
Automatic Terrain Generation with a Sketching Interface
Anna Puig-Centelles
Universitat Jaume I,

Castellón, SPAIN
apuig@uji.es

Peter A. C. Varley
Universitat Jaume I,

Castellón, SPAIN
varley@uji.es

Oscar Ripolles
Universitat Jaume I,

Castellón, SPAIN
oripolle@uji.es

Miguel Chover
Universitat Jaume I,

Castellón, SPAIN
chover@uji.es

ABSTRACT

Virtual environments should offer the user a deep interactive experience with both large worlds to explore and a higher degree
of perceived realism. The main goal of our work is to provide the final user with an easy-to-use accurate terrain generation
application, which allows non-professional users to design their own desired terrain. In this paper we consider the creation
of islands to be used in computer games. We introduce a simple terrain algorithm and we also consider its integration into
a sketching application. The application will offer both a 2D and a 3D representation of the terrain, in order to simplify the
interface and provide the user with more interactive feedback about the island that has been designed. Our framework offers
real-time algorithms for both creating and modifying terrain features, thus improving the final results with more realism and
greater customization by the user.

Keywords: Terrain Generation, Sketching Inteface, Islands, Game Environment.

1 INTRODUCTION

Figure 1: Example of a terrain obtained with our frame-
work and imported into the Torque Game Engine.

In recent years, computer graphics have undergone
an intense evolution as new graphics hardware offers a
final image quality that was unimaginable just a few
years ago. As a result, interactive graphics applica-
tions, such as computer games or virtual reality envi-
ronments, now include more complex scenes offering
very detailed environments. Terrain is therefore a key
element that can lessen the sense of realism if it is not
addressed correctly.

Terrain generation is a research area which has been
active for many decades. The growing power of mod-
ern computers has made them capable of producing in-

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the
first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.

creasingly more realistic scenarios. Synthetic terrain
generation is a process which creates elevation values
throughout a two dimensional grid. The need for highly
realistic scenarios often involves developing algorithms
that can generate more realistic terrains with more user
control over the final terrain that is created. Different
terrain generation techniques that are capable of offer-
ing very realistic artificial terrains have been reported
in the literature. Nevertheless, not many applications
provide enough user control. On the contrary, those ap-
plications that provide user interaction are often too dif-
ficult to control.

Sketching is a tool that is well suited to the design
of architectural elements and it provides the user with
a considerable amount of control over the created ele-
ments. Research has produced prototype tools for inter-
preting sketches of abstract polyhedra [23, 11]. How-
ever, less work has focused on sketching the underly-
ing terrain or extracting it from a photograph. Thus,
buildings are often considered as the foreground and are
taken into account properly, whereas terrain is seen as
background which is often ignored.

Our aim is to develop convenient and simple ways
to create computer models of terrain. In this paper we
address the problem of creating models of islands for
use in computer games. Our goal is similar to the idea
given in [12], where the authors show that relatively
simple algorithms can provide non-professional users
with fast, successful results.

In this work we describe a terrain creation algorithm
for islands based on heightmaps, which are regularly-
spaced two-dimensional grids of height coordinates.
The elevation of the terrain is automatically calculated
from the coastline sketched by the user, who can also
create hills and apply perturbations in order to achieve
a more realistic and irregular terrain. Once again, it is

WSCG 2009 Communication Papers 39 ISBN 978-80-86943-94-7

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace at University of West Bohemia

https://core.ac.uk/display/295558416?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


important to mention that our aim is to provide the user
with more control over the terrain that is generated.

Furthermore, we also consider the integration of our
algorithm into a sketching application. This applica-
tion combines a 2D representation window and a 3D
displaying window. First, the user creates a silhouette
of the island in the 2D window and then, the user will
be able to modify the terrain appearance in the 2D and
the 3D windows. The terrain thus obtained will be out-
putted as a heightmap that may then be imported into a
game engine.

This work is organized as follows. Section 2 contains
the state of the art in terrain generation and sketching
freeform surfaces. Section 3 describes our terrain gen-
eration algorithm. After that, Section 4 analyzes our
sketching application. Later, Section 5 depicts our re-
sults and discusses a usability test. Finally, Section 6
presents our conclusions and future work.

