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ABSTRACT 
 

We propose volume registration procedures based on spherical artificial markers presented in medical 
multimodal data sets (MRI and CT, especially). The procedures proposed are either semi-automatic or 
fully-automatic. A semi-automatic approach requires to label approximate locations of the spherical 
markers in the data sets and then registration operates autonomically. A fully-automatic approach does not 
require any user interaction, i.e. all registration subtasks – namely segmentation of spheres, finding the 
correspondence between two sets of spheres and, finally, computing geometrical transformation that maps 
the first set of spheres onto the second one – are performed automatically by the computer. 
 
Keywords: multimodal medical registration, markers, segmentation, iterative closest point algorithm. 
 
 
 

1. INTRODUCTION 
 
Nowadays, volume registration becomes a task 
required by more and more physicians and 
researchers in the area of medical volume processing 
and visualization. In this context the term “volume 
registration” is used for the rectification of mutual 
position of objects presented in several volume data 
sets in order to obtain their integrated display giving 
a comparison and more comprehensive information. 
 
 The integrated display is used for medical 
diagnosis, surgery planning, and comparison of pre-
operative and post-operative human brains, etc. It is 
assisted by different tomographic imaging modalities 
like computed tomography (CT) and magnetic 
resonance imaging (MRI), because these modalities 
provide supplementary information (CT – bones vs. 
MRI – brain matter) and their integration improves 
the spatial understanding of anatomical structures. 
 
 A variety of approaches to the volume 
registration problem have been published until now. 

Good surveys are given by [Brown92] and 
[Maint98]. These approaches can be split into two 
main groups: methods based on features [Maure96] 
or markers [Ranga97] extracted from volume data 
sets and methods using voxel information directly 
without any pre-segmentation. 
 
 Voxel-based methods [Woods93], 
[Maes97] are most popular today, since they are 
fully automatic and robust. However, these methods 
have greater registration error in general, especially 
in case of multimodal data sets. Additionally, these 
methods are more computationally demanding when 
compared with methods based on artificial markers. 
Voxel-based registration methods have been 
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 For the planning of brain surgery a precise 
and fast registration of multimodal volumes is 
needed. This can be achieved especially by a method 
based on artificial markers [Tiche94]. Therefore, an 
external reference frame “SIP Lab Innsbruck frame” 
[Bale97a, 97b, 00] containing twelve sphere-shaped 
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markers has been created (see Figure 1). The 
position of the markers is unambiguous, therefore, 
only one correct match of all the markers from two 
different data sets exists. The frame is fixated on the 
patient’s head in an exact position by means of 
“Vogele-Bale-Hohner (VBH) mouthpiece” 
[Marti98] during his investigation by the 
tomographic modalities (see Figure 2). The 
mouthpiece guarantees the identical relationship of 
the markers to the cranial anatomy and, thus, 
accurate registration. 
 

Among the main advantages of the 
described method are the facts that it is non-invasive 
(markers are not implanted into the patient’s skull), 
fully automatic, precise, fast and reproducible. 
 

 

 
 

Figure 1: “SIP Lab Innsbruck frame” fixated on the 
patient’s head 

 
 

 
 

Figure 2: “Vogele-Bale-Hohner (VBH) mouthpiece” 
that is fixated against the patient’s upper plate in his 

mouth by means of vacuum 
 

 
2. DATA 
 
Data sets of two modalities are to be registered: CT 
and MRI. Resolution of CT volumes is 512 x 512 

pixels per slice and up to 200 slices. Resolution of 
MRI is lower – 256 x 256 pixels per slice and about 
200 slices. 
 

Figure 3 depicts a CT rendered image of a 
patient’s head wearing the “SIP Lab Innsbruck 
frame”. In case of CT this frame is well visible and, 
thus, makes segmentation of markers more difficult 
when compared with MRI that is without the frame 
(see Figure 5). Figure 4 shows a slice of a CT 
volume with two markers – white circles on the left 
and right side of the image. 

 
Due to the material used the “SIP Lab 

Innsbruck frame” itself is not visible in MRI volume 
(Figure 5), only separate markers can be seen. The 
patient’s mouth is open, since the frame is fixated on 
the head by the “Vogele-Bale-Hohner (VBH) 
mouthpiece” against the patient’s upper plate in his 
mouth by means of vacuum (Figure 2). Figure 6 
presents a MRI slice with one marker on the left 
side. Note that MRI slices are sagittal while CT 
slices are axial. 

