
Automatic Creation of Object Hierarchies for Ray Tracing of
Dynamic Scenes

Martin Eisemann Thorsten Grosch Marcus Magnor Stefan Müller
Institute for Computer University of Institute for Computer University of

Graphics, TU Koblenz-Landau, Graphics, TU Koblenz-Landau
Braunschweig, Germany Germany Braunschweig, Germany Braunschweig
eisemann@cg.tu-bs.de grosch@uni-koblenz.de magnor@cg.tu-bs.de stefan.mueller@uni-koblenz.de

ABSTRACT
Ray tracing acceleration techniques most often consider only static scenes, neglecting the processing time needed
to build the acceleration data structure. With the development of interactive ray tracing systems, this reconstruction
time becomes a serious bottleneck if concerned with dynamic scenes. In this paper, we describe two strategies for
efficient updating of bounding volume hierarchies (BVH) for scenarios with arbitrarily moving objects. The first
exploits spatial locality in the object distribution for faster reinsertion of the moved objects. The second allows
insertion and deletion of objects at almost constant time by using a hybrid system, which combines benefits from
both spatial subdivision and BVHs. Depending on the number of moving objects, our algorithms adjust a dynamic
BVH six to one hundred times faster than it would take to rebuild the complete hierarchy, while rendering times of
the resulting hierarchy remain almost untouched.
Keywords: Ray Tracing, Object Hierarchies, Bounding Volume Hierarchies, Animation, Dynamic Scenes

1 INTRODUCTION
Ray tracing is well known for its ability to create pho-
torealistic images. Recently developed ray tracing sys-
tems are now already able to achieve interactive frame
rates, but their efficiency relies heavily on precalculated
acceleration data structures [15][22][4][17]. The com-
plexity for reconstructing these acceleration data struc-
tures for a scene with n triangles is often O(n logn) or
worse, with the final cost in the ray tracing phase be-
ing only O(logn) per pixel on average. This usually
limits interactive ray tracing to static scenes or simple
walkthroughs, so that the acceleration structure can be
reused for all frames.

For a complete interactive ray tracing system, an effi-
cient support of moving objects is necessary. Therefore,
the acceleration data structures usually have to be re-
build for each frame. Techniques like frameless render-
ing [2] [3] and frustum traversal [17] reduce the amount
of work that has to be done in the ray tracing phase and
almost linear scalability for up to 128 processors has
been shown [15]. But the reconstruction phase cannot
be parallelized as easily, in fact very little research has

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
Copyright UNION Agency – Science Press, Plzen, Czech Republic.

been done on this topic [8]. Thus it becomes the bottle-
neck to interactive ray tracing of dynamic scenes.

In this article we present two approaches to deal with
the problem of ray tracing animated scenes, based on
bounding volume hierarchies (BVH). The first, called
Dynamic Goldsmith and Salmon (Dyn. G&S), exploits
spatial coherence to rapidly update the BVH, while
the second, called Loose Bounding Volume Hierarchy
(LBVH), is a hybrid approach, which allows for recon-
struction of the acceleration data structure in O(n) by
combining the benefits of a BVH with spatial subdivi-
sion.

The rest of the paper is organized as follows. In the
next section we review some related work. Then we
present our approaches of handling dynamic scenes in
Sect. 3. Results and their discussion are given in Sect. 4,
followed by a conclusion and directions to future work
in the final section.

2 RELATED WORK
A large number of methods and algorithms to speed
up ray tracing exist, but most of them are designed for
static images or simple walkthroughs and not much at-
tention has been spent on constructing these accelera-
tion structures efficiently. Therefore, ray tracing of dy-
namic scenes is a rather new field of research, which
gets more and more important as ray tracing gets more
and more accelerated.

Quite early Glassner [5] developed a technique called
Spacetime Ray Tracing. The idea was to intersect rays
with static four-dimensional objects instead of dynamic

Short Communication papers 57 ISBN 978-80-86943-02-2

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace at University of West Bohemia

https://core.ac.uk/display/295558474?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

objects in three-space, whereas the fourth dimension is
time. Unfortunately, this technique is only suitable for
scenes with predefined movements.

Using multiprocessors Parker et al. [15] were able
to ray trace reasonably complex scenes at interactive
frame rates. Moving objects are tested separately for
intersection, which therefore allowed only a small
amount of them (≤ 10).

Reinhard et al. [16] used hierarchical grids for ray
tracing of dynamic scenes. Their data structure is es-
sentially a balanced octree, which keeps objects at dif-
ferent levels, depending on their size. This allows for
insertion and deletion in almost O(1) for an object. De-
pending on the motion, the entire data structure needs
to be rebuild once in a while.

Lext and Akenine-Moeller [11] build hierarchies of
oriented bounding boxes containing recursive grids.
These grids include all primitives which underly the
same affine transformation. It is therefore sufficient
to build them once and transform the rays into the
local coordinate system for performing intersection
tests. We adapt this concept for both of our presented
strategies in this paper.

Wald et al. [21] also exploit local coordinate systems
to animate rigid bodies. But instead of using the scene
graph for traversal between these entities, they rebuilt
the whole top-level data structure every time a move-
ment takes place. This results in quite long update
phases between the frames. A complete rebuild for ev-
ery frame is also proposed in [24], but the underlying
data structure is a uniform grid which can be rebuild
more efficiently, but might suffer from non-uniform ob-
ject distribution.

Guenther et al. [7] use motion decomposition to ray
trace deformable models. The connectivity does not
change and the space of possible poses is known in ad-
vance. The model is decomposed into clusters which
underly a similar transformation. Residual motion is
captured in a single fuzzy kd-tree for the entire anima-
tion.

An example of a lazy evaluation strategy was given
by McNeill et al. [14]. The upper levels of an octree
are build in a preprocessing step, while the rest is build
on demand. They propose to use this technique also
for dynamic environments, but test results were only
presented for static scenes.

Recently, Waechter et al. [20] showed that this con-
cept can be applied to dynamic scenes and very com-
plex scenes. They also proposed a simple, but fast,
global heuristic for choosing the splitting plane of ev-
ery node in their Bounding Interval Hierarchy, which is
similar in spirit to our Loose Bounding Volume Hierar-
chy, even though we do not need to split larger objects
into smaller pieces as they do.

Actually, Larsson and Akenine-Moeller [9] make
strong use of lazy evaluation to ray trace deformable

models, by utilizing the static connectivity between
the triangles and refitting only the upper half of their
preconstructed BVH. The rest gets refitted on demand.
As the structure of the BVH is not allowed to change,
the possible movement of the triangles is rather limited
without degrading performance, even though it can be
sufficient for ray tracing small to mid-sized deformable
scenes [23].

To make this technique applicable for any kind of
scenes, Lauterbach et al. [10] used the ratio between
each parent node’s surface area to the sum of the area
of its two children to detect degradation of the BVH and
rebuilt it on demand.

Another quite interesting approach was presented by
Ulrich [18], called Loose Octrees. It has not been used
in the context of ray tracing so far, only for collision de-
tection and view frustum culling. These Loose Octrees
are a variation of normal octrees which allow inser-
tion in O(1) by using overlapping voxels and choosing
an insertion level depending on the size of the object.
But this overlapping is also the reason why the scheme
works better for collision detection than for view frus-
tum culling.

