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ABSTRACT

In this paper we propose two novel software implementatmfithe ray-casting volume rendering algorithm for irreguigids,
called ME-Raycast (Memory Efficient Ray-casting) and EM&y&ast (Enhanced Memory Efficient Ray-Casting). Our aljors
improve previous work by Bunykt al [1] in terms of complete handling of degenerate cases, mgmisumption, and type of
cell allowed in the grid (tetrahedral and/or hexahedralhe Tise of a more compact and non-redundant data structioegedl

us to achieve higher memory efficiency. Our results show ister® and significant gains in the memory usage of ME-Raycas
and EME-Raycast when compared to Buylal implementation. Furthermore, our results also show thatliyag of degenerate
cases generates accurate images, correctly renderimg glixels in the image, while Bunydt al implementation fails in rendering
up to 38 pixels in the final image. When we compare our algomthio other robust rendering algorithm, like ZSweep [2], we
have considerable performance gains and competitive mecomsumption. We conclude that ME-Raycast and EME-Rayrast
efficient methods for ray-casting that allow in-core remmaigof large datasets with no image errors.

Keywords: Volume rendering, Ray-casting.

1 INTRODUCTION to compute a contribution for the pixel color and opac-
ity. The ray stops when it reaches full opacity or when it

Direct volume rendering has become a popular technigygayes the volume.

for visualizing volumetric data from sources such as sci- thare gre many different implementations of the ray-

entific simulations, analytic functions, and medical Scanéasting algorithm, [6, 5, 7, 8]. Only a few software solu-

ners such as MRI, CT, and ultrasound. A big advantaqfons’ however, deal with irregular grids. Garrity [3] pro-

of direct volume rendering is to allow the investigation Ofposed an efficient method for ray-casting irregular grids

the interior of the data volume, because the objects a[fjng the connectivity of cells. In his method, as the ray
considered as composed of a semi-transparent materiaje rsects one cell, it must exit through one of its faces. At

Volumetric data used in volume rendering is usuallyhis point it is only necessary to check intersections of the
represented in the form of a regular or irregular grid. Regray with the cell's faces. Therefore, Garrity used the con-
ular grids are built with a rigid topological framework, pectivity of the data to move from cell to cell of the grid,
and can be represented in an implicit form. Irregulajy order to reduce the cost of identifying the cells which
grids, on the other hand, have the advantage of generaliye ray intersects. This scheme leads to a quadratic cost
since they can conform to nearly any desired geometryy, the number of cells. Later, Bungk al [1] improved
gnd thus, they are useful to represent complex geometri@%lrrityys work by determining for each pixel an ordered
In a compact way. list of intersections on external visible faces. This akow

Although several algorithms and methods have beefiem to efficiently enumerate which boundary face in-
proposed to efficiently render irregular grids, the mostersects a given ray, and the correct order of the entry
popular one is theay-casting method. In this method, points for the ray. The rendering process follows Gar-
rays are casted from the viewpoint through every pixelity’s method, but when a ray exits the grid, the algorithm
of the image what determines which cells of the volumgan easily determine in which cell the ray will re-enter
each ray intersects. Every pair of intersections is use@e grid. This approach becomes simpler and more effi-
cient than Garrity’s propose, however it keeps some large
auxiliary data structures.

