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ABSTRACT

In medical imaging, the Radon transform, used for tomographic reconstruction, recovers a N-Dimensional image from a set of
acquired (N-1)D projections. However, it implies approximations in discrete domain. Beside this transform, Mojette transform
has been developped as a discrete and exact transform. However, its construction is incompatible with physical X-Rays prop-
erties. In this paper, after having recalled generalities about both transforms, we introduce the conditions under which their
projections are equivalent and how to reconstruct an image with the Mojette backprojection from a Radon acquisition using
linear systems. This method will be applied on some examples and results will be compared with usual Radon transform.
Keywords: Radon Transform, Mojette Transform, Tomography, Reconstruction, Linear Systems

1 INTRODUCTION
X-Rays form an electromagnetic wave which has a
wavelength much higher than visible light. This prop-
erty allows it to go through matter. In this process, the
X-Ray beam undergoes an attenuation proportional to
the density of the traversed matter. It is the basic prin-
ciple for X-Ray radiography.

In medical or industrial CT scanner, a 2D slice of the
imaged object is acquired by casting X-Rays following
several angles around the object. For each angle, the at-
tenuation of the X-Rays beam is measured leading to a
1D projection of the object. The 2D slice is then recon-
structed from a set of projections [7] using the Radon
theorem [11]. The main drawback of this method is that
the Radon theorem is defined in the continuous domain
whereas images are in the discrete domain [5].

Two different approaches can be followed to over-
come this problem. The first one is to try to improve re-
constructed image quality by signal filters and the sec-
ond one is to directly implement discrete reconstruc-
tions. In this article, we firstly introduce the Radon
theorem, its discrete implementation and its limitations.
Secondly, we present a direct discrete transform called
the Mojette Transform [4]. This transform is exact
which means that there is no difference between origi-
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nal and reconstructed images but its acquisition method
is slightly different from a classical CT scan acquisi-
tion. Then, we expose the modelisation of the physical
acquisition in order to extract acquisition parameters to
make it compatible with an exact reconstruction trans-
form. Finally, we present results and comparisons be-
tween this method and different classical reconstruction
transforms.

2 RECONSTRUCTION METHODS
2.1 Radon Transform
The direct Radon Transform (RT ) maps a discrete im-
age data I(k, l) into a set of discrete projections RTθ .
This set of projections is called a sinogram. It allows
to recover the two dimensional domain by applying the
inverse Radon Transform (RT−1) [15]. The RT of a two
dimensional discrete function I(k, l) is defined by :

RTθ (ρ) =
+∞

∑
−∞

+∞

∑
−∞

I(k, l)kernel(ρ− kcosθ + lsinθ) (1)

where :

• θ and ρ are respectively the angular and radial coor-
dinates of the projection line,

• I(k, l) is the value of pixel of coordinates (k, l).

The kernel of this discrete transform is determined
by the pixel model used. Typically, this kernel is the
discrete Dirac impulse which considers with the same
importance each pixel traversed by the projection line :
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∆(x) =

{
1 if x = 0
0 else

But, an other typical kernel occured from a convo-
lution of two order 0 B-Spline [16, 17] functions (red
crenels in figure 1) reflects the manner that each pixel
is crossed by a projection line. The projection value de-
pends on the distance travelled in each pixel [6]. This
kernel, called B0(x), is valued as follows :

• 1 if |x| ≤ ∆p(||cosθ |−|sinθ ||)
2

• −2|x|+(|cosθ |+|sinθ |)∆p
2∆pmin(|cosθ |,|sinθ |)

if ∆p(||cosθ |−|sinθ ||)
2 < |x| ≤ ∆p(|cosθ |+|sinθ |)

2

• 0 else

where ∆p is the pixel size.
The trapeze in figure 1 represents the value B0(x)

(0 ≤ B0(x) ≤ 1) for a pixel. It is determined according
to the distance x = ρ− kcosθ + lsinθ between the pro-
jection line (θ ,ρ) and the parallel which goes through
the center of the pixel (k, l). It defines the kernel of the
B-Spline Radon transform.

Figure 1: B-Spline 0 kernel

The RT−1 function, or commonly named backprojec-
tion, recovers I(k, l) domain from projections (Equation
2).

I(k, l) =
π

∑
0

∞

∑
−∞

RTθ (ρ)kernel(ρ− kcosθ + lsinθ) (2)

2.2 Limits of the Radon Transform
It is obvious that the Dirac impulse leads to approxi-
mations, not only in projection computation but also in
backprojection, because it considers each pixel with the
same maximal coefficient. Figure 2 shows that a projec-
tion line travels through a different distance in a pixel,
depending on whether this pixel is dark grey or light
grey.

