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ABSTRACT 

This research describes an algorithm to find “thin points'” in a solid represented as an Abstract Cellular 
Complex. The algorithm is mostly iterative, adding one face at a time to a set of previously selected faces, and 
choosing the selections that produce the loops with the shortest lengths for the next iteration. The output from 
the algorithm is a set of loops that indicate the thinnest portions of the solid. As implemented, the algorithm 
allows a threshold to be set to limit the number of loops that are selected in each iteration. The results indicate 
that, while it does occasionally produce errors, the algorithm is mostly accurate, and a lower threshold increases 
its speed, without negatively affecting its accuracy. 
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1. INTRODUCTION 
Our algorithm focuses on finding “thin points'” in a 
solid represented as an Abstract Cellular Complex. 
“Thin points” refers to areas where the solid is 
narrowest in the current locality. Mathematically 
defined, a “thin point” is a point p on the surface of a 
solid where the radius r of the largest sphere that can 
be inscribed within the figure and be tangent to that 
point is the smallest in the current locality, that is, 

,  and 0)( =′ pr 0)( <∂−′ ppr 0)( <∂+′ ppr . One 
potential application for finding the thin points of a 
solid would be to find the weakest points of a 
structure.  

In the program, we will actually search for loops, 
comprised of a set of adjacent edges where the length 
of the loop is the smallest, which should provide a 
reasonable approximation. The only potential 
difference is when the loop at that point is a highly-
concave figure. 

2. PREVIOUS LITERATURE 
Previous methods to find the “thin points” in images 
have used Hessian matrices. For example, Sukanya et 

al. [Suk96] describe a new operator for image 
structure analysis based on Hessian matrices, which 
describes the shape of each pixel. The paper also 
describes 4 types of surface shape: Dale, valley, 
ridge, and hill.  

Florack and Kuijper [Flo00] use the “catastrophe 
theory”, also based on Hessian matrices and critical 
points, to find “extrema” and “saddles” in localised 
portions of images.  

Danielsson and Lin [Dan01] also use the Hessian, 
along with spherical harmonics, for shape detection 
in both 2D and 3D. However, instead of searching 
for “thin points”, the 3D portion of the research 
concerns detecting “strings”, i.e., long curvilinear 
shapes. Similarly, Koller et al. [Kol95] concentrate 
on finding “line-like” structures. Both pieces of 
research cite finding blood vessels in MRI data as 
applications for their algorithms. It should be noted 
that most existing research designed for 3D images 
concentrates on finding lines, generally with medical 
applications. However, Danielsson and Lin’s 
research is derived from a more general overview 
[Dan98] of a derotation algorithm for 3D 
segmentation.  Permission to make digital or hard copies of all or part of 

this work for personal or classroom use is granted without 
fee provided that copies are not made or distributed for 
profit or commercial advantage and that copies bear this 
notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute 
to lists, requires prior specific permission and/or a fee.  
Copyright UNION Agency – Science Press, Plzen, Czech 
Republic. 

Here, we will describe a method to find the 3D 
equivalent of a saddle in a 3D solid. Also, the 
method used in this algorithm is somewhat axis-
independent, depending mostly on the adjacency 
between the faces, and the lengths of the edges.  

The data structure used to represent the solids (the 
input to the algorithm) is the Abstract Cellular 
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Complex, devised by Kovalevsky [Kov01]. It is 
designed to efficiently represent topological data, by 
describing, for each element of the solid, which other 
elements of different dimensions it is adjacent to 
(e.g., faces adjacent to a given edge, edges adjacent 
to a given vertex, etc.), so that relations between 
parts of the image can be found with limited 
searching. In particular, it explicitly identifies which 
faces are adjacent to a given edge, and what edges 
comprise a given face. This makes the algorithm 
efficient. 

3. THE ALGORITHM 
The structure of the algorithm is thus: 

1. Determining the axis of the shape (optional) 
and selecting a face 

2. Creating new selections by adding faces to 
the current selection, and finding the 
selection with the smallest total length 

3. Limiting the number of selections created 
according to the length (“thresholding”) 

4. Processing the selections to determine the 
thinnest points 

While loading the Abstract Cellular Complex data, 
we pre-calculate the length of each edge. After the 
data has been loaded there is an optional “axis 
detection” step. This step is designed to find a good 
face to start the next step from. This step begins with 
averaging the coordinates of the vertices of the 
volume to find an approximate center. We also 
average the coordinates of the vertices of each face to 
obtain each face’s center as well.  
Next, we split the volume into sets of vertices by the 
x-value of each vertex. In our algorithm, we have 
chosen to split them into 20 sets. We find the 
averages of the coordinates of each vertex in each 
set, and use linear regression to determine the line 
that best fits the 20 given averages.  
We repeat this process using the y- and z-values 
instead of the x-value. In Figure 1, we show the 
results for the x and y axes for one of the example 
shapes we will be using. (For the illustration, we 
have also simplified it down to just 10 sets of 
vertices.)  
Having obtained three different lines, we determine 
which of them has the best fit, by summing the 
distances between the average of each set and the 
line. In the case of Figure 1, the line obtained after 
splitting the shape by the x-axis has a better fit than 
that obtained after splitting the shape by the y-axis.  