The memory consumption of Bunydt al approach is
very high. This can have some implications in the algo-
rithm efficiency when the computer does not have enough
main memory. In addition, the amount of memory used
by the ray-casting algorithm could complicate its imple-
mentation in the graphics hardware. Nowadays, this be-
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comes a huge obstacle for achieving real-time perfoof the entry points for the ray. These two are all-software
mance in rendering. approaches, which means that they do not require any
Besides the memory consumption problem, Bueyk graphics hardware. Our work is also an all-software im-
al approach has other shortcomings. First, there are sorpéementation, but provides improvements over Bueyk
degenerate cases that cannot be handled by their algh-work. Weiler et al [12], on the other hand, imple-
rithm. And second, it deals only with tetrahedral grids. Inmented ray-casting using the graphics hardware. They
this work, we propose two novel ray-casting algorithmdind the initial ray entry point by rendering front faces,
based on Bunylt al approach, but improving it in dif- and then traverse through cells using the fragment pro-
ferentways. Our goal is to develop memory efficient raygram by storing the cells and connectivity graph in tex-
casting algorithms that provide accurate results. Our ajdres. Their method, however, work only on convex un-
proaches: (i) completely handle degenerate cases; (i) usuctured data, and is based on GPU programming.
different data structures that are much smaller than the Another class of rendering algorithms is the one that
ones used in Bunykt al approach; and (iii) deal with performs the render based on the sweeping paradigm to
both tetrahedral and/or hexahedral grids. lower the cost of the ray-casting. The first work in this
Our algorithms, called ME-Raycast (Memory Efficientclass was developed by Giertsen [4]. In his work, a plane
Ray-casting) and EME-Raycast (Enhanced Memory Efweeps the dataset in the up direction, or in the direction
ficient Ray-Casting), presented consistent and significant Y axis, intersecting with cells. For every line of pix-
gains in memory usage over Bungkal approach. Our els of the image, all intersections of the sweeping plane
gains were not only in memory usage, but also in the cowith the cells of the grid is approximated by a regular
rectness of the final image. Bunyk al approach did 2D grid, and a bidimensional raycast is performed. One
not handle all possible degenerated cases, so it generateggkness of this method is the approximation imposed
some incorrect pixels in the image. in the accommodation of the 2D grid, result of the inter-
We also compared our algorithms to other robust disection of the plane sweep with the data cells, onto the
rect volume rendering algorithms based on cell projectioffgular grid. Later, the work by Silvet al [10] improved
paradigm, ZSweep. Our algorithms outperform ZSweefpiertsen work. The Lazy Sweep algorithm avoids the ap-
for all datasets. In terms of memory usage, for smallegproximation mentioned above.
images resolutions, ME-Ray spends more memory thanProjection algorithms, on the other hand, reconstruct
ZSweep. EME-Ray, otherwise, spends less memory thdlae image from the object space to the image space. The
ZSweep for most of the cases. projection requires that the cells are first sorted in visi-
The remainder of this paper is organized as followspility ordering and then composed to generate their color
In the next section we relate our work to others in thénd opacity in the final image. The first algorithm to be
field of volume rendering of irregular grids. Section 3 defully implemented to use projection was the ZSweep by
scribes our ray-casting algorithms and the improvemenfzariaset al. [2]. The algorithm was implemented using
we made on Bunyk’s approach, and shows how our apnly the CPU, what provided flexibility and easy paral-
gorithms handle the degenerate cases. In section 4 \dization. The ZSweep is a simple and efficient face pro-
present the results of our most important experimentigction rendering algorithm. ZSweep sweeps the dataset
Finally, in section 6, we present our conclusions and procertices, in depth order, with a plane perpendicular to

posals for future work. the viewing direction. When the sweep plane hits a ver-
tex, ZSweep project the faces incident on that vertex. To
2 RELATED WORK achieve memory efficiency, they used a mechanism called

early ray composition. We used ZSweep algorithm as a

There are mainly two categories of algorithms for direchaseline for our performance evaluation, in order to com-
volume rendering on irregular grids: ray-casting and propare the speed and memory usage of our ray-casting algo-
jection. rithms over a projective one. The great advantage of pro-

Ray-casting algorithms are usually called image-spagective methods is that they are efficiently implemented
methods, since in its outer loop, it iterates over all thén programmable graphics hardware. Several cell projec-
pixels of the output image. In the work by Garrity [3], astion algorithms were implemented using hardware graph-
mentioned before, for each ray, exterior faces are testeck (e.g., [13], [9], [11]).
to find the first intersection point. After that, the cells are
traversed using the connectivity relation between then?_o, OUR APPROACHES
This work was further improved by Bunyét al [1], by
computing for each pixel a list of intersections on exterThe main goal of ME-Raycast and EME-Raycast algo-
nal visible faces, and easily determining the correct ordeithms is to combine correctness of the results with effi-

Full Papers 210 ISBN 978-80-86943-98-5



ciency in memory usage, without degrading the executioNei ghbor _Array for C;. We determine all the
time. face-neighbor cells by scanning théJse Set of the

