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ABSTRACT 
There is a noise filtering method for images using Singular Value Decomposition (SVD).  This is a method in 
which pixel values of an image are regarded as elements of a matrix, the image is separated into rough parts and 
detailed parts by SVD of the matrix and the detailed parts of the image are regarded as noise and removed. 

Generalized Singular Spectrum Analysis (GSSA) is a method that generalizes SVD to treat more generalized 
data structures than in SVD.  In this research, we present noise filtering methods of images using GSSA.    
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1. Introduction 
There is a noise filtering method of images using 
Singular Value Decomposition (SVD) [1, 2].  This is 
the method in which the noise filtering of signal 
processing is applied to noise filtering of image 
processing.  We assume that pixel values of a column 
in an image are a signal vector at a time and the 
direction of a row in an image is the time instant 
direction at a time series.  We can interpret that the 
pixel values vector of a column in an image moves 
along the row direction as time passes.  By taking 
autocorrelation of an image and doing eigenvalue 
decomposition of the autocorrelation matrix, 
spectrum decomposition of the image is performed.  
In general, since white noise is uniformly distributed 
in the frequency domain, relatively large noise exists 
over parts with small eigenvalue.  By filtering at 
predictable parts with much noise, a certain amount 
of noise can be removed.  However, the method 
using SVD cannot utilize enough 2D properties of 
images, because this is a simple method that extends 

time processing into 2D.    
On the other hand, Generalized Singular Spectrum 

Analysis (GSSA) [3] is a method that generalizes 
SVD to treat more generalized data structure than in 
SVD.  This method using GSSA is different to 
forcedly apply a method of time processing into a 
method of image processing as the method using 
SVD and performs spectrum decomposition of 
images by natural extension.  In this research, we 
present noise filtering of images using this GSSA. 

2. Spectrum Decomposition of Images 
In GSSA, we need to make a trajectory matrix 
corresponding to the data structure treated.  Next, by 
doing singular value decomposition for the trajectory 
matrix and doing inverse transformation of GSSA, 
we realize spectrum decomposition of targets.  Refer 
to the paper [3] for the detailed procedures. 

Subdivision of an original image 
In this paper, Figure1(a) is an original image.  The 
size of the image is 256×256 pixels.  If the size of 
an image is too large, we need to partition the image 
into sub-images.  Figure1(b) is a partitioned image of 
Figure1(a).  We performed spectrum decomposition 
for each sub-image and remove noise from the result.    
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Trajectory Matrix 
If existing SVD is used, a trajectory matrix whose 
elements correspond directly to pixel values of the 
image as shown in Figure2(a) is made.  Concretely 
speaking, it is as shown in Figure3.  If GSSA is used, 
a certain window is defined and a trajectory matrix is 
made by moving the window all over the image.  
Concretely speaking, it is as shown in Figure4 and 
the size of the window is 2×2.  In the case of SVD, 
we take autocorrelation among every column.  In the 
case of GSSA, we take autocorrelation between each 
window pair.  In this paper, we call the existing 
method using SVD as “type SVD” and the new 
method using GSSA as “type GSSA”.  
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Spectrum Decomposition of Image 
Figure9(a)(c) shows the results of spectrum 
decomposition for the original image and 
Figure9(b)(d) shows the differences between the 
original image and (a)(c).  r is defined as a number 
whose sets of singular value and base vector are 
added in reconstruction of the image.  If r = ( number 
of decompositions), the decomposed image is 
completely reconstructed into the original image.   

If Figure9(a-4) is compared with (c-4), the image 
in (c-4) is more smooth than (a-4) to the eye.  These 
result shows that the image using “type GSSA” is 
reconstructed into a more similar image to the 
original image than the image using “type SVD”.  
This is because “type GSSA” can take enough 2D 
autocorrelation for both column and row directions, 
on the other hand, “type SVD” can take only 1D 
autocorrelation for each columns. 

As for other properties, if Figure9(b-3)(b-4) are 
compared with (d-3)(d-4), edges in (d-3)(d-4) can be 
extracted more clearly than (b-3)(b-4) by the same 
reason.   

From these results, we confirm that “type GSSA” 
can perform spectrum decomposition better than 
“type SVD” in treating 2D image.    

 

 

 

 

 

 

(a) pixel values of an image 
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Figure 1. Original image. 

(b) trajectory matrix 
Figure4. Pixel values of an image and a trajectory 

matrix in GSSA method. 

(a)SVD              (b) GSSA 
Figure2. Order of pixel values of an image 

for trajectories. 
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(a) pixel values of an image   (b) trajectory matrix 
Figure3. Pixel values of an image and a trajectory 

matrix in SVD method. 
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3. Noise Filtering of images 
Figure5(a) is the original image and Figure5(b) is an 
image that embeds normal random number of 
average 0.0 and standard deviation 26.66 as noise.    

 

Discrete Cosine Transform (DCT) 
Figure6 show the results that DCT for base vectors 
are performed and the corresponding singular value 
is multiplied after spectrum decomposition of “type 
SVD” or “type GSSA”.  Since the base vectors are 
arranged in descending order, there is a peak around 
the origin in Figure6. 

