.2.1.7 Heuristic Approaches
	3.2.1.8 Results

	3.2.2 Considering test drivers
	3.2.3 Considering stub complexity

	3.3 Integration test complexity (ITC)
	3.3.1 General issues of integration testing
	3.3.2 Modeling integration test complexity
	3.3.2.1 Test complexity of a dependency
	3.3.2.2 Test complexity of the complete system

	3.3.3 Test complexity versus Test effort

	3.4 Integration schedule
	3.4.1 Component/Resource release time and deadline
	3.4.2 Risk, Criticality
	3.4.3 Modeling planning effort for a software integration order
	3.4.3.1 Scheduling parameters
	3.4.3.2 Calculating the planning effort for integration

	4 Deriving an integration order in a component-based embedded system using simulated annealing
	4.1 Simulated annealing
	4.1.1 Configuration
	4.1.2 Rearrangement
	4.1.3 Annealing schedule
	4.1.4 Cost function

	4.2 Minimizing the test effort
	4.2.1 Minimizing the number of stubs
	4.2.1.1 Cost function
	4.2.1.2 Case study
	4.2.1.3 Summary

	4.2.2 Minimizing overall stub complexity
	4.2.2.1 Cost function
	4.2.2.2 Case study
	4.2.2.3 Summary

	4.3 Optimizing test effort and integration test complexity
	4.3.1 Cost function
	4.3.2 Case study
	4.3.3 Summary

	4.4 Optimizing integration schedule
	4.4.1 Cost function
	4.4.2 Case study
	4.4.3 Summary

	4.5 Optimizing integration schedule and stub complexity
	4.5.1 Cost function
	4.5.2 Case study
	4.5.3 Summary

	4.6 Optimizing test effort, integration testability and schedule
	4.6.1 Cost function
	4.6.2 Case study
	4.6.3 Summary

	5 Conclusion
	5.1 Conclusion
	5.2 Pros and Cons
	5.3 Further work

	References
	Author's Publications