For both algorithms, the traversal for each pixel startgertices of the cell. During this scanning, we create for
in the same way proposed in Bungtkal implementation. each cell a list with the indices for itiace-neighbor
We project the visible faces on the screen and keep feells. We save a great amount of memory by keeping
each pixel the list of intersection points which enters theuch lists on the cell structure instead of on the face
volume. Nevertheless, for the internal grid adjacencgtructure (as done in Bunyk’s method), since the number
representation, ME-Raycast and EME-Raycast use comf faces is always greater than the number of cells. This
pletely different data structures. In fact, EME-Raycasinformation speeds up the process of stepping through
was developed as an optimization of ME-Raycast ithe grid during ray-casting.
terms of memory usage. EME-Raycast uses simpler The Faces_VEC array is created on demand during
data structures than ME-Raycast. Our algorithms alsihie raycast process, as the faces are intersected by the
include an identical and efficient method to deal with theays. Only intersected faces are inserted. As a face is
degenerate cases that can occur during the ray travergaerted, all its related parameters are computed. The

process, described in section 3.3. number of faces in the array will depend on the image
resolution and on the size of the dataset. For example,
3.1 ME-Raycast Algorithm for a small resolution image and a large scale dataset, lots

of faces will never be intersected by any ray and con-

Before explaining the ME-Raycast algorithm itself, Wesequently will not be created by the process. Bunyk’s

describe its basic data structures. These data Structutes . -4 on the other hand. inserts all faces in the prepro-
are also used by EME-Raycast, except for the most merE ’ ’

. e - cessing phase and compute their parameters at the begin-
ory expensive array and some auxiliary structures, whic

imi 4 in EME-R | ing of the rendering. Processing time is saved, but with
zlzer11f)'clircr>1rl1nate In -Raycast to lower memory cony, o ¢t of great memory overhead.

Algorithm  The ME-Raycast algorithm can be divided
Basic Structures ME-Raycast keeps three basic strucinto two phases: the preprocessing phase, and the core en-
tures: the vertex arrayPpi nt s_VEQ), the cell array gine, Just like Bunyk’s implementation, the preprocess-
(Cel I's_VEC) and the face arraysaces_VEC). There jng is performed while the dataset is read. In the prepro-
are also some auxiliary structures: thee_Set of a cessing phase, the following steps are performed:
vertex v is a list of all cells incident orv (see Farias

et al [2]); the Nei ghbor _Array of a cellcis an ar- 1. Read and store the vertices and cells of the dataset,

ray of indices of all neighboring cells of; and the creatingPoi nt s_VECandCel | s_VEC.
Tri angul ar _Faces of a cellcis an array of indices

of the triangular faces that bourd(in hexahedral cells, 2. Generate thelse_Set list for each vertex.
the faces need to be broken in two triangular faces).
TheUse_Set array substitutes theef er r edBy list
used in Bunyk’s implementation. Thése_Set foreach
vertex, is a list of all cells incident on the vertex, in con-y
trast with ther ef er r edBy list, which is a list of faces
incident on the vertex. Thelse_Set can be created in
the preprocessing phase,@{c), wherec is the number

3. Determine for each cell ifece-neighbor list.

To identify external faces of a cell, we store its own in-
ex, indicating that there is rface-neighbor cell sharing
this face. We also create a list with all external faces. This
list keeps, for each face, the index to the cell and to the
relative face in the cell. The core engine of ME-Raycast

of cells._We allocate an array of 'F‘tege“‘“(‘ _array), algorithm performs the rendering process. For each point
of the size of the number of vertices. For each cell, we." ... ME-Raycast execute the following code

loop through each of its vertices, and increment the ele-
ment ofi nt _ar r ay indexed by the number of the ver- Pr oj ect external faces

tex, and a global counter. Atthe end, we know how many creati ng Ext _Faces;

cells are incident on each vertex and the global total dfor each pi xel

incident cells on every vertex. Then, we allocate another Wi | e( Ext _Faces not enpty){

array Use_Set ) using the global counter. We repeat Repeat {

the loop on the array of cells and fill in thdse_Set of Fi nd next intersection by

each vertex. checking other cell’s faces;
Another step in the preprocessing phase is to find If (no intersection)

for each cellC its face-neighbor cells, which are check degenerate case;