2 RELATED WORK
In this section we analyze the different approaches that
currently exist for terrain generation. After that we will
take into account the different software tools which are
available for creating artificial terrain. Finally, we will
give some basic ideas on sketching and its application
to our purposes.

2.1 Terrain Generation
The literature offers a wealth of research on synthetic
terrain generation. Techniques can be grouped into
three different categories:
Procedural Approaches. This category includes meth-
ods in which the terrain is generated automatically.
These methods can be further separated into fractal
techniques and physically-based techniques.

The most popular procedural approach is fractal-
based terrain generation, which is efficient but difficult
for users to control. It is possible to find a review of
recent fractal approaches in [2].

Physically-based techniques simulate the effects of
physical processes such as erosion by streams [8] or
wind [24]. A recent technique that combines a non-
expensive fluid simulation with an erosion algorithm is
presented in [1]. It also supports effects like dissolving
or sedimentation of material in the process of erosion.

Fractal landscape terrain generation and physical ero-
sion simulation are both approaches that add terrain
details through procedural refinement. Nevertheless,
modifying their parameters to obtain a desired terrain
may be a painstaking task.

Another proposal appears in [15], where the authors
provide an alternative method for terrain generation that
employs a two-pass genetic algorithm approach to pro-
duce a variety of terrain types using only intuitive user
inputs. The process is efficient but very difficult for a
user to control.

Real Terrain Information. This approach groups
the techniques from the Geographic Information Sys-
tems (GIS), where elevation data come from real-world
measurements [25]. Similarly, another source of infor-
mation could be the study of the extraction of terrain
from photographs [3]. All these approaches have the
advantage of offering highly realistic terrains in very
little time, but with little user control.
User Defined Approaches. This is the most flexible
type of technique, in which a human artist creates the
terrain manually, using an image editing program, 3D
modeling software, specialized terrain editor programs
or the editors that are included in game engines.

The authors of [10] allow the user to control the ter-
rain generation process by receiving as input an im-
age generated by an image editing program in order to
perform the terrain generation. In [26], patches from
sample terrain (represented as a height field) are used
to generate new terrain and the synthesis is guided by
a user-sketched feature map that specifies where ter-
rain features occur in the resulting synthetic terrain.
Later, [22] introduced a simple interface for sketching
heightmaps of islands. This application was very sim-
ple but, although it offered a good amount of user con-
trol, it was difficult to use and the obtained terrain was
not completely customizable.

2.2 Terrain Software
In this section we introduce some terrain tools for sim-
ulating artificial environments. There is a wide range
of software available. In Terragen [19] and Terraineer
[20], the user sets parameters and the program creates
a pseudo-random landscape which meets those param-
eters. Terraineer offers the possibility of experimenting
with different height generation algorithms. World Ma-
chine [17] additionally includes modeling of physical
weathering processes. In all of these programs, terrain
is modeled and imported/exported as a heightmap.

Further user interaction is offered in Nem’s Mega 3D
Terrain Generator [5], where the user is initially pre-
sented with a flat piece of terrain and has various op-
tions for modifying it. L3DT [21] is another software
that generates artificial heightfields and exports its data
to multiple formats.

2.3 Sketching
There have been some recent developments on the
automated interpretation of freeform surfaces from
sketches, but they either interpret the drawing as
being that of a single solid object [7] or leave the
freeform surface floating in mid-air as a patch, without
continuing to the horizon in the manner of a landscape
[18, 6].

However, interpreting a terrain sketch as a floating
free-form patch presents some problems. Qin et al [18]

WSCG 2009 Communication Papers 40 ISBN 978-80-86943-94-7



require the user to draw a grid of quadrilaterals to rep-
resent the surface, and a trained neural network is also
needed to interpret it. In Kaplan and Cohen’s approach
[6] the boundary of the patch must be clear in the orig-
inal input, either by virtue of its obvious contrast with
the background or by being specified by the user. Their
approach also requires user intervention to resolve am-
biguities. The problem of boundary constraints can be
overcome if we restrict ourselves to sketching islands.
The boundary constraints for islands are simple: an
island has a coastline, that is, a continuous bounding
curve.

More recently, a system for designing freeform sur-
faces with a collection of 3D curves has been proposed
in [13]. They create objects within an easy interface,
which is based on drawing simple lines. By using a
similar simple sketching interface, [27] introduce an
over-sketching application for feature-preserving sur-
face mesh editing. This application allows simple yet
realistic mesh deformations to be obtained.