3 OUR APPROACHES
We assume that the reader is somewhat familiar with the
basic concepts of a BVH and ray tracing, if not see [1].
Rebuilding a BVH for every frame of an animation, us-
ing standard techniques, make it impossible to achieve
interactive frame rates in rather complex scenes. A re-
fitting of the bounding volumes (BV), a recomputing of
the bounds of the BVs, can be done very quickly. But,
depending on the movement of the objects, the quality
of the BVH can arbitrarily decrease, resulting in inac-
ceptable long rendering times for certain scenes.

In this paper we present two approaches to deal with
ray tracing of dynamic scenes with non-predetermined
movement. In Sect. 3.1 a method is presented, which
exploits locality in the acceleration structure for a rapid
update. The second approach in Sect. 3.2 presents a
method for insertion and deletion of an object into a
BVH in almost constant time. For both methods we
introduce a new phase between each frame, the update
phase, in which the animated objects are moved and the
update of the BVH takes place.

For an easier understanding, we first clarify some
terms. A primitive can be any kind of basic geometric
shape, like a triangle or a parametric shape. An object
is either a primitive or a collection of primitives within
its own local coordinate system having its own accel-
eration structure, in our case a BVH. These objects are
stored in a separate list. All leaf cells of our BVHs
possess a pointer towards the object contained in them.
These nodes are called object nodes. In addition, the
objects have a hierarchy pointer, if necessary, which
grants immediate access to the object node in the BVH

Short Communication papers 58 ISBN 978-80-86943-02-2

object
node

objects

hierarchy
pointer

BVH

...

...

Figure 1: Overview of the notations. BVH: Bounding
Volume Hierarchy

containing the object. This is one of the biggest advan-
tages of BVHs compared to other acceleration struc-
tures, every object is contained in just a single node of
the BVH, instead of several voxels, as it could be possi-
ble when using k-d trees, octrees or uniform grids. The
relation of these terms is given in Fig. 1.

3.1 Dynamic Goldsmith and Salmon
In this section we describe an adaptive hierarchy, based
on the BVH creation scheme introduced by Goldsmith
and Salmon [6]. We used their technique to initially
build the BVH and reinsert our objects later on, even
though the described technique is not limited to this
creation scheme. Others, like the surface area heuristic
(SAH), could be applied as well [13]. Which scheme
suits best is unfortunately always scene dependent. [6]
is usually superior if the scene contains distinct objects,
while the SAH is a more general approach, but has a
very complex creation scheme.

Goldsmith and Salmon proposed a method to deal
with dynamic changes in a scene, by deleting the object
nodes from a BVH, adjusting the BVs and reinserting
the object nodes beginning at the root, using a heuris-
tic tree search to find the optimal insertion position (for
more details see [6]). However, this insertion technique
is a rather inefficient scheme. It is not necessary to
completely remove a changed object node from a BVH.
Since a certain spatial locality is given by the BVs in the
same subtree of a BVH and since objects usually move
only small distances compared to the scene extent, the
object would either be inserted at its old position in the
BVH or a position nearby for the most part. The term
nearby here means a subtree which encloses both, the
old and the new position of the object. Since this sub-
tree is probably much smaller in depth compared to the
whole BVH, starting the reinsertion of the object node
at the root of this subtree will shorten the whole inser-
tion process drastically. We will call the root of this
subtree the reinsertion node. Choosing this node, we
minimize the number of needed insertion steps, since
no changes have to be made to any of its ancestors. This
also implies that an insertion starting at the root would
most likely lead to this node anyway, since the inher-
itance cost for this node, a term depicting the surface

root

old
position

new
position

node
reinsertion−

...

Figure 2: Beginning at its old position, the object node
of the moving object is passed along its ancestors, until
the reinsertion node is found, from where it is inserted
again.

growth of the ancestor nodes, is still 0 (see [6]). In the
worst case, the whole process is exactly the same as re-
moving an object node completely from the BVH and
reinserting it at the root node. In comparison to a com-
plete rebuild, which is in general even faster than rein-
serting every object at the root, our reinsertion scheme
can speed up the process of reconstructing the hierar-
chy by more than two orders of magnitude (see the test
results in Sect. 4).

This process is visualized in Fig. 2. From its old po-
sition, the object node is incrementally passed along its
parents until the reinsertion node is found. This is the
first node on the path to enclose the object node. Then
the object node is inserted again, leading to its new po-
sition.

Removing an object from a BVH and reinserting it
may lead to an effect which we call thinning. This term
describes a decrease of objects contained in a node,
while its surface area remains almost unchanged. If the
thinning continues, it is most likely that better BVHs
could and should be created. An example is given in
Fig. 3. Objects 2, 4 and 5 are moving as depicted by
the arrows. The dashed circles are the target positions
(see Fig. 3 on the left). At a certain point in time the in-
sertion criteria would force object 2 to change into the
right subtree (Fig. 3 in the middle). Even though object
3 did not move at all, it would result in a better BVH if
it would change into the right subtree as well (Fig. 3 on
the right).

To prevent such a degradation of a BVH, we intro-
duce a quality criterion Q(B) that can be efficiently cal-
culated and effectively prevented thinning in our tests.
We use the surface area of a node divided by the num-
ber of objects contained in its subtree, which is in some
sense a measure for the packing density of this node.
This is depicted in equation (1):

Q(B) =
S(B)

Cob j(B)
, (1)

where Q(B) is the quality measurement of node B,
S(B) is the surface area of B and Cob j(B) is the num-
ber of objects contained in the corresponding subtree of
B. Note that this criterion is solely used for detecting
the change in the BVH, it cannot and is not intended

Short Communication papers 59 ISBN 978-80-86943-02-2

1

2

5

4

5 24

1 1
Y

3

X

4 5 2

Y

3

X

Y

3

X

4 5 2

Figure 3: Example for the thinning of nodes. Left: The objects move as depicted by the arrows. Middle: resulting
BVs after movement. Right: Rearranged BVH for a faster traversal.

to be used as a global quality criterion for ray tracing
efficiency.

After the initial construction of the BVH, an initial
value Qinit is calculated for every node in the hierar-
chy. This is also done during the update phase, if a new
node is created. During the animation, if all reinsertions
took place, the current value Qcurrent of the changed
nodes only is compared to their initial values. If it ex-
ceeds a predefined threshold, the corresponding nodes
are deleted, the BVH gets adjusted and the children of
the nodes are reinserted as described above, as the rein-
sertion scheme is not only limited to object nodes.

In our tests this quality criterion not only removes
most of the threat coming from thinning of nodes, but
can also decrease the ray tracing phase up to 34%, while
only increasing the update time by about 16% com-
pared to not dealing with thinned nodes. The benefit is
proportional to the relative number of dynamic objects.

Combining both presented techniques leads to the
following pseudocode:

Algorithm 1 Update Phase Dyn. G&S
1: for all objs do
2: animate objs
3: end for
4: for all animated objs do
5: remove obj node from hierarchy using the hier-

archy pointer for instant access
6: incrementally search for the new insertion node

and adjust BVs on the path
7: insert adjusted obj node using G&S’s technique
8: end for
9: search for and remove thinned nodes from the BVH
10: reinsert all children of the thinned nodes

The underlying data structure is highly dynamic,
which means keeping a good cache efficieny is a
non-trivial task. For some high performance systems it
might be a better solution to just mark all reinsertion
nodes and rebuild the whole underlying part of the
BVH. Since every node has a fixed memory footprint,
this reconstruction can be done in place. This memory
bound is not available for other spatial data structures,
like kd-trees.