the cells that share a face wii, and create the Accumul at e col ors/ opacity;
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} Wiile (next intersected for each face. This way, we do not need to worry about
face is internal) the four points being coplanar to define a plane.
} Bunyket al use the Point-Within-Triangle algorithm to
he visibl | f h h determine the ray intersections and to look for the next
h The V'SI' € externah agg%s' k(]t he ones w ((j)_se normal§e|| the ray will intersect. In their algorithm, however,
ave angies greater thanJith the viewing |rect|on_) degenerated situations may arise when the ray hits a ver-
are projected on the screen, generating for each plxeltgx or an edge. In Figure 1, we exemplify in 2D the case
list of intersections with the external faces. These inteRNhere the ray hits a vertex. The blue cell corresponds to
sectlor_ms W'_" be used to start the ra¥caS‘ for egch p|>§el. the first cell that the ray intersects, called the currerit cel
To visualize the dataset from a different point of View,gnyk et al approach would check only the cells neigh-
the list of faces is reused, saving processing time. Onlyoring the current cell faces, i.e., faces of the cAlsnd
the faces _parameters _must be recomputed for all facgs. However, the ray does not intersect with neitheror
Also, our implementation allows both parallel and perg faces. In this case, the final color of the pixel will be

spective projections. wrong, since the composition process will be interrupted.

3.2 EME-Raycast Algorithm

EME-Raycast and ME-Raycast have similar algorithms,
but in EME-Raycast we have removed some data struc-
tures used in ME-Raycast.

The basic structures used in the EME-Ray are only two:
the array of verticesRoi nt s_VEC), and the array of
cells Cel | S—VE.C)' We have removed the array of facesFigure 1: 2D example where the ray hits a vertex and
(Faces_VEQC), since it was one of the most memory ex- .
pensive structures in ME-Raycast. Without the array Ol?unyk approach does not find ¢
faces, we can save about B« f bytes of memory, where  To avoid this type of error, we propose a different kind
f is the total number of triangular faces in the data sebf verification to look for the next cell intersected by the
Therefore, in a dataset with about 1 million faces, we areay. The idea is to allow the continuation of the ray traver-
save about 52 Mb of memory. sal, by looking for the next cell scanning thise_Set

From the cell structure, we removed the arrayf each vertex which determine the current cell. In the
Triangul ar _Faces. As tetrahedral cell uses 36 example in Figure 1, this scanning will return ce\sB,
bytes, saving 16 bytes, and a hexahedral cell uses €0 D andE. Therefore, this scheme asserts that another
bytes, saving 48 bytes of memory. In all we save abountersection will be found in a face of cé€l guaranteeing
(16xt + 48x h) bytes of memory, wheré is the total that the ray traversal will continue and the image will be
number of tetrahedral cells ardis the total number of correctly generated.
hexahedral cells. When the ray hits an edge, the problem can be solved

The vertex structure is identical to the one used in MEby the same procedure explained above. In Figure 2, we
Ray. However, the data structures removals are responshow an 3D example for this case. In this example, the
ble for increasing the execution time. As we do not storblue cell of (a) corresponds to the first cell that the ray
the faces anymore, we need to recalculate the paramet#rtersects. The next intersection is in the edlgé; in the
for verification of ray intersection every time that a newpoint b. Bunyk et al approach would look for the next

face is checked. intersection in all the faces adjacentMgV; edge. These
faces are shown in (b). As we can observe in the figure, it
3.3 Handling Degeneracies is not possible to find the next intersection in the adjacent

faces of\pV4. Our approach, on the other hand, uses the

The intersection between a ray and a face of a cell is tnﬁse Set of the vertices of the blue cell to find the next
result of the algebraic calculation of the intersection be-.,  —

. . ““intersection. Using th&lse_Set of \jp andVy, we find
tween a line and a plane, see [1]. For tetrahedral grids, e yellow cell of (a). In the yellow cell, we find the next
is the intersection between the line defined by the ray Pa q the ray intersects, determiniag
and the plane defined by the three vertices of a triangular ’
face. For hexahedral grids, where each quadrangularfaﬁe EXPERIMENTAL RESULTS
is defined by four vertices, the intersection is found by
splitting the quadrangular face into two triangular facesn this section we evaluate the performance and mem-
and performing the same calculation mentioned abovery usage of ME-RaycasME-Ray) and EME-Raycast
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Vi Table 1: Datasets used in our experiments.
[ Dataset Information |
Datasets  [[ Vertices | Faces [ Boundary| Cells |

