
Managing Data Flow in Interactive MR Environments

Patrick Dähne Helmut Seibert
Computer Graphics Center (ZGDV)

Fraunhoferstraße 5
D-64283 Darmstadt, Germany

{patrick.daehne,helmut.seibert}@zgdv.de

ABSTRACT
In this paper the concept and design of a software framework which provides a transparent data flow for interactive
Mixed Reality (MR) applications is discussed. The design was affected by our demands on platform independency,
simplicity, network transparency, maximum performance and availability of runtime debugging facilities. Our
software framework tries to simplify the development of MR applications by using the concept of a data flow
graph. The developer builds such a graph from a library of small software components that communicate via the
edges of the graph.

Keywords
Mixed Reality, Augmented Reality, Virtual Reality, Device Management, Tracking, Interaction.

1. INTRODUCTION
In our daily work on various Mixed Reality applica-
tions, we made the experience that we usually spend
most of our time on implementing code that handles
communication with hardware devices and software
components provided by our project partners, instead
of concentrating on the application itself. This paper
describes the result of our efforts to minimize the work
we have to do when implementing the “infrastructure”
of our application.
The base of our MR applications is our self-
developed rendering framework “Avalon” [3] that uti-
lizes VRML/X3D. An interesting feature of VRML is
that it does not only allow to describe graphical objects
and animations, but also to specify the interactions that
are possible with these objects. In fact, VRML allows
to write huge parts of applications by using standard

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

WSCG SHORT papers, ISBN 80-903100-9-5
WSCG’2005, January 31-February 4, 2005
Plzen, Czech Republic.
Copyright UNION Agency - Science Press

VRML nodes, JavaScript or Java, instead of doing te-
dious C++ compiler sessions.
Unfortunately, VRML has quite limited capabilities to
integrate hardware devices and to communicate with
other software components. In this paper we describe
how we extended our rendering framework by an so-
phisticated device management system. The funda-
mental idea is to create a library of small software
modules that handle specific tasks, for example oper-
ating devices or transforming data values provided by
devices, and to assemble these modules into a data flow
graph.

2. RELATED WORK
The main research focus in the area of Mixed Reality
has been the determination of the user’s position and
orientation (tracking), appropriate interaction methods
for MR applications, graphical problems like the cor-
rect illumination of virtual objects and the occlusion of
virtual objects by real objects, and the development of
powerful and yet lightweight wearable computers. But
recently, the development of MR software frameworks
gained more and more attention.
An early example of a software framework is CO-
TERIE [6]. COTERIE is a set of packages written in
Modula-3 that allow to create “Distributed shared ob-
jects”, i.e. data objects that are transparently shared by
processes on different machines in the network.
Another well-known software-framework is Studier-
stube [9]. Studierstube is based on the concept of a dis-
tributed scene graph (Distributed Open Inventor), and a



data flow framework called OpenTracker [8] that han-
dles different kinds of trackers.
DWARF [2] is using a concept similar to our own
concept described in this paper. AR applications are
build by using services that form a distributed data flow
graph. CORBA is used for all network communica-
tion.
Tinmith [7] is using an object store based on Unix
file system semantics. Applications can register call-
backs on these objects to get notifications when an ob-
ject changes. Objects are automatically distributed be-
tween different processes on the network.
Other software frameworks that focus on the develop-
ment of VR applications are VR Juggler [4] and DI-
VERSE [1]. VRPN [11] and IDEAL [5] are device
management systems that concentrate on the flexible
and network-transparent access to VR devices.

3. SYSTEM DESIGN
Our concept of an MR framework is influenced by the
design of VRML. In VRML, each node of the scene
graph is a small status machine that receives events by
inslots, changes its status according to the event, and
sends events to outslots. Outslots and inslots are con-
nected by ROUTEs. This architecture in fact estab-
lishes a second graph besides the scene graph, a data
flow graph that contains large parts of the application
logic.
The advantage of VRML over applications written in
C++ or any other compiled language is that it is com-
pletely system independent. The same VRML world
can be viewed on different operating systems, on low-
end desktop PC’s and high-end graphic workstations
that operate immersive stereoscopic projection sys-
tems.
For our MR framework, we chose an approach that is
strongly influenced by the VRML data flow graph and
therefore has similar attractive properties. The main
task of our MR framework is to handle input and out-
put devices efficiently, because this is an area that is not
handled by VRML. But besides simply allowing ac-
cess to devices, our MR framework should also handle
all preprocessing of the data provided by the devices.
For example, it should not only allow the application to
grab video frames from a web cam, but also to deter-
mine the position and orientation of the user by using
these video frames (i.e. video based tracking).
Our intention is to create a library of small software
modules that are specialized on simple tasks. Some
software modules act as device drivers, i.e. they pro-
duce or consume data streams. Others act as filters, i.e.
they transform incoming data streams. The modules
are nodes of a data flow graph, and they receive data
from and send data to other modules via the edges of
the graph. The application developer should be able to
build as much as possible of his application by simply

