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ABSTRACT

This paper focuses on graphical shader programming, which is essential for real-time rendering. Opposite to classical low
level, structured languages, functional approach is used in this work and existing work is extended to cover geometry shader
programming. The compiler is able to transform the program in a way that is hard to achieve with classical languages. The
program is written for all pipeline stages at once and the compiler does the partitioning. This allows the programmer to focus
on program semantics and let the compiler take care of the efficient execution. First, this paper describes shader stages as
functions in a mathematical manner. The process of program partitioning and transformation to one of the classical languages
is described. Several examples show the differences between functional description and equivalent structured code.
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1 INTRODUCTION

Graphical hardware has changed greatly since first
graphic accelerators. Its architecture evolved from
fixed function pipeline, which became more and more
configurable to today’s fully programmable SIMT
processors. However the programming is still low-
level. The graphical processors lack complex control
structures in exchange for raw computation power. The
three most used languages for shader programming
(GLSL [7], HLSL [8] and Cg [9]) mimic very closely
the structure of the rendering pipeline.

The number of programmable stages of the rendering
pipeline has risen from two to five in the latest acceler-
ators. This means that the programmer must maintain
even higher number of programs, executed at once on a
single primitive, and ensure their compatibility. The in-
terfaces between pipeline stages must be compatible not
only in types, which the compiler can check, but also in
passed values, which cannot be checked automatically.
Packing the shader programs into one effect file solves
this problem only partially. Effect files are only mul-
tiple shader programs, packed into one file with some
additional information. When the effect file contains
a code for multiple generations of graphical cards, the
dependencies are even harder to maintain. This paper
focuses on splitting one program to multiple parts and
automatic generation of interfaces between them. Ver-
tex, geometry and fragment shaders are the point of in-
terest. The next two - hull and domain shaders were
added for performance reasons only and might be ad-
dressed in future work.

Functional approach seems suitable for shader pro-
gramming. Shaders transform data without any side ef-
fects and run massively parallel. Functional programs
tend to be more abstract and allow the compiler to re-
organize the code more than imperative languages. Be-

cause functional programs are referentially transparent,
the order, in which the program is executed, does not
matter. Every program transformation that preserves
the output value is allowed. As shader programming
favors speed over code clarity, this can help readabil-
ity and maintainability without sacrificing performance.
Significant parts of shader programs could be generated
automatically.

Functional programming languages undergo a rapid
development in recent years. Functional languages
leave academic ground and slowly become well known
like Microsoft’s F#. Elements from functional lan-
guages like closures and lambdas are used in current
mainstream languages (Python, C#). Ideas from func-
tional programming like map-reduce [2] are used for
programming parallel algorithms. These successes sug-
gest that functional programming loses its reputation of
being slow and is used for computationally intensive
tasks. Because rendering is a computationally intensive
task of different type, this paper explores the usability
of functional programming for it.

Section 2 describes languages that were used as inspi-
ration for this work. Section 3 shows shaders as func-
tions from a mathematical point of view. Section 4 de-
scribes the transformation from functional program to
C-like representation that is compatible with common
shader languages. Section 5 summarizes the advantages
of this approach and discusses open issues for the fol-
lowing work.

2 RELATED WORK
One of the interesting functional languages for shader
programming is Vertigo [3], which was developed by
Conal Elliott at Microsoft Research. Vertigo is an em-
bedded language, focused on geometry and texture gen-
eration. Complex shapes are built from simple primi-
tives and transformations by function composition. A
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significant part of the optimization is done by rewrite
rules - common technique in functional programming,
which is generally not applicable in imperative lan-
guages due to the lack of the referential transparency.

Another unfinished and interesting language for
shader programming is Renaissance [1]. In this
language, vertex and fragment shaders are specified
as one program. The compiler splits the program and
generates an interface between the vertex and fragment
shader using simple rules that are based on expression
frequencies and function linearity.

Expression frequencies correspond to pipeline stages,
where the expression can be evaluated. Renaissance
uses four frequencies - fragment, vertex, uniform and
constant. Program is initially specified with fragment
frequency and compiler determines lower frequencies
for suitable expressions.