3.2 Loose Bounding Volume Hierarchy
Even though the method described in the last section
results in a tremendous speedup to the update phase,

its complexity is still no better than O(m logn) on aver-
age given m moving objects and n scene objects. In the
following we present a hybrid approach, which allows
insertion and deletion of objects in O(1) by exploiting
that every object lies exactly in one node of a BVH
combined with a pseudo-spatial subdivision scheme.
For a better understanding the simple version of the
LBVH will be described first, followed by the exten-
sions applied for a better performance.

Using a pre-built BVH with a fixed subdivision level
of 3N and a branching factor of k = 2 with splitting axes
chosen in a round robin fashion along the midpoints,
we can think of the lowest level as a uniform grid which
encloses the whole scene and a 2N×2N×2N resolution.
The insertion positions of the object nodes are based on
their midpoints, the corresponding index ix of the voxel
in the x-direction can be calculated using the following
equation:

ix =

⌊
2N(

Oxmid −Sxmin

Sxmax −Sxmin
)

⌋
, (2)

where Oxmid is the midpoint of object node O along
the x-axis, and Sxmin and Sxmax define the minimum and
maximum value of the scene extent along this axis.
Similar computations are made for iy- and iz-axis. The
actual index in the BVH is then be computed from these
indices.

After object insertion the rest of the hierarchy can be
refitted to assure the tree’s correctness. The LBVH for
a simple test scene is shown on the left in Fig. 4. Empty
nodes in the graph are represented by dots. Dotted lines
in the scene on the left represent extents of the voxels
for insertion, bounding volumes are drawn with solid
lines. Identical bounding volumes are drawn with dif-
ferent scales for clarity.

If we would insert all objects at the lowest level, we
could not assure that the surface of a child’s node is
actually smaller than it’s parent, which is a must have
for a BVH with a reasonable performance. To solve
this problem, we allow inner nodes to contain objects as
well. For every object, the insertion level is calculated
from its axis-aligned bounding box (AABB) using the
following equation:

L = 3
⌊

log2(min(
Sx
Ox

,
Sy
Oy

,
Sz
Oz

))

⌋
, (3)

Short Communication papers 60 ISBN 978-80-86943-02-2

where Oa is the extent of the AABB of object O along
axis a ∈ {x,y,z} and Sa is the extent of the AABB sur-
rounding the scene along axis a. Using equation (3) we
keep larger objects closer to the root and therefore as-
sure, that the maximum possible extent along the split-
ting axis is reduced by 50% for every level of the hi-
erarchy, which leads to a good spatial partitioning. If
L is greater than the predefined subdivision level of the
BVH, it is set to the maximum possible level.

Depending on L we can calculate the indices in the x-
, y- and z-direction similar to equation (2), substituting
N for L/3. For the x-direction this is shown in equation
(4).

ix =

⌊
2L/3(

Oxmid −Sxmin

Sxmax −Sxmin
)

⌋
(4)

Because of the limited number of possible indices, the
easiest way to calculate the index in the BVH is to use
a precalculated lookup table, based on ix, iy, iz and L.
Therefore any desired memory layout of the BVH, op-
timized for the chosen traversal method, can be used.
The object node is then added to that node. The result-
ing BVH, using the same small test scene as before, is
shown in Fig. 4 (middle). Object A will be assigned to
the root node due to its great extent along the x-axis,
while B stays at its old node.

If we assume constant scene extends, we can calcu-
late the ix, iy and iz even faster if we transform the whole
scene into the N×N×N volume, since the calculation
of the index becomes a simple truncating of the mid-
point coordinates in this volume.

The insertion process may lead to nodes with just one
child. This can happen if small objects are surrounded
by a large empty space. Because the object node and
one or more of its ancestors are identical in this case,
it would be a tedious task to test all of them for inter-
section. To avoid this problem skip indices can be used.
If a ray intersects a node, usually all children have to
be tested for intersection as well. Instead of testing the
child directly, the node that its skip index points to is
tested. This way all nodes with just one child and with-
out objects can be skipped easily. An example for our
simple test scene is shown on the right of Fig. 4. The
calculation of the skip index can be efficiently done in
the refitting process, which will be described in the fol-
lowing.

Until now objects are inserted into the hierarchy, but
the BVH ist still inconsistent, since only the nodes con-
taining at least one object could be adjusted so far. As-
suring that the index of a node is less than the index of
its children, as it is usually the case, all nodes in the
BVH can be efficiently refitted by iterating over the ar-
ray in reversed order, as suggested by van den Bergen
[19]. During this refitting we mark empty nodes and if a
node has just one child and contains no objects, its skip
index is set to the skip index of this child, otherwise to
itself. Please note, the resulting hierarchy, comparing

the extends of the non-empty nodes, is similar to the
one proposed by Waechter in [20], even though devel-
oped completely independent of each other. In general,
their approach is better suited for very complex scenes,
while ours is targeted at small to mid-size scenes with
up to a few thousand moving objects.

Since adjusting one node and inserting an object
takes almost constant time, the creation of the complete
BVH can be done in time linear to the number of nodes
and objects in the BVH.

The update phase between two consecutive frames is
basically a reconstruction, but in O(n), instead of the
usual O(n logn). During the construction we saved ev-
ery insertion index of all object nodes in the BVH. Us-
ing these indices, we can simply empty the hierarchy.
Afterwards the objects are animated and the BVH gets
rebuild as described before. Pseudocode for the update
phase is given below.

Algorithm 2 Update Phase LBVH
1: empty hierarchy
2: for all objs o do
3: animate o
4: adjust obj node of o
5: end for
6: expand root node to enclose scene
7: for all objs o do
8: calc index in BVH for o using equation (4)
9: insert o into BVH depending on the index
10: end for
11: refit hierarchy by reversed order iteration

4 RESULTS AND DISCUSSION
To evaluate our methods, we have used a variety of test
scenes. Here we present the results for three of them,
which we think reveal both, the benefits and weak-
nesses of our strategies. All tests were performed on
a PC with a 2GHz Intel Pentium Mobile processor and
512 MB of memory. The maximum allowed ray tree
depth was two, i.e. one reflection and refraction was al-
lowed. The predefined depth for the LBVH is set to 18.

We compare the results of our approaches to a com-
plete rebuild of the hierarchy every frame using the
method of Goldsmith and Salmon [6]. The rebuild is
done only once per frame, without further shuffling of
the objects, since rebuilding the acceleration structure
more than once is not feasible, if we want a fair com-
parison of the resulting update times. A simple refit
of the BVH is not included in our statistics because of
the drastic increase in ray tracing time for most of the
scenes. The average (avg) timings per frame for the up-
date phase (up), ray tracing phase (rt) as well as the av-
erage speedup achieved for the test scenes are presented
in table 1.

Short Communication papers 61 ISBN 978-80-86943-02-2

B

...

...
B

...

...

...
A

...

X

Y
A

B

...

...

...
B

A

...

X

Y
A

B

...

...

...
B

A

...

skip index

X

Y
A

Figure 4: Left: Simple version of the Loose Bounding Volume Hierarchy, with objects inserted at the lowest level.
Middle: Advanced version, keeping larger objects at higher levels. Right: Final version, using skip indices in
addition to the advanced version to avoid intersecting unnecessary nodes.