Blunt Fin 40.960 381.548 13.516 187.395
Comb. Chamber|| 47.025 437.888 15.616 215.040
Oxygen Post 109.744 | 1.040.588| 27.676 513.375

(@)

SPX 149.224 | 1.677.888| 44.160 | 827.904
Delta Wing 211.680 | 2.032.084| 41.468 | 1.005.675
| Hexa [ 2684 | 6432 | 1344 | 1920 |

ZSweep: The ZSweep algorithm is a direct volume
rendering algorithm based on the sweeping paradigm,
and built over the success of prior sweep approaches[10].
The main idea of ZSweep algorithm is the sweeping of
the data with a plane parallel to the viewing plax¥,
towards the positive direction. The sweeping process
is performed by ordering the vertices by their increasing
z coordinate values, using a heap sort, and then retriev-
ing one by one from this data structure. For each vertex
swept by the plane sweep, the algorithm projects, onto
the screen, all faces that are incident to it. When a face
(EME-Ray). Our evaluation uses two different baseliness projected onto a given pixel, the result is equivalent
for the comparisons. The baselines are two direct voto the intersection of the ray emanating from this same
ume rendering algorithms for irregular grids: the Bunykpixel and the face being projected. ZSweep stores its
et al implementation of ray-castingdUNYK); and the z-value, and other auxiliary information, in sorted order
ZSweep cell projection algorithnZGweep. The ideas in a list of intersections for the given pixel, called pixel
behind these comparisons are to: (1) Measure the inist. To achieve memory efficiency, ZSweep uses a mech-
provements over Bunyk work in terms of memory usag@nism called early composition. The composition of the
and correctness of the final image. (2) Put our results imtersections in a pixel list is performed as ttaeget-Z
perspective, with respect to other robust rendering algds reached. Thearget-Z represents the maximumecoor-
rithm (that generates correct final images). Following, welinate among the vertices adjacent to the first vertex en-
briefly describe the two baselines, show the datasets usesuntered by the sweeping plane. When the plane reaches
in our experiments, and, then, describe our performancetargetz, the next target will be again the maximum
analysis. z coordinate among the vertices adjacent to the current
reached target, and the process continues.

4.2 \Workload

Figure 2: 3D example where the ray hits an edge and
Bunyk approach does not find ¢

4.1 Baselines

BUNYK: Bunyket al. implementation initially projects

the external visible faces on the screen, creating for eagg:) Geﬁgevr\;itn;]erlnéBvéir?neﬁggucrtjgni:]n ﬁinsfn;gj(;?)r;’
pixel, a list of the intersections generated by these pro= Y, 9

jections. The process starts by projecting all faces who%oret IZ: Wé ha\t/)e ut_sed (];Ixe dgfere(r;t tetrahs dr?' ggg‘?smj:
normal make an angle greater ther? 9dth the viewing unt Fin, Lomoustion Lhamboer, LXygen Fost, an

direction. After projecting every visible face, the algo-aelta Wlng(,jandlalio 0?16 small hﬁxagﬁdral (:a;]asetr,] cglleld
rithm knows, for each pixel, which face through which €xa, used only 10 show our handiing ot hexahedra

the ay enters the volume. Since the algoritnm computd % 17 1 TP 0 HEREER FRCR NI 0 e
all cell's neighbors in preprocessing, it is computed, i :

constant time, the next face the ray is going to intersec he image sizes, from 128 128 10 1024x 1024 pixels.

For every two consective intersections, opacity and C0I04_3 ME-Raycast and EME-Raycast Perfor-
integrations are computed. Once there is no more entry mance

point for the pixel, the ray has left the volume, and the
process is finshed for the current pixel. It is importantn this section we evaluate ME-Raycast and EME-
to notice that, the list of faces created to carry on thiRaycast algorithms, compared to ZSweep and BUNYK
method is responsible for about half the memory usagesults. In terms of the number of pixels rendered,
of this implementation. ME-Ray, EME-Ray and ZSweep rendered all the pixels,
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generating a correct image. However, since BUNYK Table 3: Blunt Fin Data Results
Time Memory