Function linearity is important for splitting vertex and
fragment shader. For linear functions like addition is
not important whether its input or output is interpolated
over the rasterized primitive. This means, if input of
linear function has vertex frequency, its output has ver-
tex frequency too, so it can be safely moved to the ver-
tex shader. Nonlinear functions like normalization can
not be interpolated, so they must remain in the frag-
ment shader. There exists another group of functions -
partially linear - like multiplication. Its output can be
interpolated if only one argument has vertex frequency
and all other have frequency lower.

3 SHADERS AS FUNCTIONS
In this section and the following ones, a simplified
Haskell [6] syntax will be used for program examples.
Function types will be written in mathematical manner.
For example A×B→ C means a function with a do-
mains A×B (with two parameters of the type A and B)
and a codomain C. Square brackets mean a list of val-
ues. It can be also an array, because the differences are
not important here.

If we consider rendering as a function, the type of this
function might be U × [A]→ [F ]. U denotes the uni-
form variables, textures and other rendering state, [A] is
the list of attributes of the rendered primitives and [F ]
is the list of resulting fragments. This means the ren-
dering takes the rendering state and the list of rendered
vertices and transforms it to the list of fragments. These
fragments are collected into the framebuffer. The ren-
dering function can be split to three parts, equivalent to
three pipeline stages.

The vertex shader does the transformation and light-
ing of all vertices. It has the type U × A→ V . Be-
cause all vertices are processed identically, this function
is simply mapped over input vertices. V is the vertex
shader output.

The geometry shader follows the primitive assembly
and takes one primitive consisting of one to six ver-

tices. It has type U× [V ]→ [[G]]. It takes one primitive,
which can be viewed as a list of vertices and outputs
several triangle (or line) strips. Each triangle strip is
simply a list of vertices, so the complete output is a list
of strips. [[G]] denotes the interface between geometry
and fragment shader.

The primitives from the geometry shader are assem-
bled, rasterized, values are interpolated over them and
used as input for the fragment shader. The fragment
shader has type U×G→ F .

Aside from the mentioned parts or frequencies of
computation (vertex, geometry, fragment), another two
frequencies exist. It is the constant and uniform fre-
quency. The expressions with constant frequency are
evaluated at compile time. The expressions with uni-
form frequency transform uniform variables before ren-
dering. For example HLSL preshaders have uniform
frequency.

These frequencies not only assign expressions to
pipeline stages. They also express relative cost of the
computation and their cost increases from constant
to fragment. Calculating expression at constant or
uniform frequency is beneficial always. The limit is
only the amount of constant and uniform registers.

The benefit of moving possible calculations from ge-
ometry to vertex shader is caused by Post Transform
Cache. This cache is located after vertex shader and
stores its outputs. In ideal case, each vertex has to
be transformed only once, but in reality, the capacity
of the cache is up to several tens of vertices. When
drawing single triangles, the vertex shader is executed
three times per triangle. When drawing triangle strips,
VS is executed once per triangle (plus two times per
strip). With indexed rendering of optimized meshes,
VS can be executed less than once per triangle [10].
This means, we can safely move to vertex shader even
calculations that could be performed on only one vertex
of the triangle.

Moving calculation from fragment to geometry
shader is beneficial in all cases, when interpolation is
less costly, than calculation.

3.1 Expression Splitting

As was mentioned in section 2, the program can be split
into stages automatically by the compiler. This sim-
plifies the programmer’s work as he does not need to
maintain the interfaces between stages manually. Aside
from simple splitting, some expressions can be auto-
matically moved into parts with lower frequencies. The
programmer can write calculations that logically belong
together at one place and let the compiler move them
apart to achieve more efficient execution.

This section describes the process of determining the
frequencies of program expressions. In the beginning,
only frequencies of shader inputs are known. Constants
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have constant frequency, uniform variables uniform fre-
quency and vertex attributes have vertex frequency.

Selection of expressions with constant and uniform
frequency is very similar. All function applications
(function calls in structured languages) with constant
frequency operands have constant frequency, too.
Function applications with constant and uniform
operands have uniform frequency. Listing 1 shows
an example of vertex transformation and listing 2
equivalent code without declarations after frequency
estimation and splitting.

un i fo rm m a t r i x 4 model , view , p r o j e c t i o n
a t t r i b u t e v e c t o r 3 p o s i t i o n

−− o r i g i n a l code
p o s i t i o n ’ = p r o j e c t i o n ∗view∗model∗ p o s i t i o n

Listing 1: Original code of Uniform and Vertex shader

−− u n i f o r m p a r t
tmp = p r o j e c t i o n ∗view∗model

−− v e r t e x p a r t
p o s i t i o n ’ = tmp∗ p o s i t i o n

Listing 2: Uniform and Vertex shader after splitting

Vertex and geometry shader can be split at the point,
where vertices of the input primitive are indexed. The
function at is used for this purpose. Before indexing,
the calculations are done for the complete stream of
vertices. The function at can be moved automatically
further into the geometry part. When all inputs of a
function use the same index, this function can be eval-
uated in the vertex shader and its output can be passed
into the geometry shader. All unary functions fulfill this
criterion trivially.