Figure 2: Importance of crossed pixel on a projection
line

Furthermore, a sampling on a projection with the two
consecutive values shown in figure 3 gives identical re-
sults (non unicity of projections).

Figure 3: Non unicity of pixel information in a same
projection

Using the B-Spline kernel resolves those issues. But
other problems remain, due to the sampling (of ac-
quired image or projections) and are independent of the
pixel model [1]. A pixel can be considered several times
(grey pixel on right scheme on the figure 4) while oth-
ers only one time (dark grey and light grey pixels) . An-
other sampling can omit a pixel (grey pixel on the left
scheme, figure 4). This problem is well known as irreg-
ular sampling.

Figure 4: Irregular sampling on the projections

2.3 Radon Results and Existing Optimi-
sations

We consider the following image (Figure 5) which rep-
resents the Shepp-Logan phantom [14]. We perform the
RT acquisition with B-Spline kernel of this image for
sampling step between two projection lines of dρ = 0.5
(i.e. the distance between each line is twice smaller then
a pixel size) and for Nθ = 180 projections. So, the step
between each angle is dθ = 1. The obtained sinogram
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is represented in figure 6. Each line of this sinogram
represents the values on a projection. The first line con-
tains values of projection θ = 0, the second line, values
of projection θ = 1, and so on.

Figure 5: Original image

Figure 6: Sinogram performed with RT and B-Spline
kernel for 180 projections and a step of sampling 0.5

This sinogram is used by the RT−1 function to re-
construct the image. A consequence of approximations
explained above is visible on the result of backprojec-
tion : the Radon transform acts as a low-pass filter on
the image (left image on the figure 7). Application of a
high-pass filter before the backprojection (for example,
a ramp filter in 1D Fourier domain of each projection)
is often used to reveal details on each projection and
to attenuate fuzziness of result image. However, this
method well known as “Backprojection of Filtered Pro-
jections” (BFP) is not more advised because it increases
artefacts (Right image in Figure 7) [15].

Figure 7: (a) Classic backprojection result, (b) BFP re-
sult

2.4 Mojette Transform
The Mojette transform [4, 3] is defined as a discrete
version of the Radon transform. It considers only an-
gles θ = arctan q

p where p∈ Z and q∈ Z+ are relatively

prime (GCD(p,q) = 1) and are respectively the number
of pixel displacement horizontally and vertically. The
Mojette is so given by (Equation 3) :

pro jp,q(b) =
+∞

∑
−∞

+∞

∑
−∞

I(k, l)∆(b− kp+ lq) (3)

Therefore, the transformed domain consists in pro-
jections where each element pro jp,q(b), called a bin,
is the sum of every pixel intersecting the line b =
kp− lq. The Mojette transform result is described in
figure 8 for a 3 ∗ 3 image and for the set of projections
{(−1,1),(1,1),(1,0)}. The number of pixels crossed
for each bin is also calculated by applying the Mojette
transform to the corresponding unary image. This re-
sult will be needed in the inverse Mojette transform al-
gorithm.

The geometry of the Mojette sinogram is defined by p
and q. Especially, the number of bins on the projection
(p,q) is (for a w∗h image) [12] :

#bins(p,q) = (w−1)|p|+(h−1)|q|+1 (4)

The step between each line of projection is :

dρ =
1√

p2 +q2
(5)

This geometry resolves the Radon sampling prob-
lems because sampling properties are defined and ad-
justed for each projection angles.

Figure 8: Result of the Mojette transform (on the left)
and number of pixels crossed for each bin (on the right)

An image can be recovered if the set of projections
follows the Katz criterion. It ensures that the image is
reconstructed by the set of projections P = {(pi,qi), pi ∈
Z,qi ∈ Z+, i ∈ 1...N} if :

w≤
N

∑
i=1
|pi| or h≤

N

∑
i=1
|qi| (6)

This set of projections P = {(pi,qi), p ∈ Z,q ∈ Z+}
can be computed automatically with the Farey series
[12]. The Farey series of order N, called FN is the se-
quence of increasing order of irreductible fractions be-
tween 0 and 1 where the denominator is less or equal to
N. FN+1 is recursively given by FN including between
each successive fractions mi

ni
and mi+1

ni+1
the median frac-

tion m j
n j

where m j = mi + mi+1 and n j = ni + ni+1 if
m j < N +1 and n j ≤ N +1.
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The Farey series gives discrete angles (p,q) by the
sequence of fractions q

p . Those angles are defined be-
tween [0, π

4 [. By symmetries with the first bissecting
line and the Y-axis, we obtain the set of projections on
[0,π[.