38%
80%

76%
37%

76%
37%

does not handle all possm_)le degenerqte cases, it fails in n,ge BUNYK | ZSweep || BUNYK | Z5weep
rendering the amount of pixels shown in Table 2. As we[ 12§ | ME-Ray 145% 32% 52% 229%
. . . - 0, 0, 0, 0,
can observe in this table, for Blunt Fin, Oxygen, Delta — EMMEERRay i;g;" 230//” (23‘1‘;’ 12%"
. -Ra
and SPX, BUNYK generates a great amount of flaws in I EME Ry H 17 I T H =07 I ARt I
the 512x 512 and 1024 1024 images. Up to 38 pixels ‘ 517 | ME-Ray || 138% | 32% [ 69% | 96% |
were not rendered correctly. | EME-Ray [[ 335% | 78% [ 28% [ 39% |
Rl A - ———
. -Ra
Table 2: Pixels not rendered by BUNYK ! Al ¢ ] ol ¢ a
[ Bad pixels - BUNYK |
Image Size || BluntFin | Combustion | Oxygen | Delta | SPX
12§ 2 - - 1 - Table 4. Combustion Chamber Results
25 3 1 4 2 3 Time Memory
512 10 - 11 7 5 Image BUNYK | ZSweep || BUNYK | ZSweep
1024 31 2 38 17 18 128 ME-Ray 184% 57% 73% 351%
EME-Ray 166% 51% 24% 115%
2560 | ME-Ray || 141% | 43% [ 74% | 287% |
Tables 3, 4, 5, 6 and 7 show the results of time and th [ EME-Ray || 215% | ©65% | 25% [ 96% |
f d for Blunt Ein. Combusti 517 | MERay || 153% | 5/% || 75% | 169% |
amount of memory consumed for Blunt Fin, Combustion FEMERay [ 232% | 8% || 28% | 63% |
| I | |
| I | |

Chamber, Oxygen Post and SPX datasets, respectiveir,lozg [ ME-Ray || 106%
rendered by ME-Ray and EME-Ray when compared to | EMERay || 224%
BUNYK and ZSweep execution, for four different im-

age resolutions, 128 128, 256x 256, 512x 512, and

1024x 1024. The results for the Hexa dataset are not con-

sidered because it is a very small dataset, and BUNYK_ .. ME-Ray and EME-Ray use considerably less

algorithm cannot handle heaxahedral datasets. The p?ﬁ'emory than BUNYK. For larger images, BUNYK
centages presented in these tables correspond to the raf : ’

. s about 3 times more memory than our algorithms.
of our algorithm (ME-Ray or EME-Ray) result over theAs the image size grows, however, BUNYK becomes
baseline (BUNYK or ZSweep). In other words, we con

‘much more faster than EME-Ray. Compared to ZSweep,

sider BUNYK or ZSweep results as 100% and are pre\1\'/IE-Ray is about 2.6 times faster and uses 1.5 times less

senting how much we increase or decrease this baselinﬁ1emory for the largest image precision. For a 51212

Table 3 presents the results for the Blunt Fin dataseﬁnage, EME-Ray is about 1.5 times faster and uses 1.6
Comparing ME-Ray and EME-Ray with BUNYK, We times less memory than ZSweep.
observe that they use considerably less memory than
BUNYK. ME-Ray uses, for a 1024 1024 image, al-
most the same memory BUNYK uses for a 22828 im-

Table 5 shows the results for Liquid Oxygen Post

Table 5: Liquid Oxygen Post Results

R Time Memory
age. EME-Ray uses 3.5 times less memory than BUNYK| image BUNYK | ZSweep || BUNYK | ZSweep
for a 512x 512 image and 2.5 times less memory for a| 128 | MERay 162% 24% 44% 216%

EME-Ray || 200% 29% 20% T18%

1024x 1024 image. These.significar?t reductions iln mem-— TVERy [ 157%
ory usage comes with an increase in the execution t|me‘. [ EMERay || 268%
The increase, however, is only about 26% for ME-Ray‘ 512 | ME-Ray || 142%
for a 1024x 1024 image. When compared to ZSweep, — : EMMEE_'RZ?V ” i;g;‘:
we observe that EME-Ray outperforms ZSweep in term [ EME-Ray || 289%
of render time and memory usage for the three larger im-

age precisions.