 
 

3. METHODS 
 

The overall work-flow of this marker-based 
registration consists of four steps: segmentation of 
markers in both data sets and finding their centers of 
gravity, finding correspondence among the centers, 
least squares evaluation of geometrical 
transformation and, finally, visualization of the result 
of registration. 
 
 Both semi-automatic and fully-automatic 
approaches are described in this paper. The methods 
applied to solve individual registration steps differ 
somewhat. 
 
 
SEMI-AUTOMATIC APPROACH 
 
Before registration can be started, the approximate 
locations of all spheres in both data sets have to be 
labeled by the user. The order of labeling is not 
important. It is also not necessary to label the 
spheres exactly, since an automatic search for a 
sphere in the close neighborhood of the label is 
performed next. 
 

In general the sphere markers are the 
brightest objects in the data sets, but due to possible 
artifacts the overall brightness of some spheres can 
be lower. Therefore, a threshold-independent 
technique has to be used for their segmentation. We 
propose the following. 
 

 



 When the label point is specified by the 
user, the maximum gray value is found in its pre-
defined 3D neighborhood. A histogram of gray 
values of this neighborhood is generated. Since the 
volume of the spheres in mm3 is known and the 
spheres contain the brightest gray values, it is 
assumed that the brightest voxels of the histogram 
belong to the sphere (see Figure 7). Segmentation of 
the sphere is accomplished by 3D region growing 
>äiUD��@��,W�XVHV�WKH�EULJKWHVW�YR[HO�RI�WKH�KLVWRJUDP�
as a seed and the darkest value belonging to the 
sphere as a threshold which is determined 
automatically. During segmentation, the centers of 
gravity of spheres are computed simultaneously. This 

histogram-driven region growing technique is 
applied successfully for segmentation of markers in 
both CT volumes and MRI volumes. 

 
Using this method two sets of points that 

correspond to the centers of gravity of the spheres 
have been generated. Since all the spheres (and their 
centers of gravity) in both data sets are found 
without any false or missing ones, it is possible to 
apply the ICP (iterative closest point) algorithm 
[Besl92] to find their correspondence as well as 
computing a least square estimation of geometrical 
transformation. 

  
 

Figure 3: 3D rendered CT image of a head with the 
“SIP Lab Innsbruck frame” containing the spherical 

markers 

 
Figure 5: 3D rendered MRI image of a head 

 

 
 

 

 
 

 
 

Figure 4: CT slice with two markers (the white circles) 
 

Figure 6: MRI slice with one marker  
(a white circle is on the left) 

 
 
 

 
 



 
 

Figure 7: Histogram-driven sphere segmentation 
 
 

ICP starts by pairing points (centers of 
gravity of the spheres) from both sets according to 
the minimum of their Euclidian distances. Then the 
parameters of the geometrical transformation1 are 
computed by using SVD (singular value 
decomposition) [Press92]. The obtained parameters 
are applied to one set of points. These two steps are 
iteratively repeated until a local optimum is 
achieved. 

 
Since ICP converges to a local optimum 

only, we use a stochastic approach to obtain a global 
optimum. Our stochastic approach hinges on 
repeated random selection of an initial geometrical 
transformation which enters the ICP algorithm. 

 
After finding the global optimum, which is 

indicated by a value of a mean squared error of the 
registration approaching zero, one volume data set is 
recomputed with respect to the second one and 
displayed. 

 
 

FULLY-AUTOMATIC APPROACH 
 
First of all, an automatic segmentation of spheres is 
performed. This segmentation consists of two steps: 
first, a global threshold is applied to the whole data 
set in order to transform it into a binary 
representation. 3D region growing is applied to it. 
Individual objects are evaluated by means of simple 
characteristics like the similarity to a sphere. The 
characteristics are the size (volume) of an object and 
its maximal diameter. 
 

The exact segmentation of the sphere 
markers together with computation of their centers of 
gravity follows by using the histogram-driven 3D 
region growing described in the previous section. 
 