3 OUR TERRAIN GENERATION
The method that we present here for generating islands
is based on the use of heightmaps and allows users to
define and modify the coastline of the island. Further-
more, they can also create and reshape any number of
hills, which will interact each other and with the exist-
ing terrain. Finally, we offer the possibility of applying
filters to give the final terrain a more realistic appear-
ance.

3.1 Reshaping the Coastline
The user can draw the silhouette of the island freely, but
it will be necessary to delineate a continuous curve by
sketching a closed shape, as shown in Figure 8. The
shape of the coastline can be changed by redrawing,
starting and ending at points near the existing coast-
line and drawing a continuous curve in any direction
between those two points. Thus, it is possible to ap-
ply different operations in order to modify the existing
coastline.

The user may decide to cut a piece of the island off.
As a consequence, the terrain will be split into two ar-
eas. Depending on the direction of the cut, the algo-
rithm will decide which one of these areas is to be re-
jected. The direction of the cut is understood as being
the direction running from the initial to the finish point.
The rejected area will be the one on the left-hand side of
the cut. Figure 2 presents an initial coastline and the sil-
houettes obtained after performing cuts with the same
start and finish points but following different directions.

Furthermore, the user can also add new pieces to the
existing area. Again, the algorithm will behave differ-
ently depending on the direction of the sketched draw-
ing. If the line has been sketched clockwise, the new
area will be added to the existing one. In contrast, if the

line has been performed in an counterclockwise direc-
tion, then this new area will be maintained and the old
one will be rejected. In Figure 3 we can see an example
of these possible ways of modifying the area by adding
or subtracting a piece of terrain.

We must note that the algorithm will differentiate
between cut and supplement operations by testing
whether the line goes through the terrain area or not.
In those cases in which a line is used to perform more
than one operation, each point where the line intersects
the silhouette will be interpreted as the finish and
start points of the consecutive operations. In Figure
4 we depict an area that is being modified by two
consecutive operations: the first one consists in an
external clockwise supplement and the second one is
a curved internal cut that is rejecting the piece on its
left-hand side.

3.2 Updating the Terrain Height
Every time the coastline silhouette is modified, the ter-
rain algorithm has to react adequately to those changes
and recalculate the height of the terrain in order to offer
a smooth continuous surface.

Since we are simulating the terrain of an island, we
must take into account the level of the sea. We have to
ensure that every single point within the sketched coast-
line is above sea level. As a consequence, when the
coastline changes, it may be necessary to modify the
elevations of some onshore points. Ideally, points close
to parts of the old coastline which remain unchanged
should also remain unchanged, but points close to parts
of the new coastline should be elevated above sea level
regardless of their previous height. Therefore, if we re-
shape the coastline then we have to check whether all
the points contained inside the island have the appropri-
ate height.

In order to obtain the new height values, we take
into account the distance from each point to the near-
est piece of new coastline Dn and to the nearest piece
of old coastline Do, both scaled to the range 0 to 1.

Figure 2: Cutting and reshaping the island.

WSCG 2009 Communication Papers 41 ISBN 978-80-86943-94-7



Figure 3: Supplementing and reshaping the island.

Figure 4: Two consecutive operations.

The height of each onshore point Hi is calculated as
a weighted value between the old height Ho and the
new one Hn, the latter being proportional to Dn. We
implement the calculation of the heights with Equation
1,where the weight W is calculated by Equation 2.

Hi = Ho(1.0−W )+HnW (1)
W = 0.5+0.5tanh((Do)2−Dn) (2)

The hyperbolic tangent (tanh) function is chosen be-
cause it has the appropriate shape, which is close to −1
for points near the old coastline and close to 1 for points
near the new coastline. Moreover, it never goes outside
this range. D0 is squared so that points close to neither
coastline are treated as being closer to the old coastline
rather than to the new one.

Whether a pixel is onshore or not is assessed by re-
ferring to a silhouette of the island which is recalculated
after each change to the coastline by drawing the coast-
line on a blank array of pixels and using a flood-fill rou-
tine (starting from a point clearly outside the coastline)
to distinguish sea from land.