Please note, that we assume no knowledge about pos-
sible movements of the objects. Therefore the kitchen
scene e.g. should be judged as a scene with about 110k
dynamic objects, and not as a scene consisting of almost
only static objects and a few moving ones. This is im-
portant, since the information about what is static and
what not might not always be available, e.g. in physics
based simulations.

Kitchen G&S Dyn. G&S LBVH
avg. up 1.759s 0.017s 0.157s
avg. rt 6.142s 6.082s 11.771s
speedup up 1.0 103.471 11.204
speedup rt 1.0 1.010 0.522
speedup tot 1.0 1.295 0.662
#tris 110k resolution 300×225

Museum G&S Dyn. G&S LBVH
avg. up 1.933s 0.315s 0.125s
avg. rt 11.839s 7.950s 10.323s
speedup up 1.0 6.137 15.464
speedup rt 1.0 1.489 1.147
speedup tot 1.0 1.666 1.318
#tris 76k resolution 800×640

Falling tris G&S Dyn. G&S LBVH
avg. up 7.478s 0.907s 0.404s
avg. rt 22.298s 11.420s 3.182s
speedup up 1.0 8.245 18.510
speedup rt 1.0 1.953 7.008
speedup tot 1.0 2.416 8.303
#tris 149k resolution 512×512

Table 1: Performance measurements from the three
test scenes.

The first test scene is the kitchen scene from the
BART benchmark suite [12]. Only a small toy car, con-
sisting of 5 dynamic objects, is animated in an other-
wise static surrounding. Test results are given in table
1 and Fig. 6, which shows a comparison of the ray trac-
ing phase in the upper left graph and the update phase
in the upper right graph.

The timings in the ray tracing phase between the
complete rebuild and the Dyn. G&S method are almost
equal. But when comparing the update timings, we

achieved a dramatic decrease compared to a complete
rebuild by more than two orders of magnitude. Show-
ing the advantage of this method for scenes with small
amounts of movement.

The update time for the LBVH also shows a decrease
by more than an order of magnitude, even though the
ray tracing time almost doubled. A closer statistical
analysis showed that this is due to the so-called "teapot
in the stadium" problem. The scene consists of many
large and many small objects. Due to the predefined
depth of the hierarchy, the average number of primi-
tives per leaf node is 100, with a maximum value of
1339. Therefore a two level approach (e.g. [11] and
[21]), or a lazy evaluation strategy, (e.g. [20]), should
be used with the LBVH to avoid this problem. This is
not currently implemented in our system.

The second test scene, the BART museum scene
shows a museum room with a deforming piece of art
in the middle, with mostly unstructured, random move-
ment. The time spent in the update phase is reduced by
roughly a factor of 6 to 15. The fact that the ray tracing
time of the Dyn. G&S method does not exceed the ray
tracing time for a BVH after a complete rebuild verifies
our assumptions made in Sect. 3.1. In addition even a
decrease in the time needed for the ray tracing phase is
achieved, compared to a complete rebuild. In the case
of the Dyn. G&S method, this is due to the possibil-
ity to rebuild the BVH several times in the beginning
and shows the quality of our update routine. A local
update of the acceleration data structure is sufficient to
preserve the quality of a BVH.

The LBVH shows also good results in this test. It
is not only able to ray trace the animation faster than
the complete rebuild method, but it also takes only a
fraction of the time needed in the update phase.

The last test scene consists of triangle patches, ran-
domly assorted in a plane parallel to the xz-plane. Dur-
ing the animation, the triangles start falling from the
ceiling at random times, speed and directions. The high
number of animated primitives, as well as the highly
changing object distribution, stresses our methods.

To avoid the advantage of the Dyn. G&S method
of exploiting spatial locality too much, the amount of
frames is reduced to eleven. Therefore, the triangles
move rather fast through the scene compared to the
complete scene extents.

Short Communication papers 62 ISBN 978-80-86943-02-2

When using the Goldsmith and Salmon technique for
the complete rebuild, the arrangements of the primitives
and the fact that they are all of uniform size lead to a
relatively unbalanced tree. In contrast we can rebuild
our initial BVH for the Dyn. G&S method several times
to have a better initial stand. This is not possible for
the complete rebuild method as it would take too long
during the update phase.

The time needed in the update phase of the LBVH is
almost constant throughout the whole scene. The supe-
rior ray tracing time is due to the uniform size of the
objects, which allows for a very good spatial partition-
ing.

5 CONCLUSION AND FUTURE
WORK

In this paper, we presented two methods for updating
BVHs for ray tracing dynamic scenes. We have shown
that the use of these two methods can greatly decrease
the time needed in the update phase, compared to a
complete rebuild. Speed-ups up to a factor of 103 in
the update phase have been achieved. This allows for
much better overall performance, especially when us-
ing multiprocessor machines or techniques like frame-
less rendering.

While the Dyn. G&S method showed very good
overall performance in almost all of our test cases, its
biggest advantages are achieved in scenes with much
local movements. The LBVH is useful for time-critical
ray tracing applications, as the update phase is almost
constant in all test scenes and smaller scenes. Further
optimizations are possible, e.g. calculating the insertion
indices and parallelizing the creation process of the
BVH is possible, in case of static scene extents.

As future work, we are planning to apply a lazy eval-
uation strategy to the lower levels of the LBVH, to cir-
cumvent the "teapot in the stadium" problem. And we
would like to implement both of our methods in a high
performance system.

REFERENCES
[1] J. Arvo and D. Kirk. A survey of ray tracing acceleration tech-

niques. In Andrew S. Glassner, editor, An Introduction to Ray
Tracing, pages 206–208. Academic Press, 1989.

[2] G. Bishop, H. Fuchs, L. McMillan, and E. J. Scher Zagier.
Frameless rendering: Double buffering considered harmful. In
SIGGRAPH ’94: Proceedings of the 21st annual conference on
Computer graphics and interactive techniques, pages 175–176,
NY, USA, 1994. ACM Press.

[3] A. Dayal, C. Woolley, B. Watson, and D. P. Luebke. Adaptive
frameless rendering. In Proceedings of the Eurographics Sym-
posium on Rendering Techniques, pages 265–275, 2005.

[4] M. Geimer. Interaktives Ray Tracing. PhD thesis, University of
Koblenz-Landau, 2005.

[5] A. S. Glassner. Spacetime ray tracing for animation. IEEE
Computer Graphics and Applications, 8(2):60–70, 1988.

[6] J. Goldsmith and J. Salmon. Automatic creation of object hier-
archies for ray tracing. IEEE Computer Graphics and Applica-
tions, 7(5):14–20, May 1987.

[7] J. Günther, H. Friedrich, I. Wald, H.-P. Seidel, and P. Slusallek.
Ray Tracing Animated Scenes using Motion Decomposition.
Computer Graphics Forum, 2006. (Proceedings of Eurograph-
ics, to appear).

[8] V. Isler, C. Aykanat, and B. Özguç. An efficient parallel spatial
subdivision algorithm for parallel ray tracing complex scenes.
In First Bilkent Computer Graphics Conference, ATARV-93,
Ankara, Turkey, 1993.