Example in listing 3 calculates the distance of one
vertex of each triangle from the camera (this can be
used for example for LOD selection). Because length
is an unary function, it can be moved into the vertex
shader safely. Multiplication with one uniform argu-
ment acts as an unary function, too. The transformed
program is shown in listng 4.

un i fo rm m a t r i x 4 modelView ;
a t t r i b u t e v e c t o r 3 p o s i t i o n ;

−− o r i g i n a l code
d i s t a n c e = l e n g t h ( modelView∗( a t p o s i t i o n 1 ) )

Listing 3: Original code of Vertex and Geometry shader

−− v e r t e x p a r t
tmp = l e n g t h ( modelView∗ p o s i t i o n )

−− geomet ry p a r t
d i s t a n c e = a t tmp 1

Listing 4: Vertex and Geometry shader after splitting

When the geometry shader is not present, vertex and
fragment shader can be partitioned fully automatically.
This approach was used in Renaissance [1], but has
some drawbacks. Because the program is practically

written as fragment shader, it is hard to express calcu-
lations such as Gouraud shading. Also new versions of
shaders provide multiple modes of value interpolation.
Because of these reasons, I propose another method.

The point of splitting is specified by one of three
functions - smooth, linear and flat. These names come
from three interpolation modes on graphical cards.
Functions smooth and linear can be moved further into
fragment part by the same manner as in Renaissance.
Calculations with all arguments with flat interpolation
mode can be always moved into geometry (or vertex)
shader, because no interpolation is performed. The
centroid option does not complicate the transformation,
so it is omitted here for simplicity.

The example in listing 5 shows a simplified calcula-
tion of specular lighting with phong shading. The ge-
ometry shader is omitted for simplicity. The transfor-
mation of the light vector is completely uniform. Multi-
plication is partially linear, so transformation of normal
vector can be done in the vertex shader. Normalization
is a nonlinear operation, so it must be left in the frag-
ment shader. The light vector can be normalized in the
uniform part, because it is not interpolated. The trans-
formed code is shown in listing 6.

un i fo rm m a t r i x 4 modelView , n o r m a l M a t r i x ;
un i fo rm v e c t o r 3 l i g h t V e c ;
a t t r i b u t e v e c t o r 3 normal ;

−− o r i g i n a l code
norm = n o r m a l i z e ( n o r m a l M a t r i x ∗( smooth normal ) )
l v e c = n o r m a l i z e ( modelView∗ l i g h t V e c )
c o l o r = norm ’ dot ’ l v e c

Listing 5: Original code of Vertex and Fragment shader

−− u n i f o r m p a r t
l v e c = n o r m a l i z e ( modelView∗ l i g h t V e c )

−− v e r t e x p a r t
tmp = n o r m a l M a t r i x∗normal

−− f r a g m e n t p a r t
norm = n o r m a l i z e ( smooth tmp )
c o l o r = norm ’ dot ’ tmp1

Listing 6: Vertex and Fragment shader after splitting

4 PROGRAM TRANSFORMATION
Automatic partitioning of the shader program is not
the only important difference between conventional and
functional approach. Very useful feature of functional
languages are closures, partial application and higher
order functions. Closures are nested functions with
some variables defined inside the outer function. Par-
tial application means that for example binary function
can take one argument and can be used as unary func-
tion afterwards. Higher order functions are functions
that take another function as a parameter or return it.

All these features significantly improve code expres-
siveness. Especially higher order functions offer the
possibility of sharing code structure, that is hard to
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achieve or even not possible in structured languages.
For complete implementation of these features, dy-
namic memory allocation is needed. Since the under-
lying hardware does not support it now, compiler must
convert these features into equivalent structured code.
The resulting code is often significantly less elegant, as
will be shown in an example. The hardware also limits
recursion, which must be limited to a form that can be
automatically converted into loops. Sum-types, some-
times called discriminated unions, are also forbidden.
Only product types - equivalent to C structures - are us-
able.