assembling these prefabricated software modules into
a data flow graph, allowing him to concentrate on the
application logic.

3.1. Nodes
Nodes are the core component of the data flow graph.
There are four types of nodes:

1. Nodes that produce data. These are usually de-
vice drivers of input devices, nodes that replay
data streams stored on a hard disk, timers etc.

2. Nodes that transform data. Examples are nodes
that transform coordinate systems, or video track-
ing systems that take video frames and transform
them to position and orientation values.

3. Nodes that consume data. These are usually de-
vice drivers of output devices, nodes that store
data streams on a hard disk, etc.

4. Nodes that do not deal with data in any way. This
sounds strange at a first glance, but our system
currently already has three nodes of this kind: The
“Network” node that makes the system network
transparent, the “Web” node that provides a user
interface to the framework, and the “Inline” node
that allows to integrate subgraphs stored in con-
figuration files.

To create a new node, the developer has to derive a
new class from the abstract node base class. Nodes can
be linked into the application executable (mostly used
for the basic, application-independent set of standard
nodes provided by the system), or they can be loaded
as plugins during runtime (application-specific nodes).
An important design decision that has to be made by
the developer of a new node is whether the node uses
its own thread or not. Device driver nodes for input
devices usually always need to have an own thread,
because they have to listen to the port the device is
connected to. All other types of nodes do not necessar-
ily need to have their own thread. For example, filter
nodes that transform position values into another coor-
dinate system usually directly calculate the new values
when they are notified that new data is available. This
means that they are in fact driven by the threads of the
device driver nodes that provided the incoming data
values. On the other hand, filter nodes that have to per-
form complex calculations, like video trackers, usually
get their own threads.

3.2. Outslots and Inslots
Outslots and inslots are the means used by nodes to ex-
change data values. Outslots are used to send data to
other nodes, and inslots are used to receive data from
other nodes. Both outslots and inslots are typed, i.e.
you have to specify what kind of data can be send to
or received from the slot when you create it. When a



node writes data values into an outslot, the outslot au-
tomatically transfers copies of these data values to all
inslots it is currently connected to. For efficiency rea-
sons, smart pointers are used to transfer large amounts
of data, i.e. copying data values into inslots usually
just requires to copy a pointer.

3.3. Routes
When creating nodes of the data flow graph, the ap-
plication developer has to specify a unique name for
each of these nodes, e.g. “Joystick 1” and “Joystick
2” for two nodes that operate joysticks attached to the
system. Each outslot and inslot of a node has a unique
label as well, e.g. “Button #1” for the first button of a
joystick or “X-Axis” for the x-axis. As a result, each
slot in the system can be identified by a unique label
consisting of the node name and the slot name, e.g.
“Joystick 1/Button #1” for the first button of the first
joystick or “Joystick 2/X-Axis” for the x-axis of the
second joystick. To connect an outslot to an inslot, the
application developer simply has to create a so-called
“Route” that maps the label of an outslot to the label of
an inslot. Of course, only slots sending and receiving
the same data type can be connected by routes.

3.4. Configuration File
The configuration file allows to store the whole data
flow graph on hard disk and to restore the graph when
starting the application again. The format of the con-
figuration file is XML due to the fact that this is a well-
known, established standard for storing information.
Even though it is possible to create these XML files by
hand, this approach is not recommended. Instead, the
application developer uses the integrated user interface
of the device management system to create a data flow
graph that fulfills his needs. This user interface also
allows to save the current status into a configuration
file.
There are two ways to restore a saved graph from a
configuration file:

1. The user simply loads the configuration by using
the integrated user interface.

2. There is a special “Inline” node that allows to in-
tegrate configuration files into other configuration
files, exactly the same way as the VRML “Inline”
node allows to integrate several VRML subgraphs
into one scene graph, or the C “include” prepro-
cessor statement allows to integrate several pieces
of source code into one file.