Table 4 shows the results for Combustion Chamber Table 6 shows the results for the largest dataset, Delta
dataset. ME-Ray and EME-Ray also consume less meming, that has more than 1 million cells. ME-Ray
ory than BUNYK. For a 51% 512 image, EME-Ray method is about 1.5 times slower than BUNYK, but uses
spends 3.6 times less memory than BUNYK and, fot.6 times less memory and EME-Ray uses less than 30%
a 1024x 1024 image EME-Ray spends 2.7 times lessf the memory used by BUNYK. Compared to ZSweep,
memory. In terms of execution time, BUNYK outper- ME-Ray is faster for all images sizes, but consumes more
forms ME-Ray, but for a 1024 1024, ME-Ray is only memory. For small images, even EME-Ray consumes
6% slower. When compared to ZSweep, ME-Ray spendsore memory than ZSweep. Thisis due to the indices we
more memory, but is faster, and EME-Ray is faster anldeep for the neighboring cells for each cell. Nevertheless,
uses less memory for larger images. EME-Ray performs significantly better than ZSweep.
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39%
76% 24%

41% 57%

[ 50%
I
I
79% ||__26%
I
I

205%
100%

142%
64%
70%
32%

38% 66%
82% 30%




Table 6: Delta Wing Results and obtained better images. On the other hand, the mem-

Time Memory i i i
Image BUNYK | ZSweep || BUNYR | 2Swess ory requirements mc_reased about 12F bytes (where F is
128 ME-Ray 141% 15% 38% 200% the number of faces in the dataset).
EME-Ray || 150% | 16% 23% 124% The increase in the execution time, when compared

26% 44% 216% |

33%
61%

61%
27%

68%

‘ 256 I e H e I e H Byl I %] 10 BUNYK, comes from the fact that we have to scan
‘ 512 | MERay || 139% | 32% || 51% | 209% | through out theJse_Set of the vertices to perform the
| EME-Ray [| 244% | 56% || 24% [ 100% |  ray traversal. Since thése_Set keeps the indices for
| | |
| [ |

‘ 102# | MERay || 148%

1559 . o )
FEMERay | 27T 4{ the cells incident on each vertex, its likely to occur dou

ble intersection computation for internal faces. On the
other hand, BUNYK keeps all faces incident on the ver-
tices which makes it faster to compute such intersections,
Table 7 shows the results for the SPX dataset. Althougbh"e Spending more memory. In our experimentsi how-
ME-Ray is slower than BUNYK, it uses less memory.ever, we are only comparing executions where the whole
EME-Ray uses even less memory. For example, to creaj@taset fits in main memory for both methods. As the
a512x512image, EME-Ray uses about 1/4 of the memmemory usage increases, the rendering will need to use
ory necessary for BUNYK to create a 25656 image. of the virtual memory mechanisms of the operating sys-

Compared to ZSweep, ME-Ray and EME-Ray are fastgem, which would have great influence on the overall ex-
than ZSweep. In terms of memory usage, ME-Ray usesution time.

more memory than ZSweep and EME-Ray uses 1.2times; js also important to notice that ME-Ray and

less memory than ZSweep for a 1024024 image. EME-Ray gains over BUNYK are not only in memory
usage, but also in the correctness of the final image.
Table 7: EPX Results . BUNYK does not handle all possible degenerated cases.
Image BUNYK 'mesteep BUNYKem‘”ZVSW%p For 1024x 1024 images, in all the datasets, BUNYK
128 | ME-Ray 120% 20% 51% 273% algorithm generates some flaws in the image. For Delta
EME-Ray 197% 33% 23% 125%