[9] T. Larsson and T. Akenine-Moeller. Strategies for bounding
volume hierarchy updates for ray tracing of deformable mod-
els. Technical report, MRTC Maelardalen Real-Time Research
Centre, Maelardalen University, February 2003.

[10] C. Lauterbach, S.-E. Yoon, D. Tuft, and D. Manocha. Rt-
deform: Interactive ray tracing of dynamic scenes using bvhs.
In Proceedings of the 2006 IEEE Symposium on Interactive Ray
Tracing, Salt Lake City, Utah, 2006.

[11] J. Lext and T. Akenine-Moeller. Towards rapid reconstruction
for animated ray tracing. In Eurographics 2001 - Short Presen-
tations, pages 311–318, 2001.

[12] J. Lext, U. Assarsson, and T. Moeller. A benchmark for ani-
mated ray tracing. IEEE Computer Graphics and Applications,
21:22–31, March 2001.

[13] D. J. MacDonald and K. S. Booth. Heuristics for ray tracing
using space subdivision. Visual Computer, 6(3):153–166, 1990.

[14] M.D.J. McNeill, B.C. Shah, M.-P. Hébert, P.F. Lister, and
R.L.Grimsdale. Performance of space subdivision techniques in
ray tracing. Computer Graphics Forum, 11(4):213–220, 1992.

[15] S. Parker, W. Martin, P.-P. J. Sloan, P. Shirley, B. Smits, and
C. Hansen. Interactive ray tracing. In Symposium on Interactive
3D Graphics, pages 119–126, April 1999.

[16] E. Reinhard, B. Smits, and C. Hansen. Dynamic acceleration
structures for interactive ray tracing. In Proceedings of the 11th
Eurographics Workshop on Rendering, pages 299–306, June
2000.

[17] A. Reshetov, A. Soupikov, and J. Hurley. Multi-level ray tracing
algorithm. ACM Transactions on Graphics, 24(3):1176–1185,
2005.

[18] T. Ulrich. Loose octrees. In Game Programming Gems, vol-
ume 1, pages 434–442. Mark DeLoura, 2000.

[19] G. van den Bergen. Efficient collision detection of complex de-
formable models using AABB trees. Journal of Graphic Tools,
2(4):1–13, 1997.

[20] C. Wächter and A. Keller. Instant ray tracing: The bounding
interval hierarchy. In Proceedings of the Eurographics Sympo-
sium on Rendering, June 2006.

[21] I. Wald, C. Benthin, and P. Slusallek. Distributed interactive ray
tracing of dynamic scenes. In Proceedings of the IEEE Sympo-
sium on Parallel and Large-Data Visualization and Graphics
(PVG), pages 77–86, Oktober 2003.

[22] I. Wald, C. Benthin, M. Wagner, and P. Slusallek. Interactive
rendering with coherent ray tracing. Computer Graphics Forum
(Proceedings of EUROGRAPHICS 2001, 20(3), 2001.

[23] I. Wald, S. Boulos, and P. Shirley. Ray Tracing Deformable
Scenes using Dynamic Bounding Volume Hierarchies (revised
version). Technical Report, SCI Institute, University of Utah,
No UUSCI-2006-023 (conditionally accepted at ACM Transac-
tions on Graphics), 2006.

[24] I. Wald, T. Ize, A. Kensler, A. Knoll, and S. G. Parker. Ray
Tracing Animated Scenes using Coherent Grid Traversal. ACM
Transactions on Graphics, 2006. (Proceedings of ACM SIG-
GRAPH 2006, to appear).

Short Communication papers 63 ISBN 978-80-86943-02-2

Figure 5:Sample images from the three test scenes. Left: Kitchen, middle: Museum, right: Falling Triangles.

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 100 200 300 400 500 600 700 800

Ti
m

e
(s

)

Frame

Testscene 1 - BART Kitchen Scene - Ray tracing time

G&S Rebuild
Dyn. G&S

Loose BVH

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 100 200 300 400 500 600 700 800

Ti
m

e
(s

)

Frame

Testscene 1 - BART Kitchen Scene - Update time

G&S Rebuild
Dyn. G&S

Loose

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 50 100 150 200 250 300

Ti
m

e
(s

)

Frame

Testscene 2 - BART Museum Scene - Ray tracing time

G&S Rebuild
Dyn. G&S

Loose

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 50 100 150 200 250 300

Ti
m

e
(s

)

Frame

Testscene 2 - BART Museum Scene - Update time

G&S Rebuild
Dyn. G&S

Loose

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 1 2 3 4 5 6 7 8 9 10 11

Ti
m

e
(s

)

Frame

Testscene 3 - Falling Triangles - Ray tracing time

G&S Rebuild
Dyn. G&S

Loose

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 2 3 4 5 6 7 8 9 10 11

Ti
m

e
(s

)

Frame

Testscene 3 - Falling Triangles - Update time

G&S Rebuild
Dyn. G&S

Loose

Figure 6: Test results for the three test scenes. Top: Kitchen, middle: Museum, Bottom: Falling Triangles. Left
column: Time spent in the ray tracing phase. Right column: Time spent in the update phase

Short Communication papers 64 ISBN 978-80-86943-02-2

	!WSCG2007_Short_Proceedings_Numbered.pdf
	!SH-1.pdf
	D97-full.pdf
	D97-full.pdf

	D71-full.pdf
	1. INTRODUCTION
	Comparison for Collaborative Project
	Digital Archive for Comparison

	2. NAVIGATION FUNCTION FOR COMPARISON
	3. COMPARATIVE NAVIGATION SYSTEM
	Development
	System Outline
	Prototype
	Functions
	3.1.1 3D space move function
	3.1.2 Plug-in function
	3.1.3 Concurrent comparison navigation function
	3.1.3.1 One-screen mode
	3.1.3.2 Two-screen mode
	3.1.3.3 Four-screen mode

	3.1.4 Cross-section view function

	4. Prototype testing
	5. CONCLUSION
	6. REFERENCES

	E19-full.pdf
	INTRODUCTION
	PREVIOUS LITERATURE
	THE ALGORITHM
	THRESHOLDING
	EXPERIMENTAL RESULTS
	CONCLUSIONS
	REFERENCES

	E41-full.pdf
	INTRODUCTION
	PREVIOUS WORK
	DEFINITIONS AND CONDITIONS
	ALGORITHM
	RESULTS
	Sample shape
	Triangle prism
	Nine boxes
	Fish
	Results

	SUMMARY
	REFERENCES

	F41-full.pdf
	1. INTRODUCTION
	2. Virtual Manipulation
	2.1 Definition of VM
	1. Basic Definition
	2. Reality Condition

	2.2 VM for two-dimensional virtual space
	Events
	Reactions for a dial

	3. Objects virtual interface in VM
	3.1 A dial
	Physical specification
	Reactions
	Physical Reality

	3.2 A toggle switch
	Physical specification
	Reactions
	Physical Reality

	3.3 A spring
	Physical specification
	Reactions
	Physical Reality

	3.4 A pickable object
	Physical specification
	Reactions
	Physical Reality

	3.5 A bouncing object
	Physical specification
	Reactions
	Physical Reality

	4. Real System
	4.1 A dial
	4.2 A switch
	4.3 A spling
	4.4 A pickable object
	4.5 A bouncing object

	5. Application
	5.1 V-VolleyBall
	5.2 V-Rimokon

	6. Result
	6.1 Evaluation of Objects and V-VolleyBall
	6.2 Developer’s process

	7. Discussion
	Limitation
	Related Work
	Future Work
	Conclusion

	8. ACKNOWLEDGMENTS
	9. REFERENCES

	G17-full.pdf
	3.1A Mathematical Model for a Standard Prostate Shape Top Down Anterior To Posterior
	3.2Approach