If comparing Figure6(a) and (b) or (c) and(d), 
though we can see noise in (b) and (d), their rough 
trends are similar.   

Additionally, since “type GSSA” is regarded as 
the method to do “type SVD” in both of the column 
and row directions, we can see that Figure6(a)(b) 
appear in a reticular pattern and in sequence in (c)(d).     

Two Noise Filtering 
We define two noise filtering using spectrum 
decomposition, “Filter1” and “Filter2”.  “Filter1” is 
the method that an image is reconstructed using r sets 
of singular values and base vectors in descending 
order after spectrum decomposition using “type 
SVD” or “type GSSA”.  “Filter2” is the method 
where an image is reconstructed using a half number 
of coefficients in descending order of DCT for a base 
vector after “Filter1”.  In Figure7, “Filter1” is the 
method reconstructed using the lower r columns and 
“Filter2” is the method reconstructed using the left 
half of “Filter1”.   
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(a) DCT after SVD of an original image 

(a) original image  (b) noisy image 
Figure5. Original image and noisy image. 

(b) DCT after SVD of a noisy image 
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(c) DCT after GSSA of an original image
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(d) DCT after GSSA of a noisy image 

Figure6. DCT after SVD or GSSA. 
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Table1 is root-mean-square (RMS) between the 
original image and the reconstructed images using 
“Filter1” and “Filter2” for images embedding white 
noise.  If comparing “type SVD” and “type GSSA”, 
we can see that “type GSSA” has more effects of 
noise filtering by “Filter1” than “type SVD”.  
Additionally, we can see effects of noise filtering by 
“Filter2” in “type SVD” and no effects of noise 
filtering by “Filter2” in “type GSSA”.  This is why 
“type GSSA” with 2D autocorrelation has much 

values and “type GSSA” has less noise over bases 
with large singular values than “type SVD”.      

Figure10 shows images after noise filtering u

information of the image at bases with large singular 

sing 
“ty

4. Conclusion and Future Work 
spectrum 

pa

pe SVD” or “type GSSA” and differences 
between the original image and them.  If comparing 
their images, we can see that “type GSSA” can 
remove noise better than “type SVD”.  But we 
cannot see much difference between “Filter1” and 
“Filter2”.  From this result, we find that the effect of 
“Filter1” is larger than the effect of “Filter2”.   

In this paper, we present new 
decomposition for images and apply it to noise 
filtering.  This is the method that generalizes exiting 
SVD by taking 2D autocorrelation for both of 
column and row directions.  We have been able to 
find more detail properties of the image by GSSA.     

Finally, there is an improvement point.  In this 
per, we do noise filtering for each sub-image after 

partitioning the image into some sub-images.  
Therefore, the sub-images are connected non- 
smoothly on boundaries.  To solve this problem, we 
are considering the method using larger windows 
than sub-image sizes as shown in Figure8, spectrum 
decomposition in this larger window is done and 
weighted interpolation over the overlapping regions 
is performed.  Figure8 shows the appearance of a 
cubic spline interpolation over the overlapping 
regions.   

 

 

r SVD GSSA 

 Filter1 Filter2 Filter1 Filter2

4 64.19 56.75 43.53 45.63

8 63.22 53.20 44.31 45.00

16 55.76 54.68 48.30 48.25

(b) Noise filtering 2 
Figure7. Two noise filtering. 
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Table1. RMS between an original image and 
a noisy image. 

Figure8. Smoothing on boundaries. 
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Figure9. Spectrum decompositions of an original image and differences  
between an original and them. 

(a-1) r=8       (a-2) r=6          (a-3) r=4             (a-4) r=3 
(a) Spectrum decompositions using SVD of an original image 

(b-1) r=8                (b-2) r=6     (b-3) r=4         (b-4) r=3 
(b) Differences using SVD between an original and (a) 

(c-1) r=8       (c-2) r=6          (c-3) r=4             (c-4) r=3 
(c) Spectrum decompositions using GSSA of an original image 

(d-1) r=8                (d-2) r=6     (d-3) r=4         (d-4) r=3 
(d) Differences using GSSA between an original and (c) 
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(h-1) r=16                    (h-2) r=4    
(h) Differences between an original image and (g).  

(f-1) r=16                    (f-2) r=4    
(f) Differences between an original image and (e).  

(b-1) r=16                   (b-2) r=4    
(b) Differences between an original image and (a). 

(g-1) r=16                          (g-2) r=4    
(g) Noise filtering 2 using GSSA.  

(e-1) r=16                          (e-2) r=4    
(e) Noise filtering 2 using SVD.  

(a-1) r=16                          (a-2) r=4    
(a) Noise filtering 1 using SVD.  

(c-1) r=16                          (c-2) r=4    
(c) Noise filtering 1 using GSSA.  

(d-1) r=16                   (d-2) r=4    
(d) Differences between an original image and (c). 

 
 

Figure10. Images after Noise filtering and differences between an original image and them. 
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