The inverse Mojette transform back-projects the bins
of the different projections onto the reconstructed im-
age. In fact, two Mojette transforms are needed to per-
form the Mojette backprojection : the Mojette trans-
form of the original image, and the Mojette transform
of the unary image in order to know the number of pix-
els crossed for each bin [4].

This implies that a single pixel bin correspondence
must be determined to reconstruct a pixel [4]. Once
this has been done, the value of the pixel is subtracted
from each projection. The reconstruction of the image
is achieved when the total number of pixels has been
treated. The first step of this algorithm is shown in the
figure 9.

Figure 9: Inverse Mojette transform. On the left : re-
construted image. On the right : correspondence in
unary image.

The unary sinogram in the figure 9 shows a pixel cor-
respondence because it contains the value 1. The corre-
sponding bin in the Mojette sinogram contains the value
(7) of this pixel. It is reconstructed and its value is sub-
tracted in other bins where it appears. Corresponding
bins in unary sinogram are also decreased. Each step of
backprojection reconstruct one pixel. So, a w∗h image
is completely reconstructed in w∗h steps.

3 MOJETTE RECONSTRUCTION
FROM RADON SINOGRAM

3.1 Differences between Radon and Mo-
jette

The Radon transform uses the same number of samples
Nρ and the same step of sampling dρ on each projec-
tion. The angle step dθ between two of them is con-
stant. This method is ideal in medical imaging device.
However, we have seen above that its backprojection is
approximative and it depends on irregular sampling in
discrete domain. The Mojette transform projections are
not uniformly projected (dθ is variable) and the num-
ber of bins depends on (p,q). But its backprojection is
exact in discret domain.

Consequently, we try to adjust an acquisition with RT
according to Mojette properties in order to reconstruct

an image with the Mojette backprojection from a set of
projections performed with a Radon acquisition.

3.2 Radon Sinogram Compatible with
Mojette Backprojection

The first idea consists to adapt a Radon acquisition to
be compatible with Mojette reconstruction. We try in a
first place to use the Farey series to define angles and
steps of projection lines of the RT acquisition : projec-
tion angles are equivalent to Mojette and the number
and the step of samples on a projection, too. Call it
Radon Farey Transform RFT .

This method gives equivalence between Radon and
Mojette projections’ geometry. But, the set of pixels
crossed by a projection line with Radon defines a dis-
crete line. Only pixels crossed by their center are con-
sidered with the Mojette transform (this difference is
exposed in Figure 10).

Figure 10: Non equivalence between Radon and Mo-
jette projection line

3.3 Linear System Definition
Consider now the same RFT as above with the B-Spline
kernel. We consider firstly a projection value RFTθ (ρ)
(where θ = arctan q

p ) in Radon domain (left scheme on
Figure 11) where ρ is equivalent to a bin b in Mojette
domain (bin b in the right scheme on Figure 11). This
value RFTθ (ρ) depends firstly on dark gray pixel val-
ues. The sum of these values defines the Mojette value
Mo jp,q(b) of bin b. But, the value of RFTθ (ρ) also
depends on gray pixel values. Due to the geometry of
acquisition defined by the Farey series and especially
the step between two projection lines, the sum of those
gray pixel defines the values of neighbouring Mojette
bins of b (for example, bins b−1 and b+1 in the right
scheme of Figure 11). Furthermore, the coefficient of
these pixels in projections value RFTθ (ρ) is defined in
the B-Spline kernel according to the distance between
their center and the projection line (θ ,ρ). But, this co-
efficient is identical for each pixel in the same neigh-
bouring Mojette bin. Consequently, the consideration
of neighbouring Mojette bins in projection RFTθ (ρ) is
defined according to the distance between projection
line (θ ,ρ) and neighbouring projection lines (θ ,ρi).
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RFTθ (ρ) can be expressed as a linear combination of
Mojette bins values.

RFTθ (ρ) =αp,q(b− i,b) ·Mo jp,q(b− i)+
αp,q(b− i+1,b) ·Mo jp,q(b− i+1)+
· · ·
1 ·Mo jp,q(b)+
· · ·
αp,q(b+ j,b) ·Mo jp,q(b+ j)

where b⇔ ρ and αp,q(bs,bt) defines B-Spline coef-
ficient between two bins bs and bt .