 This two-step segmentation technique is  
simple and fast even for 3D data sets. However, its 

                                                           
1 Rigid-body transformation, i.e. translation, rotation and scaling 
in 3D space. 

reliability depends on the determination of the global 
threshold in the first step. Therefore, it may happen 
that, although most of the spheres are segmented 
successfully, some spheres can be missing or 
incorrectly segmented. The ICP algorithm is 
sensitive to missing points and cannot be applied in 
this case. Hence, a procedure that pairs 
corresponding points must be employed before. 
 
 An “elegant” procedure for this purpose has 
been described in [Skea93]. However, it is intended 
for the 2D case only and, thus, it had to be extended 
to 3D. Using the main idea of this procedure and 
changing a criterion used by it yields the desired 
algorithm. 
  

This procedure (“accumulator algorithm”) 
is based on pairing similar triangles made from 
points in two point sets. Every possible triangle 
created from points in the first point set is compared 
with all possible triangles made from points in the 
second point set. If two triangles are similar 
according to a criterion (mentioned below) then an 
accumulator is updated. The accumulator is 
rectangular and has the size M x N where M and N 
represent the number of points in the two point sets. 
For similar triangles cells of the accumulator 
belonging to corresponding vertices of both triangles 
are incremented by 1. After testing all pairs of 
triangles, cells that correspond to properly paired 
points contain the highest values while cells of 
spurious points have the lowest values. 
 
 The original criterion for measuring the 
similarity of triangles [Skea93] is suitable only for 
the 2D case and, therefore, it had to replaced by a 
criterion applicable to 3D. We decided to apply a 
criterion based on aspect ratios of side lengths of 
triangles: two triangles are similar if aspect ratios 

( )cc/ ,bb/ ,aa/  of all their sides differ only by a pre-

defined tolerance ε (see Figure 8). 
 
 

 
 
Figure 8: Aspect ratios of the sides of two triangles 

 
 



Since all possible triangles have to be 
tested, the algorithm is time-consuming for large 
point sets. Fortunately, the datasets produced by the 
described method consists of twelve points per data 
set typically, which keeps the calculation short 
(typically tens of miliseconds). 

 
After finding a correspondence between the 

two point sets by the accumulator algorithm, the ICP 
algorithm can be applied to find the resulting 
geometrical transformation. Once it has been found, 
one volume data set is recomputed with respect to 
the second one and displayed. 

 
 

4. RESULTS 
 
The described registration methods were applied to 
multimodal data sets of a human head. The methods 
were compared with the manual approach in terms of 
accuracy and speed.  

 
The accuracy of the registration is 

expressed by the mean squared error 
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where R stands for rotation, t for translation, c for 
scaling, n for the number of points and xi and yi for 
the two sets of points. The speed T expresses the 
time necessary either for labeling the markers by an 
experienced user (manual or semi-automatic 
approach) or for automatic segmentation of the 
markers (fully-automatic approach). These timings 
illustrate how semi- and fully-automatic methods 
accelerate work in real practice. 
 
 

Method e2 T [sec] 
Manual 2.1159 300-400 

Semi-automatic 0.3736 150-200 
Fully-automatic 0.3736 15-120∗ 
 

Table 1: Comparison of different point matching 
methods 

 
 

 First, the same pair of data sets was 
registered manually by one user five times, second, 
semi-automatically again five times and, finally, 
once fully-automatically. The results of average 
values are collected in Table 1. 
 

                                                           
∗ Depends on the sizes of input data sets and computational 
power of a used computer (the timings are for a Pentium III/600 
MHz/512 MB). 

 Although the manual method takes longest 
time, it gives the highest registration error. This is 
not surprising, since during registration the user has 
to specify centers of gravity of the spheres  
manually. This specification is time-consuming and 
yet not exact. The accuracy of the semi- and full-
automatic methods is the same, because the same 
method for finding the centers of gravity of the 
spheres is used, but the fully-automatic approach is 
faster than the semi-automatic one. 
 