3.5. Network Transparency
The concept of a data flow graph makes it simple to
introduce network transparency into the device man-
agement system. Nodes of the graph communicate via
edges, so the most elegant solution is to allow edges to
be created between nodes on different machines.

Our system does not support network transparency di-
rectly. Instead, it is made available by a special node
called “Network”. We did this to achieve a clear sep-
aration between the device management and the net-
work code.
When the Network node starts operation, it automat-
ically connects to all other Network nodes on the
network. We are using a technique called “Multi-
cast DNS” [12] to automatically discover all Network
nodes available on the network without the need of any
configuration or central servers. After connecting, the
Network nodes create local proxy nodes for all nodes
available on remote machines. These proxy nodes can
be used to create edges between nodes on different ma-
chines.
Each data value that gets transferred via a network
connection needs to be transformed into a system-
independent byte stream (serialization). For each data
type, a corresponding codec has to be implemented
that performs this serialization. Such codecs already
exist for the default data types provided by the system,
but the application programmer has to implement and
register codecs for all application-specific data types.
Most codecs simply write the data values into the byte
stream, but more sophisticated codecs are possible that
compress the transferred data, e.g. when transfering
video frames.

3.6. User Interface
Our device management system has an integrated
Graphical User Interface (GUI) that allows to modify
the data flow graph during runtime. During our work
on several MR projects it soon became obvious that it
is quite often impossible to do development and debug-
ging directly on the machine the application is running
on. Instead, we need means to control our application
from other machines in the network.
Our solution is a small web server that provides a user
interface build from HTML pages. This web server
is not part of the device management system, instead
it is implemented as a node that can be added to the
data flow graph. The web server solution allows us to
control the device management system from any de-
vice that has a simple web browser installed and that
is connected via network to the machine the applica-
tion is running on. The interface allows to inspect the
current state of the system, to add and to remove nodes
and routes from the graph, to change parameters, and
to save the current state to or to restore it from a con-
figuration file.

4. APPLICATION EXAMPLE
In this section we will discuss the solution for the task
of combining tracking systems which is necessary in
many Mixed Reality applications. The MEDARPA
Project focused on the development of a flexible med-
ical augmented reality system supporting minimal in-



SENSORT

RESULT

T1T0

Coordinate Transform Node

RESULT

RESULT

RESULT

T1T0

Coordinate Transform Node

RESULT

T1T0

Coordinate Transform Node

RESULT
ALIGNMENTALIGNMENT

A B

Rendering System

NODE A NODE B

alignment procedure

INPUT A INPUT B

T1T0

Coordinate Transform Node

T1T0

Coordinate Transform Node

T1T0

Coordinate Transform Node

A B
GLOBAL TGLOBAL T

global alignment procedure

INPUT A INPUT B

SENSORTR

Tracking Node BTracking Node A

LOCAL T

Instrument Calibration
INPUT

LOCAL T

Instrument Calibration
INPUT

Figure 1. Graph for a composed tracking
system. Dashed arrows depict event based

data flow, solid arrows continuous data flow.

vasive interventions. Medical Image data and naviga-
tion support as augmentation are given on a transpar-
ent display which is mounted on a swivel arm. 6DOF
tracking of the physicians head, the transparent dis-
play, patient and the instrument for the intervention
is needed in order to provide the augmentations. An
optical tracking system is used for the tracking of the
physicians head as well as for the display position and
orientation. For the tracking of the instrument an elec-
tromagnetic tracking system was chosen. These two
tracking systems were combined as discussed in [10]
by applying several consecutive transformations to all
measurements to get the output of all tracking systems
to a common coordinate system. A 6DOF transform
consists of a rotation component and a translation com-
ponent which are represented in a4×4 transformation
matrix and referred asT in the following. Usually the
sensor of a tracking system cannot be placed exactly
at the location which is to be tracked e.g. the tip of an
instrument, the local transformT sens

l allows to specify
the location of the instruments tip in the sensor coordi-
nate system. The alignment transformT al

tr is needed to
get the frame of reference defined by each tracking sys-
tem aligned to a common frame of reference by map-
ping the output of one system to the frame of reference
of the other system. A final transformationTw

al allows
to change the frame of reference if this is required by a
special application.
For each measurementT tr

sens reported by the tracking
system, the transformation
T = Tw

l = Tw
al · (T al

tr · (T tr
sens · T sens

l ))
needs to be calculated. The resulting transformation
T can then directly be routed into the corresponding
VRML Transform nodes of the scenegraph which is
loaded on the Avalon rendering system. The resulting
application dataflow is shown in figure 1.