 
Figure 1. Initial splitting. 

 
Figure 2. Iterative splitting. 
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After obtaining the best-fitting line, we then split the 
vertices into sets again, using this line as the axis. 
Once again, we find the averages of the coordinates 
of each vertex in each set, and use linear regression 
to determine the best-fitting axis. We then repeat this 
step with the newly-determined axis until the new 
axis deviates from the old axis by less than 0.1°. See 
Figure 2, as done with another example shape. If the 
axis does not converge after a certain number of 
steps, we average the most recent axes obtained and 
use that as the axis.  
We determine the plane that passes through the 
approximate center and is normal to the best-fitting 
line, and find the face whose center is furthest from 
the plane. We select this face, and sum the lengths of 
its edges, and store the total length in an array. 
 (If axis detection is not used, or produces an error, 
the program simply takes the first face listed for the 
volume. In our earlier work [Ung06], which this 
research augments, this face contains the vertex with 
the smallest x-value.)  
The next step of this algorithm is iterative. We find 
all the faces that are adjacent to a face in each current 
selection. A “selection” is the set of faces in the solid 
that have been selected, and a selection is represented 
as a simple Boolean array, with each value in the 
array corresponding to whether the corresponding 
face has been selected. In the first step, the first face 
picked is the only current selection.  
For each face that is adjacent to a previously-selected 
face in the selection, we add the face to the selection. 
To save time, we only select faces that are adjacent 
to the most number of faces of the current selection. 
In other words, if there are faces that are adjacent to 
3 faces of the current selection, and none that are 
adjacent to at least 4, the program will add only those 
faces adjacent to 3 faces of the current selection. In 
Figure 3, there are three faces that are attached to 3 
selected faces, one attached to 2 selected faces, and 
five attached to one selected face. The three faces (as 
highlighted in the figure) will be added. 

 
Figure 3. Face preference. 

 

Having added a face to the selection, we test to see if 
it is a duplicate of a previous selection by running an 
exclusive-or operation: 
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If it is not a duplicate, we sum the lengths of the 
edges with one selected face attached. (We have 
tested other heuristics, and found that this one 
produces more accurate results than with the others.) 
Our algorithm uses other “shortcuts” to determine 
which edges have just one selected face attached and 
to sum the lengths of those edges. First, in each 
selection, we maintain two lists, a list of edges with 
one selected face attached (L1) and a list of edges 
with (at least) two selected faces attached (L2). As we 
read each edge in, if it is not in either list, we add it 
to L1. If it is already in L1, it is moved to L2. 
To sum the length of the edges in L1, we also 
maintain an array of the total lengths that were 
calculated in the previous step. As we add the face to 
the selection, we also determine which faces are 
being added or removed from L1, before adding and 
subtracting the lengths of those edges from the 
previously-calculated length to determine the new 
total length. Directly summing all the edges in L1 
could become unwieldy, especially when there are 
hundreds of edges in the list.  
After processing all the selections and their adjacent 
faces, we determine which selection has the least 
total length of edges in L1. To save processing time, 
we then remove selections whose total edge length is 
higher than 1.1 times that least total length. Further 
limitations may be made as necessary. (More will be 
explained in Thresholding.) The remaining selections 
(and their total lengths) are stored in an array for the 
next round of processing. We also store the least total 
length obtained for the current iteration in an array 
(along with a list of the edges that produces the 
result, i.e., the L1 of the selection). 
The number of iterations for this step is the same as 
the number of faces in the solid. After the iterative 
step is complete, we adjust the values, so as to favor 
selections from “midway” through the process, rather 
than those at the beginning and end. We do this by 
using this equation: 

i
i l

ifiv ),min( −
=  

where i is the number of the current loop, f is the 
total number of faces in the solid, and li is the least 
total length of the current loop. 
After passing the values through the equation, the 
most preferable values will have a high amount 
instead. 
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If necessary, we then clean up the values further by 
averaging adjacent values. This is done when the 
values tend to alternate between going up and down 
(e.g., in a solid with triangular faces). 