	H37-full.pdf
	1. INTRODUCTION
	1.1 Visualization
	1.2 Line Visualization
	Lines have drawn much attention of visualization researchers, because of their simple but useful presentation ability for data and information. For instance, in information visualization, we could map month-long temperature data onto a line graph, with the x-axis representing date and the y-axis temperature, and then plot temperatures in different regions using various colourful or textured lines, in order to facilitate comparisons. In scientific visualization, lines are often used as, for example, streamlines portraying vectors in a flow field. Moreover other attributes, such as vector magnitude, can be mapped via colour on the line. However, many lines presented at the same time can result in visual clutter, and cause serious confusion. Under this circumstance, is there any other way to aid in displaying these lines? Haptic sensation has been revealed as an alternative. In this section, haptic line visualization methods are introduced, according to two main categories: implicit line mapping and explicit line mapping.
	1.2.1 Implicit Line
	1.2.2 Explicit Line

	1.3 Paper Outline
	2. VIBRATION MAGNITUDE MODEL
	The vibration magnitude model [Wan06] provides a basic mapping criterion for haptic visualization, and enables users to extract various vibration mapping tables. A PHANToM Desktop device (Figure 1), made by SensAble Technologies Inc., was adopted in the model construction experiments. As a single pointing handheld device, it allows 6 degree of freedom (DOF) input and provides 3 DOF output.
	2.1.1 Magnitude Estimation Experiment
	2.1.2 Intramodal Matching Experiment

	2.2 Vibration Magnitude Model

	3. LINE TRACKING EXPERIMENT
	3.1 Design
	3.2 Stimuli
	There were four lines in total. And each of them was 2.0 mm wide, 350 mm long, and contained three different rectangular grooves, which can be upward or downward. The two of them were the upside-down replicas of the other two. Thus the two lines respectively had two narrow grooves (20 mm width) and one wide groove (40 mm width), while each of others had one narrow groove and two wide grooves. Figure 4 gives an illustration of a trial line’s pattern.
	

	3.3 Procedure
	Four female and five male subjects, aged between 22 and 35, took part. To start a trial, the participant positioned the cursor (represented by a blue cone) in contact with the left sphere, and pressed the button on the stylus. Then he moved the cursor to track the line through vibration, or vision, or both, until reaching the right sphere. At this time, the participant pressed the button again, and the trial was ended.
	Each participant completed two practice trials and then 16 test trials. VibOnline and VibOffline modes were mixed during the experiment, but each of them was always applied into two trials in a row, the next two trials adopted the other mode. Except for this limitation, all the trials were presented at random. Participants were explicitly informed which vibration mode (VibOnline, VibOffline) would be used and whether vision would be provided. After each trial, the participant was asked to rate on a seven-level scale how difficult they thought the particular trial was. When all the trials were finished, they were required to answer the last question: “which vibration mode is more comfortable for completing the task? The options are: vibration Online, vibration Offline or both the same.”
	3.4 Results
	3.4.1 All Factor Comparison
	3.4.2 Vision-excluded Factor Comparison
	3.4.3 Vision-based Factor Comparison
	3.4.4 V+VibOnline & V+VibOffline Factor Comparison
	3.4.4 Comparison Summary

	4. CONCLUSIONS AND FURTURE WORK
	5. ACKNOWLEDGMENTS
	6. REFERENCES

	A13-full.pdf
	1. INTRODUCTION
	2. PROBLEM DEFINITION
	3. RELATED WORK
	8. ACKNOWLEDGMENTS
	9. REFERENCES

	!SH-2.pdf
	E19-full.pdf
	E19-full.pdf

	E41-full.pdf
	A13-full.pdf
	D71-full.pdf
	1. INTRODUCTION
	Comparison for Collaborative Project
	Digital Archive for Comparison

	2. NAVIGATION FUNCTION FOR COMPARISON
	3. COMPARATIVE NAVIGATION SYSTEM
	Development
	System Outline
	Prototype
	Functions
	3.1.1 3D space move function
	3.1.2 Plug-in function
	3.1.3 Concurrent comparison navigation function
	3.1.3.1 One-screen mode
	3.1.3.2 Two-screen mode
	3.1.3.3 Four-screen mode

	3.1.4 Cross-section view function

	4. Prototype testing
	5. CONCLUSION
	6. REFERENCES

	F41-full.pdf
	1. INTRODUCTION
	2. Virtual Manipulation
	2.1 Definition of VM
	1. Basic Definition
	2. Reality Condition

	2.2 VM for two-dimensional virtual space
	Events
	Reactions for a dial

	3. Objects virtual interface in VM
	3.1 A dial
	Physical specification
	Reactions
	Physical Reality

	3.2 A toggle switch
	Physical specification
	Reactions
	Physical Reality

	3.3 A spring
	Physical specification
	Reactions
	Physical Reality

	3.4 A pickable object
	Physical specification
	Reactions
	Physical Reality

	3.5 A bouncing object
	Physical specification
	Reactions
	Physical Reality

	4. Real System
	4.1 A dial
	4.2 A switch
	4.3 A spling
	4.4 A pickable object
	4.5 A bouncing object

	5. Application
	5.1 V-VolleyBall
	5.2 V-Rimokon

	6. Result
	6.1 Evaluation of Objects and V-VolleyBall
	6.2 Developer’s process

	7. Discussion
	Limitation
	Related Work
	Future Work
	Conclusion

	8. ACKNOWLEDGMENTS
	9. REFERENCES

	G17-full.pdf
	3.1A Mathematical Model for a Standard Prostate Shape Top Down Anterior To Posterior
	3.2Approach

	H37-full.pdf
	1. INTRODUCTION
	1.1 Visualization
	1.2 Line Visualization
	Lines have drawn much attention of visualization researchers, because of their simple but useful presentation ability for data and information. For instance, in information visualization, we could map month-long temperature data onto a line graph, with the x-axis representing date and the y-axis temperature, and then plot temperatures in different regions using various colourful or textured lines, in order to facilitate comparisons. In scientific visualization, lines are often used as, for example, streamlines portraying vectors in a flow field. Moreover other attributes, such as vector magnitude, can be mapped via colour on the line. However, many lines presented at the same time can result in visual clutter, and cause serious confusion. Under this circumstance, is there any other way to aid in displaying these lines? Haptic sensation has been revealed as an alternative. In this section, haptic line visualization methods are introduced, according to two main categories: implicit line mapping and explicit line mapping.
	1.2.1 Implicit Line
	1.2.2 Explicit Line

	1.3 Paper Outline
	2. VIBRATION MAGNITUDE MODEL
	The vibration magnitude model [Wan06] provides a basic mapping criterion for haptic visualization, and enables users to extract various vibration mapping tables. A PHANToM Desktop device (Figure 1), made by SensAble Technologies Inc., was adopted in the model construction experiments. As a single pointing handheld device, it allows 6 degree of freedom (DOF) input and provides 3 DOF output.
	2.1.1 Magnitude Estimation Experiment
	2.1.2 Intramodal Matching Experiment

	2.2 Vibration Magnitude Model

	3. LINE TRACKING EXPERIMENT
	3.1 Design
	3.2 Stimuli
	There were four lines in total. And each of them was 2.0 mm wide, 350 mm long, and contained three different rectangular grooves, which can be upward or downward. The two of them were the upside-down replicas of the other two. Thus the two lines respectively had two narrow grooves (20 mm width) and one wide groove (40 mm width), while each of others had one narrow groove and two wide grooves. Figure 4 gives an illustration of a trial line’s pattern.
	