Enriched lambda calculus [5] can be used for pro-
gram representation. This does not differ from other
functional languages. The program is converted into a
list of definitions which is topologically sorted. A defi-
nition is simply a named expression.

Because shaders do not have capabilities to support
lazy evaluation, the program must be converted to an
equivalent strict form. Both Vertigo and Renaissance
solved this by complete substitution of all free variables
in expressions. This approach is simple, but in the re-
sult, all common sub-expressions are lost.

In this paper a slightly more complicated approach is
used. The program is lambda-lifted [4], so nested and
anonymous functions are converted into C-like global
functions. Substitution is done only to remove closures
and partial applications, not for all variables. Lastly, all
applications are merged into complete function calls.

Frequencies are estimated using rules from the previ-
ous section. For expressions without user-defined func-
tions, the splitting is trivial. When a user-defined func-
tion is present, the frequencies inside it are estimated
according to the parameter frequencies. Optionally, this
function is also split into parts. Because of this splitting,
library functions acting as one piece can be automati-
cally split into multiple parts. This allows the use of
library functions that silently cross the boundaries be-
tween shader stages and are both compact and effective.

Classical structured code can be now generated from
the vertex and fragment part. The geometry part has
one list of values for every output variable. To match
the structure of the geometry shader, its output must be
one list of structures containing every output variable.
This conversion is in functional languages done by the
function zip. This function takes multiple lists and con-
verts it to a single list of structures. The length of the
resulting list is the length of the shortest input list.

4.1 Larger example
This example illustrates the compilation of a more com-
plex shader program. The uniform variables are mod-
elView and normalMatrix. The vertex attributes are ver-
tex and normal. The required output variables are posi-
tion with frequency geometry and color with frequency
fragment. The source code without declaration of vari-

ables is shown in listing 7. This program transforms the
input vertices and normals, splits the triangles into four
parts as shown in figure 1 and calculates simple diffuse
lighting. The splitting is described by function gen.
This function is used for position, normal and light vec-
tor identically. A real program would add some modi-
fication after, but for this example, simple subdivision
will suffice; any such complication would not affect the
compilation process.

Figure 1: Subdivision of a triangle in the geometry
shader in listing 7. The input vertices i and generated
vertices m correspond to the list in the function gen.

t r _ p o s = modelView∗ v e r t e x
t r_norm = n o r m a l M a t r i x∗normal

gen i = [ [ i 0 , m 2 , m 0 , m 1 , i 1 ] , [ i 2 , m 1 , m 2 ] ]
where m x = ( i x + i ( x +1) %3) / 2

p o s i t i o n = gen ( a t f t r a n s f o r m )
l v e c = l i g h t P o s − ( smooth ( gen ( a t t r _ p o s ) ) )
norm = smooth ( gen ( a t t r_no rm ) )
c o l o r = ( n o r m a l i z e l v e c ) ’ dot ’ ( n o r m a l i z e norm )

Listing 7: Code for triangle transformation, subdivision
and simple shading

The definitions are already sorted, so no reordering
is needed. All expressions depend only on previous
definitions. Lambda lifting splits the function gen and
creates a new function gen_m. These two functions
are now C-like global functions. The resulting code is
shown in listing 8.

t r _ p o s = modelView∗ v e r t e x
t r_norm = n o r m a l M a t r i x∗normal

gen_m i x = ( i x + i ( x +1) %3) / 2

gen i = l e t m x = gen_m i x in [ [ i 0 , m 2 , m 0 , m
1 , i 1 ] , [ i 2 , m 1 , m 2 ] ]

p o s i t i o n = gen ( a t f t r a n s f o r m )
l v e c = l i g h t P o s − ( smooth ( gen ( a t t r _ p o s ) ) )
norm = smooth ( gen ( a t t r_no rm ) )
c o l o r = ( n o r m a l i z e l v e c ) ’ dot ’ ( n o r m a l i z e norm )

Listing 8: Shader after lambda-lifting. Only the
function gen differs from listing 7.