3.3 Generating Hills
In previously presented methods for sketching islands
[22], the orography was difficult to define. In our work
we want to improve on the user definition of terrain.
The idea is to allow the user to create multiple hills hav-
ing the desired radii, height and location on the terrain.

In our algorithm we define hills as elliptic
paraboloids. An elliptic paraboloid is shaped like
an oval cup and can have a maximum or minimum

Figure 5: Example view of elliptic paraboloids.

point. In a suitable coordinate system, it can be
represented by the equation:

z
c

=
x2

a2 +
y2

b2 (3)

considering that the elliptic paraboloid is centered on
0,0,0 with radius a,b (along the x and y axes), being
a,b ∈ℜ and a > b.

Equation 3 represents an elliptical paraboloid which
opens upwards and can be seen in Figure 5a. This
quadratic surface will be used in our algorithm to de-
fine the hills. It is important to note that we allow the
user to define valleys by means of elliptical paraboloids
which open downwards, as can be seen in Figure 5b.

With this equation the user can introduce the central
point, the radius and the height of each hill. Once we
have this information, our algorithm will be able of cal-
culate the height of each point affected by the hill. All
those points are obtained with the central point and the
radius that have been defined. The height of each sin-
gle point will be modified by following Equation 3. We
will add the new height to the previous one in order to
obtain more realistic and integrated terrains. By so do-
ing, we allow for the creation of valleys and volcanos.

3.4 Filtering the Terrain
In order to obtain a better appearance for the terrain be-
ing designed, we can introduce some fuzzy bumps to
deform the regular surface. We have implemented a
filter to introduce ’noise’ into the previously defined
rounded terrain. This filter can be applied as many
times as the user desires and it will give us a number of
perturbations that are proportional to the surface area of
the island. These perturbations will also have an ellipti-
cal paraboloid shape, but they will be wider than taller
and they will be produced upwards or downwards in a
random manner.

3.5 Integrating the Processes
The final terrain that is visualized comprises three
heightmaps that will be added one after the other.

WSCG 2009 Communication Papers 42 ISBN 978-80-86943-94-7



Figure 6: Sample composition of the Final Grid of
heights by adding the previously updated grids.

These heightmaps are stored as grids (2D matrix) of
floats:

• Heights Grid, which contains the heights of the ter-
rain obtained after modifying the coastline.

• Hills Grid, which stores the increments or decre-
ments in height, due to the hill volumes.

• Filters Grid, which holds the variations introduced
by the filters that have been inserted.

As a consequence, with those three data structures
we obtain the Final Grid, which stores the sum of the
three previous ones. We assume that the Heights Grid
defines the basic features of the terrain. Then, the other
data structures will add more details. It is important
to comment that the division of the terrain information
into those three data structures simplifies the updating
process of any of them. This way, for example, adding
a hill only involves modifying the Hills grid.

In Figure 6 we can see an example of the different
grids that compose the Final Grid. The Heights Grid
is obtained after defining the coastline of the island.
The Hills Grid contains three different hills. Lastly,
the Filters Grid stores the perturbations introduced by
the user. Consequently, these three grids combined to-
gether give form to the final terrain.

This representation uses an internal triangle mesh for
representing the 3D island. The 2D heightmap is prop-
erly linked with this 3D representation in order to al-
low fast and efficient updates. The implementation has
been optimized to assure that each modeling operation
entails to update the minimum amount of information,
including both the heightmap and the vertices informa-
tion: spatial coordinates, normals, colors, etc.

4 USER INTERFACE
This section describes our sketching application for ter-
rain generation by using the ideas presented earlier. In
paper [22], a simple interface for sketching heightmaps
of islands was presented. This interface was close to
the ideal of a modeless single-tool interface, with all
of its major operations being controlled by a single de-
vice (pen or single-button mouse). A problem that ap-
pears in some of the most advanced sketching applica-
tions, like [16], is that they require a multi-modal push-
button interface. Our intention is to maintain the origi-
nal sketching objectives in order to keep our application
as simple and natural to use as possible. Nevertheless,
it has been necessary to develop a two-button mouse
software application to integrate all the functionalities
presented in the previous section.

