
Spacetime Catmull Recursive Subdivision
Facilitated with Occlusion Culling

Andreas Genz
FB3, Grafische Datenverarbeitung, Universität Bremen

Linzerstr. 9a, 28359 Bremen, Germany

genz@acm.org

ABSTRACT

We describe an extension and a generalization of the Catmullrecursive subdivision algorithm: first, an image-
based occlusion culling stage is added; second, all rendering stages, that is, view-frustum and occlusion culling,
subdivision of geometric primitives into micropolygons, and rasterization, are performed in spacetime.
Operating in spacetime allows to exploit temporal coherence in animated scenes.

Keywords
image generation, rendering, spacetime rendering, occlusion culling, hidden surface removal, performance

1. INTRODUCTION
The following rendering algorithm is optimized for
very complex dynamic scenes preferring a procedural
description of geometry. Main objective is to produce
and process geometry only if it affects the synthesized
animation. We choose the Catmull recursive subdi-
vision algorithm as a foundation, because it was de-
signed with procedurally described geometry in mind
and it is the ancestor and back-bone of the REYES ar-
chitecture, which is in use for most movie productions
these days. We insert an occlusion culling stage with
a summed-area table as its occlusion representation.
Also, we generalize the complete rendering pipeline
to operate in spacetime. The occlusion representation
becomes a summed-volume table then.

2. PREVIOUS WORK
In 1988, Andrew Glassner published implementa-
tion results of accomplishing ray tracing in spacetime
[Gla88]. In 1999, Damez and Sillion have shown how
to perform radiosity calculations in spacetime [DS99].
And in 2003 Havran et al. picked up the task of ray

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice
and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

SHORT papers proceedings, ISBN 80-903100-9-5
WSCG’2005, January 31-February 4, 2005
Plzen, Czech Republic.
Copyright UNION Agency – Science Press

tracing in spacetime again [HDMS03]. But to our
knowledge, no one ever tried to realize a spacetime
z-buffer rendering pipeline.
An extensive overview on general occlusion culling
techniques is given by Cohen-Or et al. [COCSD03].
Image-based occlusion culling was pioneered by Ned
Greene [GKM93]. Variants of his hierarchical z-
buffer are used in today’s hardware [AMN03] and
in the prman renderer—Pixar’s implementation of the
REYES architecture—to reduce the number of shad-
ing calculations [AGB99].
Another candidate for an image occlusion representa-
tion is the summed-area table, which is in common
use for texture mapping today [Cro84]. It was used
for volume rendering by Huang et. al. [HCSM00], for
occlusion culling by Ho and Wang [HW99], and the
author [Gen01].
Catmull introduced in his dissertation a rendering al-
gorithm [Cat74] fetched up by Lucasfilm’s render-
ing group to realize the REYES architecture [CCC87,
AGB99]. This architecture may be a good candidate
for future realtime rendering pipelines implemented in
hardware [OKTD02].

3. THE CATMULL RECURSIVE
SUBDIVISION ALGORITHM

Z-buffer algorithms hold the advantage to address sur-
faces independently of each other.
Subdivision splits an object into more than one smaller
objects, the sum of the smaller objects represents the
original one, and the smaller objects can be handled
independently. Subdivision of the scene space (for ex-
ample by octrees), of the raster image space into buck-
ets or a hierarchy, of the camera space into layers along



the z-axis as will be shown later, and of geometric
primitives in different spaces are plausible.
The REYES architecture takes this two concepts—z-
buffer and subdivision—devised by Catmull [Cat74]
and extends them by incremental methods to dice each
surface into micropolygons, by shading micropoly-
gons with texture filtering, and by subpixel rasteriza-
tion with jittered samples for antialiasing [CCC87].

Algorithm C (Catmull’s recursive subdivision algo-
rithm). Given: camera, surfaces. Find a raster image
of the scene

For each surface:
C1. Compute camera-space axis-aligned bounding box.
C2. If bounding box is entirely outside viewing volume:

drop surface.
C3. Else: project bounding box into image space.
C4. If area of bounding rect larger than one pixel:
C5. subdivide surface.
C6. Else: rasterize surface, z-buffer visibility test.