Figure 11: Linear combination between B-Spline
Radon and Mojette projection

The decomposition of a value RFTθ (ρ) on a projec-
tion is identical for each ρi. The Nρ values measured
with the RFT acquisition can be decomposed by a lin-
ear combination of bin values in Mojette domain. Con-
sequently, it is possible to set up the following linear
system on a projection (p,q) :



RFTθ (1) = αp,q(1,1) ·Mo jp,q(1)+
αp,q(1,2) ·Mo jp,q(2)+ · · ·+
αp,q(1,Nρ) ·Mo jp,q(Nρ)

RFTθ (2) = αp,q(2,1) ·Mo jp,q(1)+
αp,q(2,2) ·Mo jp,q(2)+ · · ·+
αp,q(2,Nρ) ·Mo jp,q(Nρ)

· · · · · ·

RFTθ (Nρ) =αp,q(Nρ ,1) ·Mo jp,q(1)+
αp,q(Nρ ,2) ·Mo jp,q(2)+ · · ·+
αp,q(Nρ ,Nρ) ·Mo jp,q(Nρ)

where :

• RFTθ (ρi) is the value of sample ρi on projection θ =
arctan q

p acquired with the RFT ,

• αp,q(i, j) defines B-Spline coefficient between two
bins bi and b j,

• Mo jp,q(bi) is the Mojette bin bi value.

The resolution of the system above recovers the #bins
(p,q) values of Mojette bins of the projection (p,q)
from the Nρ RFT values of the projection θ , where
θ = arctan q

p and #bins(p,q) = Nρ .

3.4 Triangularisation of the System
Previous idea consisted to get Nρ = #bins(p,q) RFT val-
ues to perform #bins(p,q) Mojette bins. The linear sys-
tem obtained can be unresolvable (some of them have
an infinity of solutions). Because of the step of sam-
pling, many projection lines on corners of the image are
omitted with Mojette point of view because they don’t
cross a pixel on center. However, they can be measured
in RFT domain. Figure 12 shows two bolded lines not
considered by Mojette.

Figure 12: Omitted lines on a corner with Mojette’s
point of view

It is not necessary to process all omitted lines, but
only those between the first Mojette line and the line
which crosses only the first pixel. The number of lines
to add before the first Mojette bin on a projection is
defined by :

#Lines(p,q) = d (||p|− |q||) ·
√

(p2 +q2)
2p

e (7)

Figure 13: Determination of number of lines to add

Proof : Line equation on a projection (p,q) is
y = q

p x + c. For the first pixel, c = 0. For the first
line which only crossing the first pixel, we assume that
c = n√

p2+q2
, where n is the seeked number of lines and

1√
p2+q2

is the step between each of them. This first line

crosses at best the first pixel in position ( 1
2 , 1

2 ) (Figure
13). We obtain equation 8. The ceiling of n gives the
number of lines #Lines(p,q) to add.
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1
2

=
q
p
· 1

2
+

n√
p2 +q2

(8)

The first line value depends on first Mojette bin value.
The second one includes first and second Mojette bin
values, and so on (Figure 12). The measure of these
omitted lines allows to simplify the system above by a
triangular system :



Mo jp,q(0) = RFTθ (−n)
αp,q(−n,0)

Mo jp,q(1) =RFTθ (−n+1)−Mo jp,q(0)·αp,q(−n+1,0)
αp,q(−n+1,1)

· · · · · ·

Mo jp,q( j) =
RFTθ ( j−n)−∑

k< j
k= j−2n≥0 Mo jp,q(k)·αp,q( j,k)
αp,q( j−n, j)

· · · · · ·

where n is the number of added lines. Note that the
denominator is the kernel representation between j and
j− n. It can be fixed for a projection (p,q) by c =
αp,q(n,0).

The resolution of this triangular system links Radon
and Mojette projections and recovers the Mojette bin
values on each projection. Consequently, it allows a
Mojette backprojection.

4 RESULTS AND DISCUSSION
4.1 It is an exact reconstruction

Figure 14: (a) Original image, (b) Result of backprojec-
tion after triangular system resolution from RFT sino-
gram

Figure 14 shows the original image and the result
of Mojette reconstruction from a RFT sinogram and
linked by triangular systems of equations. Because of
the fact that each angle of projection and step of val-
ues on a projection are determined by a couple (p,q),
the RFT is equivalent to the Mojette transform (geo-
metrically speaking). Furthermore, the linear system
performs exactly Mojette bin values and finally, the re-
construction is exact.