	3.3 Procedure
	Four female and five male subjects, aged between 22 and 35, took part. To start a trial, the participant positioned the cursor (represented by a blue cone) in contact with the left sphere, and pressed the button on the stylus. Then he moved the cursor to track the line through vibration, or vision, or both, until reaching the right sphere. At this time, the participant pressed the button again, and the trial was ended.
	Each participant completed two practice trials and then 16 test trials. VibOnline and VibOffline modes were mixed during the experiment, but each of them was always applied into two trials in a row, the next two trials adopted the other mode. Except for this limitation, all the trials were presented at random. Participants were explicitly informed which vibration mode (VibOnline, VibOffline) would be used and whether vision would be provided. After each trial, the participant was asked to rate on a seven-level scale how difficult they thought the particular trial was. When all the trials were finished, they were required to answer the last question: “which vibration mode is more comfortable for completing the task? The options are: vibration Online, vibration Offline or both the same.”
	3.4 Results
	3.4.1 All Factor Comparison
	3.4.2 Vision-excluded Factor Comparison
	3.4.3 Vision-based Factor Comparison
	3.4.4 V+VibOnline & V+VibOffline Factor Comparison
	3.4.4 Comparison Summary

	4. CONCLUSIONS AND FURTURE WORK
	5. ACKNOWLEDGMENTS
	6. REFERENCES

	A13-full.pdf
	1. INTRODUCTION
	2. PROBLEM DEFINITION
	3. RELATED WORK
	8. ACKNOWLEDGMENTS
	9. REFERENCES

	!SH-3.pdf
	A03-full.pdf
	D71-full.pdf
	1. INTRODUCTION
	Comparison for Collaborative Project
	Digital Archive for Comparison

	2. NAVIGATION FUNCTION FOR COMPARISON
	3. COMPARATIVE NAVIGATION SYSTEM
	Development
	System Outline
	Prototype
	Functions
	3.1.1 3D space move function
	3.1.2 Plug-in function
	3.1.3 Concurrent comparison navigation function
	3.1.3.1 One-screen mode
	3.1.3.2 Two-screen mode
	3.1.3.3 Four-screen mode

	3.1.4 Cross-section view function

	4. Prototype testing
	5. CONCLUSION
	6. REFERENCES

	F41-full.pdf
	1. INTRODUCTION
	2. Virtual Manipulation
	2.1 Definition of VM
	1. Basic Definition
	2. Reality Condition

	2.2 VM for two-dimensional virtual space
	Events
	Reactions for a dial

	3. Objects virtual interface in VM
	3.1 A dial
	Physical specification
	Reactions
	Physical Reality

	3.2 A toggle switch
	Physical specification
	Reactions
	Physical Reality

	3.3 A spring
	Physical specification
	Reactions
	Physical Reality

	3.4 A pickable object
	Physical specification
	Reactions
	Physical Reality

	3.5 A bouncing object
	Physical specification
	Reactions
	Physical Reality

	4. Real System
	4.1 A dial
	4.2 A switch
	4.3 A spling
	4.4 A pickable object
	4.5 A bouncing object

	5. Application
	5.1 V-VolleyBall
	5.2 V-Rimokon

	6. Result
	6.1 Evaluation of Objects and V-VolleyBall
	6.2 Developer’s process

	7. Discussion
	Limitation
	Related Work
	Future Work
	Conclusion

	8. ACKNOWLEDGMENTS
	9. REFERENCES

	G17-full.pdf
	3.1A Mathematical Model for a Standard Prostate Shape Top Down Anterior To Posterior
	3.2Approach

	H37-full.pdf
	1. INTRODUCTION
	1.1 Visualization
	1.2 Line Visualization
	Lines have drawn much attention of visualization researchers, because of their simple but useful presentation ability for data and information. For instance, in information visualization, we could map month-long temperature data onto a line graph, with the x-axis representing date and the y-axis temperature, and then plot temperatures in different regions using various colourful or textured lines, in order to facilitate comparisons. In scientific visualization, lines are often used as, for example, streamlines portraying vectors in a flow field. Moreover other attributes, such as vector magnitude, can be mapped via colour on the line. However, many lines presented at the same time can result in visual clutter, and cause serious confusion. Under this circumstance, is there any other way to aid in displaying these lines? Haptic sensation has been revealed as an alternative. In this section, haptic line visualization methods are introduced, according to two main categories: implicit line mapping and explicit line mapping.
	1.2.1 Implicit Line
	1.2.2 Explicit Line

	1.3 Paper Outline
	2. VIBRATION MAGNITUDE MODEL
	The vibration magnitude model [Wan06] provides a basic mapping criterion for haptic visualization, and enables users to extract various vibration mapping tables. A PHANToM Desktop device (Figure 1), made by SensAble Technologies Inc., was adopted in the model construction experiments. As a single pointing handheld device, it allows 6 degree of freedom (DOF) input and provides 3 DOF output.
	2.1.1 Magnitude Estimation Experiment
	2.1.2 Intramodal Matching Experiment

	2.2 Vibration Magnitude Model

	3. LINE TRACKING EXPERIMENT
	3.1 Design
	3.2 Stimuli
	There were four lines in total. And each of them was 2.0 mm wide, 350 mm long, and contained three different rectangular grooves, which can be upward or downward. The two of them were the upside-down replicas of the other two. Thus the two lines respectively had two narrow grooves (20 mm width) and one wide groove (40 mm width), while each of others had one narrow groove and two wide grooves. Figure 4 gives an illustration of a trial line’s pattern.
	

	3.3 Procedure
	Four female and five male subjects, aged between 22 and 35, took part. To start a trial, the participant positioned the cursor (represented by a blue cone) in contact with the left sphere, and pressed the button on the stylus. Then he moved the cursor to track the line through vibration, or vision, or both, until reaching the right sphere. At this time, the participant pressed the button again, and the trial was ended.
	Each participant completed two practice trials and then 16 test trials. VibOnline and VibOffline modes were mixed during the experiment, but each of them was always applied into two trials in a row, the next two trials adopted the other mode. Except for this limitation, all the trials were presented at random. Participants were explicitly informed which vibration mode (VibOnline, VibOffline) would be used and whether vision would be provided. After each trial, the participant was asked to rate on a seven-level scale how difficult they thought the particular trial was. When all the trials were finished, they were required to answer the last question: “which vibration mode is more comfortable for completing the task? The options are: vibration Online, vibration Offline or both the same.”
	3.4 Results
	3.4.1 All Factor Comparison
	3.4.2 Vision-excluded Factor Comparison
	3.4.3 Vision-based Factor Comparison
	3.4.4 V+VibOnline & V+VibOffline Factor Comparison
	3.4.4 Comparison Summary