Catmull’s recursive subdivision algorithm can be seen
as the first stage (splitting) of the REYES pipeline plus
a z-buffer. Surfaces are subdivided in parameter space
(C5) until the resulting face becomes small enough,
such that the area of its bounding rect is smaller than
one pixel (C4). Then, one point inside the surface is
tested against the z-buffer for visibility, and its color
is written to the color buffer if it passes the test (C6).
During subdivision, if an surface is outside the view-
ing volume, it is dropped. For purpose of efficiency
and code minimalism, tests are not done on the sur-
face directly, but on its bounding box. Therefore, ev-
ery face must have the following properties to be used:
it must have a well defined bounding box and subdivi-
sion procedure.
The Catmull recursive subdivision algorithm accom-
plishes hierarchical view-frustum culling and level-of-
detail implicitly. Ideally, the whole scene can be de-
scribed as one surface that is subdivided during the
rendering process, so that unnecessary geometry is not
stored and processed at all.
Here we make use of this algorithm, because it is
well suited for a simple implementation to measure
the number of required recursive subdivisions. Our
goal is to reduce this number by occlusion culling and
by exploiting temporal coherence, so that the follow-
ing pipeline stages of a fictional REYES architecture
would not be fed with too many geometric primitives.

4. SUMMED-AREA TABLE
OCCLUSION CULLING

For scenes with high depth-complexity processed
by traditional z-buffer visibility algorithms, a huge
amount of scene geometry entirely hidden by other ge-
ometry is rendered. Although, hidden geometry does

not contribute to the requested image if we restrain
light models to be local.
To overcome this, we add a simple occlusion culling
method to the Catmull recursive subdivision algo-
rithm. The algorithm is slightly variated by exchang-
ing C3 with C2; the bounding rect given by the pro-
jected bounding box is used for view-frustum culling,
occlusion region estimation, and area measurement
(subdivision criteria).

z

0
0

x x0 1

y

y

0

1

Figure 1: Depth layers and summed-area table in raster
space

Our image based occlusion culling algorithm using a
summed-area table is defined as follows:
a. Split scene into layers along the z-axis, see the left
side of figure 1. Necessary depth sorting for occlusion
culling is done implicitly via hierarchical view frus-
tum culling.
b. Render the front most layer with the Catmull recur-
sive subdivision algorithm.
c. Build a summed-area tableT (x,y) of the function
c(x,y), wherec(x,y) = 1, if pixel (x,y) is covered by
some surfaces, otherwisec(x,y) = 0. The summed-
area table is the occlusion representation.
d. Render the next layer with a modified Catmull re-
cursive subdivision algorithm:

Algorithm C´ (Catmull’s recursive subdivision algo-
rithm facilitated with occlusion culling). Given: cam-
era including layerdepth, surfaces. Find a raster image
of the scene

For each surface:
C´1. Compute camera-space axis-aligned bounding box.
C´2. Project bounding box into image space.
C´3. If bounding rect is entirely outside image borders:

drop surface.
C´4. Else: if area of bounding rect is larger than one pixel:
C´O. If bounding rect is totally occluded:

drop surface.
C´5. Else: subdivide surface.
C´6. Else: rasterize surface, z-buffer visibility test.

e. Return to stepc, unless the image has been totally
covered or the last layer is reached.
In stepC´O, let us assume the bounding rect has two
corners(x0,y0) and (x1,y1), see also the right side
of figure 1. Denote the number of pixels covered
by the bounding rect byB and computeB = (x1 −

x0)(y1− y0). Denote the number of pixels covered by
some surfaces in this bounding rect byA and compute



A = T (x1,y1)−T (x1,y0)−T (x0,y1)+T (x0,y0). Also,
denote an error toleranceε ≥ 0.
It can be seen that the surface is totally occluded and
can be dropped, ifA ≥ B− ε.

Figure 2: Scene of trees.

Figure 2 shows a case study: the rendering of a scene
containing approximately one hundred thousand trees
with geometrically different features. The scene has
been described procedurally, we make use of data am-
plification [EWM+98]. Our software implementation
of the outlined algorithm is three times faster than the
native Catmull subdivision algorithm for the rendition
of this image. But runtime is highly dependent on the
geometric model and the view-point.

Figure 3: Depth-of-field and tollerance culling.