WSCG 2010 Communication Papers 12



Partial applications of functions like m in the func-
tion gen or usages of the function at are substituted to
places where the remaining arguments are applied. By
this substitution, specialized lists for variables position,
lvec, and norm are created. The function gen itself and
the lifted function gen_m are removed as a dead code.
The resulting code is shown in listing 9.

t r _ p o s = modelView∗ v e r t e x
t r_norm = n o r m a l M a t r i x∗normal

p o s i t i o n = [ [ a t f t r a n s f o r m 0 , ( ( a t f t r a n s f o r m 2) +
( a t f t r a n s f o r m ( 2 + 1 ) %3) ) / 2 . . .

l v e c = l i g h t P o s − ( smooth [ [ a t t r _ p o s 0 , . . .
norm = smooth [ [ a t t r_no rm 0 , . . .
c o l o r = ( n o r m a l i z e l v e c ) ’ dot ’ ( n o r m a l i z e norm )

Listing 9: Shader without partial applications and
closures

Expression frequencies are estimated, expressions
are split, constant expressions are evaluated and
common subexpression elimination is done. Vertex
and fragment parts are prepared for code generation.
Geometry part needs zipping together, which is trivial.
Listing 10 shows this situation.

−− v e r t e x f r e q u e n c y
t r _ p o s = modelView∗ p o s i t i o n
t r_norm = n o r m a l M a t r i x∗normal
tmp1 = f t r a n s f o r m
tmp2 = l i g h t P o s − t r _ p o s

−− geomet ry f r e q u e n c y
p o s i t i o n = [ [ a t tmp1 0 , ( ( a t tmp1 2) + ( a t tmp1

0) ) / 2 . . .
l v e c = [ [ a t tmp2 0 , ( ( a t tmp2 2) . . .
norm = [ [ a t t r_no rm 0 , . . .

−− f r a g m e n t f r e q u e n c y
c o l o r = ( n o r m a l i z e l v e c ) ’ dot ’ ( n o r m a l i z e norm )

Listing 10: Code parts for each stage of the rendering
pipeline

Listing 11 shows the generated code. The interface
between the vertex and geometry shader are the vari-
ables tr_norm, tmp1 and tmp2. The interface between
the geometry and fragment shader are the variables lvec
and norm.

/ / v e r t e x sh ad er
t r _ p o s = modelView∗ p o s i t i o n ;
t r_no rm = n o r m a l M a t r i x∗normal ;
tmp1 = f t r a n s f o r m ;
tmp2 = l i g h t P o s − t r _ p o s ;

/ / geome t ry sh ad er
p o s i t i o n = tmp1 [ 0 ] ;
l v e c = tmp2 [ 0 ] ;
norm = t r_norm [ 0 ] ;
e m i t V e r t e x ( ) ;
p o s i t i o n = ( tmp1 [ 2 ] + tmp1 [ 0 ] ) / 2 ;
l v e c = ( t p 2 [ 2 ] + tmp2 [ 0 ] ) / 2 ;
/ / . . . t o o long

/ / f r a g m e n t sh ad er
c o l o r = d o t ( n o r m a l i z e ( l v e c ) , n o r m a l i z e ( norm ) ) ;

Listing 11: Code equivalent to listing 7 in the target
structured language

The final code does not contain the interfaces be-
tween shader stages, because they are straightforward.
The code for the geometry shader was shortened, be-
cause all vertices are generated nearly identically. In
classical languages, the structure of generated vertices
cannot be shared, so the resulting code must be written
by hand or generated by some preprocessing tool.

5 CONCLUSION AND FUTURE
WORK

This paper presented a functional approach to the ge-
ometry shader programming. This approach has some
interesting properties that are hard to achieve in con-
ventional structured languages.

One program is written for all shader stages and the
compiler does the necessary partitioning and interface
generation. This simplifiers the programmer’s work, as
he can write the code, where it logically belongs and let
the compiler move it for an efficient execution.

Higher order functions allow the programmer to write
the code more abstract. Abstract code often tends to be
shorter and more readable. The code sharing is possi-
ble at a level that is hard to achieve by traditional lan-
guages.

Automatic partitioning of program also helps modu-
larity. Library functions can be viewed as single blocks
by the programmer, but parts of them can be executed
in different stages of the pipeline.

These properties significantly improve the shader
programming. However it is not likely that so massive
shift of used paradigm could occur. Because of that,
following work will focus on selecting useful parts that
could be used to extend existing languages.
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