	4. CONCLUSIONS AND FURTURE WORK
	5. ACKNOWLEDGMENTS
	6. REFERENCES

	A13-full.pdf
	1. INTRODUCTION
	2. PROBLEM DEFINITION
	3. RELATED WORK
	8. ACKNOWLEDGMENTS
	9. REFERENCES

	!SH-4.pdf
	G17-full.pdf
	G17-full.pdf
	3.1A Mathematical Model for a Standard Prostate Shape Top Down Anterior To Posterior
	3.2Approach

	H37-full.pdf
	1. INTRODUCTION
	1.1 Visualization
	1.2 Line Visualization
	Lines have drawn much attention of visualization researchers, because of their simple but useful presentation ability for data and information. For instance, in information visualization, we could map month-long temperature data onto a line graph, with the x-axis representing date and the y-axis temperature, and then plot temperatures in different regions using various colourful or textured lines, in order to facilitate comparisons. In scientific visualization, lines are often used as, for example, streamlines portraying vectors in a flow field. Moreover other attributes, such as vector magnitude, can be mapped via colour on the line. However, many lines presented at the same time can result in visual clutter, and cause serious confusion. Under this circumstance, is there any other way to aid in displaying these lines? Haptic sensation has been revealed as an alternative. In this section, haptic line visualization methods are introduced, according to two main categories: implicit line mapping and explicit line mapping.
	1.2.1 Implicit Line
	1.2.2 Explicit Line

	1.3 Paper Outline
	2. VIBRATION MAGNITUDE MODEL
	The vibration magnitude model [Wan06] provides a basic mapping criterion for haptic visualization, and enables users to extract various vibration mapping tables. A PHANToM Desktop device (Figure 1), made by SensAble Technologies Inc., was adopted in the model construction experiments. As a single pointing handheld device, it allows 6 degree of freedom (DOF) input and provides 3 DOF output.
	2.1.1 Magnitude Estimation Experiment
	2.1.2 Intramodal Matching Experiment

	2.2 Vibration Magnitude Model

	3. LINE TRACKING EXPERIMENT
	3.1 Design
	3.2 Stimuli
	There were four lines in total. And each of them was 2.0 mm wide, 350 mm long, and contained three different rectangular grooves, which can be upward or downward. The two of them were the upside-down replicas of the other two. Thus the two lines respectively had two narrow grooves (20 mm width) and one wide groove (40 mm width), while each of others had one narrow groove and two wide grooves. Figure 4 gives an illustration of a trial line’s pattern.
	

	3.3 Procedure
	Four female and five male subjects, aged between 22 and 35, took part. To start a trial, the participant positioned the cursor (represented by a blue cone) in contact with the left sphere, and pressed the button on the stylus. Then he moved the cursor to track the line through vibration, or vision, or both, until reaching the right sphere. At this time, the participant pressed the button again, and the trial was ended.
	Each participant completed two practice trials and then 16 test trials. VibOnline and VibOffline modes were mixed during the experiment, but each of them was always applied into two trials in a row, the next two trials adopted the other mode. Except for this limitation, all the trials were presented at random. Participants were explicitly informed which vibration mode (VibOnline, VibOffline) would be used and whether vision would be provided. After each trial, the participant was asked to rate on a seven-level scale how difficult they thought the particular trial was. When all the trials were finished, they were required to answer the last question: “which vibration mode is more comfortable for completing the task? The options are: vibration Online, vibration Offline or both the same.”
	3.4 Results
	3.4.1 All Factor Comparison
	3.4.2 Vision-excluded Factor Comparison
	3.4.3 Vision-based Factor Comparison
	3.4.4 V+VibOnline & V+VibOffline Factor Comparison
	3.4.4 Comparison Summary

	4. CONCLUSIONS AND FURTURE WORK
	5. ACKNOWLEDGMENTS
	6. REFERENCES

	A13-full.pdf
	1. INTRODUCTION
	2. PROBLEM DEFINITION
	3. RELATED WORK
	8. ACKNOWLEDGMENTS
	9. REFERENCES

	!SH-5.pdf
	H37-full.pdf
	H37-full.pdf
	1. INTRODUCTION
	1.1 Visualization
	1.2 Line Visualization
	Lines have drawn much attention of visualization researchers, because of their simple but useful presentation ability for data and information. For instance, in information visualization, we could map month-long temperature data onto a line graph, with the x-axis representing date and the y-axis temperature, and then plot temperatures in different regions using various colourful or textured lines, in order to facilitate comparisons. In scientific visualization, lines are often used as, for example, streamlines portraying vectors in a flow field. Moreover other attributes, such as vector magnitude, can be mapped via colour on the line. However, many lines presented at the same time can result in visual clutter, and cause serious confusion. Under this circumstance, is there any other way to aid in displaying these lines? Haptic sensation has been revealed as an alternative. In this section, haptic line visualization methods are introduced, according to two main categories: implicit line mapping and explicit line mapping.
	1.2.1 Implicit Line
	1.2.2 Explicit Line

	1.3 Paper Outline
	2. VIBRATION MAGNITUDE MODEL
	The vibration magnitude model [Wan06] provides a basic mapping criterion for haptic visualization, and enables users to extract various vibration mapping tables. A PHANToM Desktop device (Figure 1), made by SensAble Technologies Inc., was adopted in the model construction experiments. As a single pointing handheld device, it allows 6 degree of freedom (DOF) input and provides 3 DOF output.
	2.1.1 Magnitude Estimation Experiment
	2.1.2 Intramodal Matching Experiment

	2.2 Vibration Magnitude Model

	3. LINE TRACKING EXPERIMENT
	3.1 Design
	3.2 Stimuli
	There were four lines in total. And each of them was 2.0 mm wide, 350 mm long, and contained three different rectangular grooves, which can be upward or downward. The two of them were the upside-down replicas of the other two. Thus the two lines respectively had two narrow grooves (20 mm width) and one wide groove (40 mm width), while each of others had one narrow groove and two wide grooves. Figure 4 gives an illustration of a trial line’s pattern.
	

	3.3 Procedure
	Four female and five male subjects, aged between 22 and 35, took part. To start a trial, the participant positioned the cursor (represented by a blue cone) in contact with the left sphere, and pressed the button on the stylus. Then he moved the cursor to track the line through vibration, or vision, or both, until reaching the right sphere. At this time, the participant pressed the button again, and the trial was ended.
	Each participant completed two practice trials and then 16 test trials. VibOnline and VibOffline modes were mixed during the experiment, but each of them was always applied into two trials in a row, the next two trials adopted the other mode. Except for this limitation, all the trials were presented at random. Participants were explicitly informed which vibration mode (VibOnline, VibOffline) would be used and whether vision would be provided. After each trial, the participant was asked to rate on a seven-level scale how difficult they thought the particular trial was. When all the trials were finished, they were required to answer the last question: “which vibration mode is more comfortable for completing the task? The options are: vibration Online, vibration Offline or both the same.”
	3.4 Results
	3.4.1 All Factor Comparison
	3.4.2 Vision-excluded Factor Comparison
	3.4.3 Vision-based Factor Comparison
	3.4.4 V+VibOnline & V+VibOffline Factor Comparison
	3.4.4 Comparison Summary

	4. CONCLUSIONS AND FURTURE WORK
	5. ACKNOWLEDGMENTS
	6. REFERENCES