Properties of using a summed-area table as the occlu-
sion representation are as follows: (1) An easy to un-
derstand and straight forward to implement method.
(Think about the z-buffer compared to more elaborate
hidden surface algorithms.) (2) A relatively long up-
date time compared to the z-pyramid used for the hi-
erarchical z-buffer. However, computing the summed-
area table can be accomplished in parallel to rendering
the next layer. (3) A fast occlusion test and efficient
culling of small and thin surfaces. (4) A simple way to
achieve occlusion culling with tolerances, for that sur-
faces do not have to be totally occluded to be dropped,
see figure 3, left for an excessive appliance for illus-
trative purposes. Furthermore, using layers gives the
potential to generate computationally cheap depth-of-
field effects, as shown in figure 3, right. Different lay-
ers can be rendered even in different resolutions result-
ing in reduced rendering time.

5. SUBDIVISION IN SPACETIME
Traditionally, rendering is handled by a mapping from
a 3D scene description to a 2D raster image:R3 → N2.
However, rendering an animation is a 4-dimensional
problem. We generalize this mapping process from a
4D scene description including motion descriptions to
a 3D raster image block—a sequence of 2D images:
R4 → N3.

Figure 4: Illustrations for spacetime subdivision de-
noted in left-to-right order: trilinear body; stepsS1,
S2, S3, S4, andS6of algorithm S.

In computer graphics bodies are usually reduced to
their surfaces, the things that are directly visible. In
a minimalistic case study, we address linear motions
of the control points of a bilinear patch: 3D control
points are linearly interpolated in time. We define a
trilinear body in spacetime, given by 8 control points:
P0,P1, . . . ,P7;Pi ∈ R4, see figure 4.

Algorithm S (Recursive subdivision algorithm oper-
ating in spacetime). Given: camera, bodies. Find a
raster image block.

For each body:
S1. Project control points to image spacetime.
S2. Compute bounding block in image spacetime.
S3. If bounding block is entirely outside view spacetime:

drop body.
S4. Else: if area of bounding rect in image space larger

than area of one pixel:
S5. Subdivide body.
S6. Else: rasterize body, z-buffer visibility test.

We add an occlusion culling stage analogous to that
of the last chapter: Corners of the bounding block
in raster image spacetime become then(x0,y0,t0) and
(x1,y1,t1). The Number of pixels covered by this
block is #BS = (x1−x0)(y1−y0)(t1−t0), and the num-
ber of pixels covered by some body in this block com-
puted with a summed-volume tableTS becomes:

AS = TS(x1,y1,t1)−TS(x0,y1,t1)−TS(x1,y0,t1)−

TS(x1,y1,t0)+ TS(x1,y0,t0)+ TS(x0,y1,t0)+

TS(x0,y0,t1)−TS(x0,y0,t0)



An body is totally occluded for all frames in[t0,t1] and
can be dropped, ifAS ≥ BS − ε.

Figure 5: Trilinear bodies moving in spacetime.

In figure 5, the light patch is not moving and so the
number of its subdivisions is independent of the num-
ber of frames. On the right side, it is culled by only one
occlusion test for the last two frames (micropolygons
are randomly graded to show their structure).

6. DISCUSSION AND FUTURE WORK
We made some observations that may influence future
work for spacetime recursive subdivision:
Bounding boxes are too large in higher dimensions.
Our implementation shows an explosion in the num-
ber of subdivisions for complex bodies. One way to
address these problems is to perform anisotropic sub-
divisions: to subdivide not in all parameter spaces at
once. This is also beneficial for texture filtering.
The layer depth should be changed adaptively in de-
pendance of the number of newly covered raster ele-
ments of the last rendered layer. To adapt our algo-
rithm to interactive real-time rendering, a prediction
function would be required measuring the probability
of future events.
An A-buffer rasterization [Car84] with volume sam-
ples represented by bit masks would be beneficial.
Geometric primitives and motion descriptions that are
well suited for subdivision in space time have to be
found. Furthermore, a known scene description lan-
guage has to be adapted or a new one has to be devel-
oped.
Our approach consumes a huge amount of memory
for z-buffer, raster image, and summed-volume table.
Subdivision of the image into buckets [CCC87] can
help, although some spacial coherence at the border of
buckets will be lost.

7. ACKNOWLEDGEMENT
Warm thanks go to Daehyun Kim, Frieder Nake, Car-
oline von Totth, Eric Allen Engle, anonymous WSCG
reviewers, and Eva.