Our proposed framework offers the user an interac-
tive sketching application. This solution consists of two
windows. The 2D window depicts the silhouette of the
coastline of the island, as seen in Figure 7a. The 3D
window represents the volumetric view of the whole is-
land, as seen in Figure 7b. This 3D view presents a
smooth surface which is automatically constructed with
the information stored in the heightmap. When the im-
plementation starts, the 2D window contains a circu-
lar coastline, as shown in Figure 7a. The 3D window,
shown in Figure 7b, depicts a conical island, which is
the initial terrain that the user will be able to modify.

Figure 7: 2D and 3D Window on Startup.

In the following subsections we will provide a de-
tailed description of the interaction with the aforemen-
tioned windows in our application. In Figure 8 we
describe a step-by-step design of an island using our
framework.

4.1 2D Modeling Operations
The 2D window allows the user to perform two basic
sketching operations: defining the silhouette of the is-
land and adding and modifying hills.

When interacting with the left mouse button in this
window, the user is allowed to design the coastline of
the island. It is possible to draw a free-form silhouette

WSCG 2009 Communication Papers 43 ISBN 978-80-86943-94-7



Figure 8: Designing a sample island in four steps.

interactively and the system will simultaneously update
the terrain. As we have mentioned in previous sections,
it is possible to cut and extend the existing terrain by
defining lines that start and end on the coastline. Fig-
ure 8 shows how we could draw any irregular shape to
delimit the terrain of our island. Our system includes
an additional feature, which has proved popular with
users: when a change is made to the coastline, the old
coastline gradually fades away, taking about two sec-
onds to do so. Pressing the right mouse button during
this period removes the new coastline and recovers the
old coastline.

In our application, when the user clicks with the right
button either inside or outside the coastline, the appli-
cation understands that the user is defining the central

point of a hill. Then a colored circular line will appear
on the terrain surface surrounding the central point that
has just been created. This line represents the area in-
fluenced by that particular hill. The user may add as
many hills as desired and each one will be depicted in
a different color. It is important to note that the hills
which are located outside the coastline affect the ter-
rain in those areas where the hills overlap the already
existing coastline. After defining the hills, the user will
be able to modify the radii and the location of the hills
inside the island. Right-clicking on the center point of
the hill and dragging, allows the user to change the po-
sition of the hill. The user can eliminate a hill by drag-
ging it outside the island until its radius is completely
outside the coastline. Alternatively, right-clicking and
dragging on the circular line allows the user to modify
the hill radius.

The application includes the possibility of zooming
in on the sketched island by clicking the right button of
the mouse. Using the zoom can help the user to get a
better overview of the terrain. We have to click outside
the island in order to zoom, but always away from the
coastline. This is because if the user clicks too close to
the coastline, the application will interpret that the user
wants to create or modify a hill.

4.2 3D Modeling Operations
In the initial version of the application, the height of the
island was defined by the cross section [22] selected in
the Plan Window and the input given in the Elevation
Window. This interface was complicated to use and it
did not give the user full control.

In our application, the 3D window shows a volumet-
ric view of the terrain. The user will be able to click
with the right button on any of the previously defined
hills and can decide on the height of each hill by drag-
ging the mouse up and down. If we drag upwards, then
the height will be positive and we will create a hill, and
if we drag downwards the terrain will be a valley. Fur-
thermore, by dragging the mouse left and right, the user
will be able to decrease and increase the size of the ra-
dius of the selected mountain.

The 3D window also allows for the use of filters,
which the user can decide to apply to the whole ter-
rain in order to introduce some fuzzy bumps. Clicking
with the left mouse button on any point on the island
and dragging upwards will add filters to the terrain. The
more we drag upwards, the more bumps are created. On
the contrary, if we drag downwards then the application
will understand that we want to decrease the number of
perturbations.

In addition, the 3D window offers two more func-
tions. Clicking with the left button away from any hill
and dragging, acts as a rotating function. Also, clicking
with the right button away from the terrain and drag-
ging, acts as a zoom function.

WSCG 2009 Communication Papers 44 ISBN 978-80-86943-94-7



Figure 9: Examples of volcanic island in TGEA.

5 RESULTS
This section presents our results using a Pentium D
2.8 GHz processor with 2 GB. RAM and an nVidia
GeForce 8800 GT graphics card. The framework was
implemented in C++ with OpenGL.

In order to show the possibilities of our framework,
we exported different heightmaps obtained from our
terrain generation algorithm. Then we introduced those
heightmaps as input to a game engine and we obtained
several examples of islands. The game engine that we
selected in our tests is the Torque Game Engine Ad-
vanced (TGEA) [4].