 In case of the fully-automatic approach the 
combination of accumulator algorithm and ICP 
algorithm proved to be an efficient and robust point 
matching strategy. It was mentioned above that the 
successful detection of the sphere markers depends 
on the determination of the global threshold used in 
the two-step segmentation. However, the applied 
combination enables us to achieve successful 
registration even if the global threshold varies to an 
extent of approximately 20% of a maximal gray level 
in CT data sets and to an extent of approximately 
40% of a maximal gray level in MRI data sets (the 
mentioned percentages were determined 
experimentally). On the borders of these extents 
fewer (e.g. 10) or more (e.g. 14) markers used to be 
found than it were expected (12), but the proposed 
combination finds correct markers and still performs  
successful registration. If stand-alone ICP algorithm 
is applied, registration is not always successful. 
Table 2 shows how the number of markers – 
including false ones eventually – found by the two-
stepped segmentation, the number of proper pairs of 
markers, and accuracy of registration vary if 
different global thresholds are applied to one pair of 
multimodal data sets. The last column of the table 
indicates some events when the stand-alone (s.-a.) 
ICP algorithm fails, i.e. it gives higher registration 
errors than the combinations of both the algorithms. 
 
 
CT global 
threshold/ 
number of 

found 
markers 

MRI 
global 

threshold/ 
number of 

found 
markers 

number 
of 

proper 
marker 

pairs 

e2 
(accum. 

alg.  
+ 

ICP 
alg.) 

e2 
 

(ICP 
alg. 

s.-a.) 

1400/12 50/12 12 0.3736 0.3736 
1200/10 50/12 9 0.4354 52.685 
1300/13 100/12 11 0.3285 731.006 
1400/12 150/15 11 0.3285 1218.499 
1500/13 200/11 11 0.3285 0.3285 
2000/13 220/10 9 0.3422 865.86 

 
Table 2: Fully-automatic registration results for 

different global thresholds applied  
(see text for explanation). 

 
 

  



In the first line (in cursive) there are values 
of the optimal thresholds of the tested pair of data 
sets. Other lines correspond to increasing values of 
thresholds approximately in the ranges that are 
mentioned above. From Table 2 (the fourth column) 
follows that acceptable accuracy of registration is 
preserved for wide ranges of thresholds applied to 
input data sets. Lower values of registration error e2 
for the higher thresholds are caused by the lower 
number of marker pairs and, thus, by the lower 
number of error contributions (see Formula (1)). The 
stand-alone ICP algorithm fails in the cases when 
false markers are found in both the data sets (i.e. not 

only in one data set – see the 2-nd, 3-rd, 4-th and 6-
th row in the fifth column of Table 2). 

 
Figures 9 and 10 exemplify fusion images 

of registration results (obtained by the fully-
automatic approach). For both figures the reference 
volume was MRI. Every time the second data set 
(floating) was re-mapped according to the found 
geometrical transformation, see Figure 11. Figure 9 
depicts a 2D example of CT-MRI registration where 
the CT volume was windowed in order to highlight 
inner structures of the brain. One can see that theses 
structures are well registered (the lower image). 
Figure 10 shows a 3D image of CT-MRI registration 

  
 
 

 

  
 

Figure 9: 2D example of a sagittal CT-MRI fusion 
image before (the upper image) and after registration 
(the lower image); (CT - the left part /windowed for 

highlighting inner structures of the brain/,  
MRI - the right part) 

 
 
 

 
Figure 10: 3D example of a CT-MR fusion  image with 

sphere markers before (the upper image – the brain 
touches and exceeds the skull) and after registration 

(the lower image); (CT - the bottom part /bones 
segmented/, MRI – the upper part /the brain 

segmented/) 



where bones were segmented in the CT volume and 
the brain in the MRI volume. 

 
 

 
 
Figure 11: Re-mapping a floating volume according 

to a reference one 
 
 

5. CONCLUSION 
 
A semi-automatic and a fully-automatic method for 
multimodal registration based on artificial spherical 
markers are presented. These approaches were 
chosen, because the medical practice requires fast, 
precise and reliable methods that are affected neither 
by the difference in modalities used, nor by the 
change of illumination, contrast etc. The methods 
used have proven to be suitable for medical purposes 
and will be applied for head surgery planning, jaw 
surgery and external head radiation treatment 
[Sween98]. 
  
 The electronic version of this article can be 
obtained via http://www.tiani.com/research. 
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