8. REFERENCES
[AGB99] Apodaca A. A., Gritz L., and Barsky B. A.

Advanced RenderMan: Creating CGI for Motion
Picture. Morgan Kaufmann Publishers Inc., 1999.

[AMN03] Aila T., Miettinen V., and Nordlund P. Delay
streams for graphics hardware.ACM Trans. Graph.,
22(3):792–800, 2003.

[Car84] Carpenter L. The a-buffer, an antialiased hidden
surface method. InProceedings of the 11th annual
conference on Computer graphics and interactive
techniques, pages 103–108. ACM Press, 1984.

[Cat74] Catmull E. E.A subdivision algorithm for
computer display of curved surfaces. PhD thesis,
University of Utah, 1974.

[CCC87] Cook R. L., Carpenter L., and Catmull E. The
reyes image rendering architecture. InProceedings of
the 14th annual conference on Computer graphics
and interactive techniques, pages 95–102. ACM
Press, 1987.

[COCSD03] Cohen-Or D., Chrysanthou Y. L., Silva C. T.,
and Durand F. A survey of visibility for walkthrough
applications. InTransactions on visualization and
computer gaphics, vol. 9, no. 3, pages 412–431. IEEE
Computer Society, 2003.

[Cro84] Crow F. C. Summed-area tables for texture
mapping. InProceedings of the 11th annual
conference on Computer graphics and interactive
techniques, pages 207–212. ACM Press, 1984.

[DS99] Damez C. and Sillion F. Space-time hierarchical
radiosity. InRendering Techniques ’99, pages
235–246, New York, NY, 1999. Springer Wien.

[EWM+98] Ebert D. S., Worley S., Musgrave F. K.,
Peachey D., Perlin K., and Musgrave K. F.Texturing
and Modeling. Academic Press, Inc., 1998.

[Gen01] Genz A. Occlusion culling and summed-area
tables. InSIGGRAPH’2001: Conference Abstracts
and Applications, page 238. ACM SIGGRAPH,
August 2001.

[GKM93] Greene N., Kass M., and Miller G. Hierarchical
z-buffer visibility. In Proceedings of the 20th annual
conference on Computer graphics and interactive
techniques, pages 231–238. ACM Press, 1993.

[Gla88] Glassner A. S. Spacetime ray tracing for
animation.IEEE Computer Graphics and
Applications, 8:60–70, March 1988.

[HCSM00] Huang J., Crawfis R., Shareef N., and Mueller
K. Fastsplats: optimized splatting on rectilinear grids.
In Proceedings of the conference on Visualization ’00,
pages 219–226. IEEE Computer Society Press, 2000.

[HDMS03] Havran V., Damez C., Myszkowski K., and
Seidel H.-P. An efficient spatio-temporal architecture
for animation rendering. InProceedings of the
Eurographics Symposium on Rendering, vol. 14,
pages 106–117, June 2003.

[HW99] Ho P. C. and Wang W. Occlusion culling using
minimum occluder set and opacity map. InIEEE
International Conference on Information
Visualization, pages 292–300, 1999.

[OKTD02] Owens J. D., Khailany B., Towles B., and
Dally W. J. Comparing reyes and opengl on a stream
architecture. InProceedings of the conference on
Graphics hardware 2002, pages 47–56. Eurographics
Association, 2002.


	IPC_2005.pdf
	IPC_2005.pdf

	!WSCG2005_Short_Final_Stamped.pdf
	Local Disk
	StampIt - A Stamping Utility for PDF Documents

	!WSCG2005_Short_Final.pdf
	J37-full.pdf
	J37-full.pdf
	INTRODUCTION
	CUBIC BEZIER APPROXIMATION
	Control point search
	Recursive Segment Subdivision

	OUTLINE CAPTURING PROCESS
	Outline Extraction
	Corner Detection
	Outline Approximation

	RESULTS DEMONSTRATION
	CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES


	J61-full.pdf
	INTRODUCTION
	QUADRATIC B-SPLINES (QBS)
	APPROXIMATION TECHNIQUE
	Step 1 – Initial Data Points
	Step 2 – Knot Insertion
	Step 3 – Error Minimization

	RESULTS DEMONSTRATION
	CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES

	E43-full.pdf
	F43-full.pdf
	I23-full.pdf
	I31-full.pdf