Wing, for example, BUNYK fails in rendering 17 pixels.
This causes some black spots in the image as we can
observe in the 512 512 image of Figure 3.
o When compared to ZSweep, ME-Ray outperforms
83W{ ZSweep, in execution time, significantly for all the
datasets and all the image resolutions. Although it is
not an intuitive result, it is explained by the fact that,
in ZSweep, while thdarget-Z is not reached, the pixel
5 DISCUSSION list increases. The bigger the list is, the more expensive
_ _ _is the insertion, since it is ordered. Depending on the
ME-Ray and EME-Ray had obtained consistent and sigfataset, thearget-Z could be a bad parameter to start the
nificant gains in memory usage over BUNYK. In termscomposition. ME-Ray, on the other hand, composes the
of the image resolution, we can observe that the gaifsixels on-the-fly as each intersection is found.
of ME-Ray and EME-Ray over BUNYK are bigger for - another important difference in the performance of
smaller image sizes. This occurs because BUNYK CI§IE-Ray and EME-Ray, when compared to ZSweep
ates at once an array with all the faces in the dataset, apdihe dataset structure. More “irregular” datasets with
this does not depend on the image size. While ME-R&y,|es and much more external visible faces would benefit
creates the faces as they are intersected by the rays. %weep, since ME-Ray and EME-Ray would have to
erwise, in terms of the dataset size, as we expected, Whggmpute more external faces intersection. This, however,
the dataset increases, the r.eductlons in memory usagei9fot the case for our workload, except for SPX, that
ME-Ray also increases. This result conflrmsthatourdaﬁyovideS the smaller performance difference between
structures are set to handle big datasets. ME-Ray and EME-Ray compared to ZSweep.
Furthermore, the reductions in memory requirements |, terms of memory requirements, ME-Ray spends
we obtained with our data structures, allowed us to US§qre memory than ZSweep, except for 1024024 im-
double precision in the parameters to calculate the i“te‘éfge resolutions. EME-Ray, on the other side, spends less
section between a ray and a face. BUNYK uses float fghemory than ZSweep for most of the datasets and image
these parameters, consequently causing some precisi@Ro|utions. ZSweep increases linearly the memory re-
errors. We have made some experiments with BUNYKyirement with the increase in the image size, since as the
algorithm increasing the parameters precision to double
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41% 68% 349%
48% 24% 121%

I |
[ |
6% || 72% | 320%
[ |
I |
[ |

25¢ | ME-Ray || 154%
[ EMERay || _178%
51% | ME-Ray || 136%
[ EMERay || 192%
102# | MERay || 116%
[ EMERay || 222%

66% 24% 109%

41%
79%

74%
27%




image size increases, each face projected will insertinteshowed that we can deal with grids represented by tetra-
section units into more pixel lists. ME-Ray also increasebedra, hexahedra or both. As far as we know, they are
linearly the memory requirements with the increase in thehe first ray-casting implementations which handle, at the
image size. This increase is due to the increase in the sigame time, both types of irregular grids.

of Faces_VEC, since more faces are intersected. EME- We conclude that ME-Raycast and EME-Raycast are
Ray, otherwise, does not ha¥@ces_VEC data struc- efficient algorithms for ray-casting that allows the in-
ture, so the memory usage maintains almost constambre rendering of big datasets, avoiding paging opera-
even when the image size increases. tions on disk. The low memory usage of our algorithms
also makes them suitable for hardware-based implemen-
tations, in order to achieve real-time rendering. As future
work, we consider the study of out-of-core versions of the

(1]

[2]

3
Figure 3: Delta (512x512) generated by BUNYK with bad 3

rendered pixels highlighted by the orange box.
[4]

6 CONCLUSIONS [5]

We proposed two novel ray-casting algorithms, ME-
Raycast (Memory Efficient Ray-casting) and EME-s]
Raycast (Enhanced Memory Efficient Ray-Casting). Our
algorithms improve previous work by Bunyét al in
terms of memory consumption, type of cell allowed inl7]
the grid (tetrahedral and hexahedral), and complete han-
dling of degenerate cases. Our goal in improving Buny&]
et al work was to provide a software implementation of
ray-casting that is memory efficient without performance
degradation, and robust, i.e., generates correct images [9]

Our experimental results showed that ME-Raycast and
EME-Raycast are comparable in performance to Bunyk
et al in most of the cases, but had obtained consistent anpgb
significant gains in memory usage over their approach.
These results confirm that our data structures store only
essential information. When compared to other accuraté!!
rendering algorithm, ZSweep, ME-Raycast and EME-
Raycast obtained considerable performance gains, and
competitive memory consumption. EME-Raycast by it{12]
self spends less memory than ZSweep for most of the
datasets and image resolutions.

Our results also showed that ME-Raycast and EME:-

codes that run on clusters of PCs.
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