The following table gives some error values between
the original image exploited in this paper and results of
reconstruction from different transforms.

∆C ∆I CC MSE
RT−1 -0.042 135.16 0.189 20473.
BFP -0.015 70.50 0.345 6701.
RFT 0.00 0.00 1.00 0.00

Table 1: Comparisons of different methods

where :

• RT−1 is the usual Radon reconstruction,

• BFP is the Radon backprojection of filtered projec-
tions,

• RFT is the Mojette backprojection after triangular
systems resolution from a B-Spline Radon sinogram
piloted by a Farey series.

∆C represents the difference of contrast C (0≤C≤ 1)
between result and original images. ∆I is the difference
of mean intensity (0≤ I ≤ 255). The coefficient of cor-
relation 0 ≤CC(I,J) ≤ 1 shows the link between orig-
inal and result images. Finally, usual mean squared er-
ror (MSE) values are given. Those results expose again
exactness of Mojette backprojection from a RFT sino-
gram.

4.2 Interpolation and Results
However, the method above can’t be adapted in prac-
tice in a X-Rays scan even if its geometry is compatible
with physical acquisition. Indeed, even if it is easily ac-
ceptable to act on the angle step dθ between each pro-
jection, it is more difficult to change the number and
the step of projection lines for each one (it depends on
sensors’ disposition).

Consequently, we try now to perform an acquisition
fully compatible with a scanner’s one. The step of val-
ues (and consequently, the number of bins) is fixed for
an entire acquisition according to the maximum number
of bins necessary for a reconstruction (with Mojette) :

Nρ = max{#bins(pi,qi),(pi,qi) ∈ P} (9)

dρ =
1√

p2
j +q2

j

with #bins(p j,q j) = Nρ (10)

The projections of obtained RRFT (Regular Radon
Farey Transform) are more sampled than necessary for
a Mojette backprojection using triangular systems. The
RFT sinogram is derived from the RRFT sinogram
by linear interpolation between RRFT values accord-
ing to the geometrical properties of RFT . Triangular
system resolutions and Mojette backprojection are ob-
tained from this interpolated RFT sinogram. This re-
construction gives the result in figure 15.
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Figure 15: Result of backprojection from interpolated
RFT sinogram

The Mojette transform is very sensitive to the noise
in projections. The linear interpolation implies approx-
imations in bins values. A small error on a bin value
can be reverberated on the other bins during a backpro-
jection step. Those others bins can also be noisy by the
interpolation. Consequently, small errors can be prop-
agated recursively and from bins to others and increase
errors during the backprojection to give the result in fig-
ure 15.

However, the Mojette transform is also a mean for mul-
tiple description [9] of data because of the redundancy
of informations between each projections. This char-
acteristic allows to adapt error correcting methods to
minimize errors on each projection. Our future works
will consist to study which error correcting methods can
be adapted for our reconstruction from an interpolated
sinogram.

5 CONCLUSION AND PERSPECTIVES
The Radon transform is the essential method used in
tomography to construct an image from a set of projec-
tions. The B-Spline kernel is more representative of a
real scanner acquisition than the Dirac impulse because
it allows to get continuous lines of projection where in-
formation is considered proportionnally to the distance
travelled through each pixel. However, irregular sam-
pling gives approximations during the reconstruction.

On the other hand, the Mojette transform is an exact
method in discrete domain but not adapted to an acqui-
sition. However, guiding a B-Spline Radon acquisition
with a Farey series to impose it with the same angles
and the same number of bins allows to recover the Mo-
jette projection by resolving a triangular equation sys-
tem. Consequently, it is possible to reconstruct exactly
an image with Mojette backprojection from a specifical
B-Spline Radon acquisition.

However, this particular B-Spline Radon acquisition
is not adjusted to a real acquisition because it implies a
variable step of lines on each projection. We try to mea-
sure each projection with the same minimal line step
necessary for Mojette backprojection and to interpolate

resulting sinogram to get it compatible with the trian-
gular system and the Mojette backprojection. However,
this interpolated sinogram is “noisy” by the interpola-
tion and we are limited by the high noise sensitivity of
the Mojette backprojection. Error correcting methods
can be defined in Mojette domain to minimize errors in
each bin by using the redundancy of informations con-
tained in a Mojette sinogram. Our future works consist
to study and to adapt those methods to obtain an effi-
cient Mojette backprojection from a physical X-Rays
acquisition.
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