Figure 1 depicts an elongated island. The island is
quite abrupt after having applied some filters in order
to give the final terrain a more realistic appearance. In
Figure 9 we have rendered a volcano with two tiny hills
on one side. The volcano consists of a big hill but with
a hole in the middle. This hole is performed by apply-
ing a slightly smaller negative-height hill, located in the
middle of the first hill we created.

5.1 User Study
We consider important to perform a user study in order
to evaluate the quality of our sketching application. We
gave first-time users some basic indications in order to
make them know how our application works. After that,
we asked them to try to draw an island silhouette with
the desired hills. They played with different coastline,
hills and filters until they outlined the desired appear-
ance of island and terrain.

Our informal user study considered the application
from different perspectives. First, we ask our volun-
teers to grade from 1 to 10 the overall quality percep-
tion of the application, being 1 the worst and 10 the
best. Secondly, we monitored their activity to record
the time passed until they obtained a satisfactory ter-
rain. Finally, we asked them to report any difficulty or
mistake they could find in using our application.

Different studies have proven that 5 users are enough
to assess the quality of software applications [14], al-
though evaluating visualization results need a different

amount of volunteers in order to obtain valuable results
[9]. In our case we have conducted the test with 30
people. We have also grouped them in three groups
depending on their expertise both in computer use in
general and in computer design in particular.

In Table 1 we present the results obtained with uni-
versity volunteers. Most of them were satisfied with
their results after less than five minutes. It is important
to mention that both computer scientist and designers
found several problems that helped us to improve the
application. Most of them found the application diffi-
cult to use at the beginning, although after some prac-
tice they started modeling their terrains. These initial
usability problems helped us to modify some aspects of
the application and also encouraged us to create a brief
guide to explain how the application works. Moreover,
most users found the application funny and played with
it after acquiring a little expertise. Finally, we also en-
couraged some of them to include the terrain inside the
Torque Game Engine [4], in order to give them the pos-
sibility to experience gaming over their modeled island
and terrain.

6 CONCLUSIONS
This paper presents a method for terrain generation
which is suitable for users who wish to have full con-
trol over the whole creation process. We have also pre-
sented a simple tool for creating solid models of imagi-
nary islands. The tool is easy to use and requires only a
minimal user interface, with all of its major operations
being controlled by a two-button mouse. From this ap-
plication, the user can add, remove and reshape exist-
ing hills interactively and the terrain will be updated
accordingly. Moreover, the user is able to modify the
silhouette of the island and add fuzzy bumps as desired.

With the images of islands that we have shown in the
previous section, it can be seen how our approach is ca-
pable of offering very realistic terrains. The user can
decide on the final appearance of the island, as it is pos-
sible to apply as any number of filters. Nevertheless,
the user could choose not to apply filters in order to ob-
tain a fairly rounded terrain which could be useful for
a cartoon-like environment. The usability study, which
was performed among persons with different computer
skills, showed that the user interface we finally selected
is comfortable and adequate in most cases.

Future lines of work on this application include the
possibility of adding more tools at the expense of los-
ing simplicity. In this sense, the authors are interested in
allowing the user to include weather phenomena or veg-
etation and other decorative elements on their island.

ACKNOWLEDGEMENTS
This work was supported by the Spanish Ministry of
Science and Technology with grant TSI-2004-02940,

WSCG 2009 Communication Papers 45 ISBN 978-80-86943-94-7



Study Number of Overall Avg. Required Observed Usability
Group volunteers Satisfaction Time (min.) Problems

Computer Scientists 12 8 3 12
Designers 7 6 5 7

Other Disciplines 11 9 4 2

Table 1: Results obtained with 30 university volunteers.

project TIN2007-68066-C04-02 and through the Ra-
mon y Cajal programme. Also by Bancaja with project
P1 1B2007-56.

REFERENCES
[1] M. Wacker B. Neidhold and O. Deussen. Interac-

tive physically based fluid and erosion simulation.
In Eurographics Workshop on Natural Phenom-
ena, 2006.

[2] C. Dachsbacher. Interactive terrain rendering: To-
wards realism with procedural models and graph-
ics hardware. Technical report, Fiedrich Alexan-
der Universität, Germany. Thesis, 2006.