5. CONCLUSION
In this paper we presented the framework we use for
MR applications. It is currently implemented as a C++
library on several operating systems (Windows, Mac-
OS X, Linux, IRIX and SunOS) and as a Java package
(written in pure Java, therefore running on all systems
where a Java virtual machine is available). We are cur-
rently developing MR applications based on the frame-
work, and the experiences we gain from these practi-
cal trials propel the further advancement of the system.
Our current research focus is the identification, design
and implementation of new nodes that further ease the
development of MR applications.

References
[1] L. E. Arsenault and J. Kelso. The DIVERSE Toolkit:

A Toolkit for Distributed Simulations and Peripheral
Device Services. InVR 2002, 2002.

[2] M. Bauer, B. Bruegge, G. Klinker, A. MacWilliams,
T. Reicher, S. Riss, C. Sandor, and M. Wagner. Design
of a component-based augmented reality framework.
In Proceedings of ISAR 2001, 2001.

[3] J. Behr, P. D̈ahne, and M. Roth. Utilizing X3D for
Immersive Environments. InProceedings of Web3D
2004, pages 71–78, 2004.

[4] C. Cruz-Neira, A. Bierbaum, P. Hartling, C. Just, and
K. Meinert. VR Juggler - An Open Source Platform
for Virtual Reality Applications. InProcs of 40th AIAA
Aerospace Sciences Meeting and Exhibit ’02, 2002.

[5] T. Fröhlich and M. Roth. Integration of Multidi-
mensional Interaction Devices in Real-Time Computer
Graphics Applications. InComputer Graphics Forum
19, pages C–313 – C–319, 2000.

[6] B. MacIntyre and S. Feiner. Language-level support
for exploratory programming of distributed virtual en-
vironments. InProceedings of UIST ’96, pages 83 –
95, 1996.

[7] W. Piekarski and B. H. Thomas. An object-oriented
software architecture for 3D mixed reality applica-
tions. InProceedings of ISMAR 2003, 2003.

[8] G. Reitmayr and D. Schmalstieg. An Open Software
Architecture for Virtual Reality Interaction. InPro-
ceedings of VRST 2001, 2001.

[9] D. Schmalstieg, A. Fuhrmann, G. Hesina, Z. Szalavari,
L. M. Encarnaç̃ao, M. Gervautz, and W. Purgathofer.
The Studierstube Augmented Reality Project.Pres-
ence, 11, 2002.

[10] B. Schwald, H. Seibert, and M. Schnaider. Composing
6 DOF Tracking Systems for VR/AR. InProceedings
of Computer Graphics International 2004, pages 411–
418, 2004.

[11] R. M. Taylor, T. C. Hudson, A. Seeger, H. Weber, J. Ju-
liano, and A. T. Helser. VRPN: A Device-Independent,
Network-Transparent VR Peripheral System. InPro-
ceedings of VRST 2001, 2001.

[12] Multicast DNS, IETF draft.
http://www.multicastdns.org/.


	IPC_2005.pdf
	IPC_2005.pdf

	!WSCG2005_Short_Final_Stamped.pdf
	Local Disk
	StampIt - A Stamping Utility for PDF Documents

	!WSCG2005_Short_Final.pdf
	J37-full.pdf
	J37-full.pdf
	INTRODUCTION
	CUBIC BEZIER APPROXIMATION
	Control point search
	Recursive Segment Subdivision

	OUTLINE CAPTURING PROCESS
	Outline Extraction
	Corner Detection
	Outline Approximation

	RESULTS DEMONSTRATION
	CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES


	J61-full.pdf
	INTRODUCTION
	QUADRATIC B-SPLINES (QBS)
	APPROXIMATION TECHNIQUE
	Step 1 – Initial Data Points
	Step 2 – Knot Insertion
	Step 3 – Error Minimization

	RESULTS DEMONSTRATION
	CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES

	E43-full.pdf
	F43-full.pdf
	I23-full.pdf
	I31-full.pdf