• High threshold (more selections to consider) 
Pro: More accurate 
Con: Takes more time 

• Low threshold (less selections to consider) Next, we calculate upward spikes in the values with 
another equation: Pro: Takes less time 
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s  Con: Potentially less accurate 

5. EXPERIMENTAL RESULTS 
The result of this equation produces positive values 
at upward spikes, which correspond to small loop 
sizes. 

The algorithm was run on a set of examples, as 
illustrated in the following Figures. 

Each figure was made in two versions:  one with 
quadrilateral faces, and another with mostly triangle 
faces. 

Next, we measure the “distance” (i.e., the number of 
loops) between the current loop and the closest loop 
that produces a higher value. For example, if s120 = 
200, s100 = 250, s150 = 300, and 

, then the distance is 20, as 250:150100 <<<∀ xsx
1201503020100120 −=<=− . 

 

 

Therefore, we multiply s100by 20 to produce the final 
value of 250 × 20 = 5000. 
 
We then output the final values that are larger than 

50
1 of the largest final value, as the thin points of the 

solid. 
Figure 6. (a) Quadrilateral faces (b) Triangle 

faces 4. THRESHOLDING 
As implemented, the program allows its user to select 
the threshold of number of selections that remain 
after each loop of the iterative step (min. 10, max. 
1000). When the number of selections that remain, 
after removing those with a total length more than 
1.1 times the least total length, still exceeds the 
threshold, the program sets a new length limit: 

The results obtained from these examples (with a 40 
threshold) are shown in the following Figures 7 to 
10, with the loops obtained highlighted in black. 
The results show that the algorithm, while it has 
some degree of accuracy, still needs improvement. In 
particular, the algorithm produces spurious results in 
two examples, and it completely misses another thin 
point in one of the other examples. )95.0,min(1.00

c

t

n
n

t ×=  

 
where nt is the threshold, and nc is the actual number 
of selections. The program then removes selection 
with a total length more than (1+t0) times the least 
total length. If necessary, the program adjusts the 
length limit further:  

)95.0,min(1
c

t
ii n

n
tt ×= −  

If, after 20 iterations of adjusting the length limit 
(i>20), the number of selections that remain still 
exceeds the threshold, the program uses a sorting 
algorithm to find the selections with the smallest total 
lengths, up to the threshold (e.g., if the threshold is 
40, we take the 40 selections with the smallest total 
lengths).  
The pros and cons of high and low thresholds are 
thus: 
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Figure 8. Example 3 results. Figure 6. Example 1 results. 

 

 
 Figure 7. Example 2 results. 

Figure 9. Example 4 results.  
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Figure 10. Example 5 results. 

 
Figure 11. Example 6 results. 

The execution times are shown in Table 1. The 
results indicate a much longer execution time for 
solids with triangular faces. The reason this is so is 
that quadrilateral faces take advantage of the face 

preference time-saving measure, while the triangular 
faces do not.  
 

Ex. Faces 
(Quad.) 

Time 
(Quad., s) 

Faces 
(Tri.) 

Time 
(Tri., s) 

1 480 19.598 448 95.858 

2 480 22.162 448 136.556 

3 480 22.282 448 134.103 

4 960 73.946 912 1009.011 

5 960 72.534 912 802.224 

6 960 70.031 912 587.915 
Table 1. Execution time 

Due to the lengthy execution times for the solids with 
triangular faces, the experiment then looked into the 
effects of lowering the threshold. 

This experiment was done on the third example, and 
the results are in Table 2. 

Threshold 10 (min.) 40 
Time 14:30.442 s 26:24.408 s  

Threshold 80 120 

Time 1:01:19.721 s 2:00:51.497 s 
Table 2. Execution time for different thresholds 

The results were the same as the 40 threshold for the 
80 and 120 thresholds, but different for the 10 
threshold. This result shows that while lowering the 
threshold also lowers the execution time, it does not 
significantly adversely affect the accuracy. 

6. CONCLUSIONS 
As currently implemented, the algorithm that has 
been described in this paper is effective in finding 
the “thin points” in an Abstract Cellular Complex.  
This algorithm has potential applications where 
finding the thinnest part of a structure represented as 
a 3D mesh is necessary, for example, to find a 
possible weak spot in a structure, or a potential spot 
to “chop” the structure into two parts or more.  

Current drawbacks of the algorithm are that it has 
limited sensitivity, that it assumes that the shortest 
loop is also the smallest loop (an assumption that 
does not hold when the smallest loop is very 
concave) and that, in the worst case, it takes 
exponential time to discover the thin points. Future 
potential improvements include finding better 
heuristics to determine the smallest loops, increasing 
the speed and efficiency of the algorithm, and 
increasing the sensitivity while decreasing the 
spurious results obtained with the algorithm. 
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