[3] S. Fefilatyev, V. Smarodzinava, L. O. Hall, and
D. B. Goldgof. Horizon detection using machine
learning techniques. ICMLA, 0:17–21, 2006.

[4] Garage Games. Torque game engine advanced.
http://www.garagegames.com/, 2008.

[5] R. Gregg. Nem’s 3d mega terrain generator.
http://nemesis.thewavelength.net/, 2005.

[6] M. Kaplan and E. Cohen. Producing models from
line drawings of curved surfaces. In Eurographics
Workshop on Sketch Based Interfaces and Model-
ing, 2006.

[7] L.B. Kara and K. Shimada. Sketch-based design
of 3d geometry. In Eurographics Workshop on
Sketch-Based Modelling, pages 59–66, 2006.

[8] A. D. Kelley, M. C. Malin, and G. M. Nielson.
Terrain simulation using a model of stream ero-
sion. In SIGGRAPH ’88, pages 263–268, 1988.

[9] R. Kosara, C. Healey, V. Interrante, D. Laidlaw,
and C. Ware. User studies: Why, how, and when?
IEEE Comput. Graph. Appl., 23(4):20–25, 2003.

[10] Q. Li, G. Wang, F. Zhou, X. Tang, and K. Yang.
Example-based realistic terrain generation. In
ICAT, pages 811–818, 2006.

[11] M. Masry and H. Lipson. A sketch-based interface
for iterative design and analysis of 3d objects. In
ACM SIGGRAPH 2007 courses, page 31, 2007.

[12] Y. Mori and T. Igarashi. Plushie: an interactive de-
sign system for plush toys. In SIGGRAPH 2007,
page 45, 2007.

[13] A. Nealen, T. Igarashi, O. Sorkine, and M. Alexa.
Fibermesh: designing freeform surfaces with 3d
curves. ACM Trans. Graph., 26(3), 2007.

[14] J. Nielsen and T. K. Landauer. A mathematical
model of the finding of usability problems. In CHI
’93: Proceedings of the INTERACT ’93, pages
206–213, 1993.

[15] T. J. Ong, R. Saunders, J. Keyser, and J. J. Leggett.
Terrain generation using genetic algorithms. In
GECCO ’05, pages 1463–1470. ACM, 2005.

[16] S. Owada, F. Nielsen, K. Nakazawa, and
T. Igarashi. A sketching interface for modeling the
internal structures of 3d shapes. In SIGGRAPH
2007 courses, page 38. ACM, 2007.

[17] S. Schmitt. World machine. http://www.world-
machine.com/about.html, 2006.

[18] D.K. Wright S. Lim U. Khan S.F. Qin, G. Sun
and C. Mao. 2d sketch based recognition of 3d
freeform shape by using the rbf neural network.
In Eurographics Workshop on Sketch Based Inter-
faces and Modeling, 2005.

[19] Planetside Software. Terragen.
http://www.planetside.co.uk/terragen/.

[20] K. Stachowski. Terraineer.
http://terraineer.sourceforge.net/, 2006.

[21] A. Torpy. L3dt.
http://www.bundysoft.com/L3DT/, 2008.

[22] P. A. C. Varley, M. Chover, and A. Puig-Centelles.
Sketching islands for a game environment. In 5th
Europ. Conf. on Visual Media Production, 2008.

[23] P.A.C. Varley. Automatic creation of boundary-
representation models from single line drawings.
PhD Thesis, University of Wales, 2003.

[24] Kansas State University Wind Erosion Re-
search Unit. Weru. wind erosion simulation mod-
els. http://www.weru.ksu.edu/weps.html, 2003.

[25] M. F. Worboys. GIS: A Computing Perspective.
Taylor and Francis, 1995.

[26] H. Zhou, J. Sun, G. Turk, and J. M. Rehg.
Terrain synthesis from digital elevation models.
IEEE Transactions on Visualization and Com-
puter Graphics, 13(4):834–848, 2007.

[27] J. Zimmermann, A. Nealen, and M. Alexa.
Sketching contours. Computers & Graphics, In
Press, Accepted Manuscript, 2008.

WSCG 2009 Communication Papers 46 ISBN 978-80-86943-94-7


	!_WSCG2009_SHORT_final_NUMBERED.pdf
	C29-full
	C61-full


