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ABSTRACT

For more than a decade, researchers working on level-of-detail techniques have oriented their efforts toward developing better
frameworks and adapting their solutions to new hardware. Nevertheless, we believe there is still a gap for efficient yet simple
multiresolution models that fully exploit the potential of current GPUs. In this paper we present a level-of-detail framework
based on moving the extraction process from updating indices to updating vertices. This feature enables us to perform culling
and geomorphing on a vertex basis. Furthermore, it simplifies the update of indices to eliminate degenerate information. The
model is capable of offering both uniform and variable resolution and to achieve the latter, a silhouette-based criterion has
been included. Finally, we would like to highlight that the model is completely integrated in the GPU and no CPU/GPU
communication is necessary once all the information is correctly loaded in hardware memory.
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1 INTRODUCTION

Multiresolution modeling has been successfully applied
to solve problems in many areas [17] and there is an im-
portant body of literature on the subject [15]. The prob-
lem with traditional level-of-detail (LOD) techniques is
the fact that they usually include complex data struc-
tures and algorithms which are difficult to translate to
GPU. This complexity is the reason why LOD methods
are traditionally performed on the CPU.

The development of Shader Model 4.0 was a break-
through in computer graphics as it offers a new range
of functionalities [1]. The main contribution is the Ge-
ometry Shader, which establishes a new stage inside
the graphics pipeline enabling the dynamic creation and
elimination of geometry in the GPU. Furthermore, it
also offers the possibility of modifying the flow of in-
formation by means of the Stream Output.

The Shader Model 4.0 offers a new opportunity for
the development of extremely fast level-of-detail meth-
ods. What we propose in this paper is a new model that
combines the computational power of GPUs with the
wealth of work already done in multiresolution. The
main objective is to develop a variable resolution model
that preserves appearance and avoids popping artifacts
while offering high performance. More precisely, the
model that we are presenting has the following features:
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• Fully GPU-based implementation. The solution
is completely integrated in the GPU, exploiting the
recent Geometry Shader for storing the calculated
levels-of-detail and eliminating degenerate trian-
gles. In addition, our method is capable of offering
both uniform and variable resolutions, which can be
calculated in GPU with no CPU intervention. The
Vertex Shader will select the optimal level-of-detail
to be extracted for the particular viewing conditions.

• Updating vertices and indices in the GPU. The
solution introduced in [21] presented a promising
framework where the level-of-detail transitions
modify vertices instead of indices. Traditional
models have always updated the information re-
lated to the indices. In this work we will update
vertex coordinates to reflect LOD changes in a
Vertex Shader while we will modify the indices
list to delete degenerate triangles in a Geometry
Shader. This approach integrates well with other
pixel-based methods like sub-surface scattering or
parallax occlusion mapping.

• Optimization of visual quality. It is also important
to ensure that the original appearance of the model
is kept. With this aim, we will offer variable res-
olution with a silhouette-based criterion. Moreover,
we will perform geomorphing between the collapsed
vertices in order to avoid disturbing effects like dis-
continuities or popping artifacts. Figure 1 presents
several visualizations of a model of a man at dif-
ferent levels of detail using a silhouette-preserving
extraction algorithm.

• Use of triangles as the rendering primitive.
The use of triangles as rendering primitive limits
performance, compared to triangle strips. Neverthe-
less, cache-aware optimizations can considerably
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Figure 1: Approximations of a man model (136,410 triangles). From left to right: original model and simplifica-
tions to 50%, 25% and 10% respectively.

improve the final performance [5, 11]. In our case
we have applied the method presented in [18] which
is based on one of the latest methods [23].

The structure of this paper is as follows. Section 2
contains a review of the work previously carried out
on GPU-friendly multiresolution modeling. Section 3
presents the basic framework of our method. Section 4
provides thorough details of the implementations of the
algorithms in the GPU. Section 5 includes a study of the
performance of our model. Lastly, Section 6 comments
on the results obtained in our tests.

2 RELATED WORK
Much work has been published on multiresolution mod-
eling. In this section we will focus on the lines of work
that are currently active in the level-of-detail field which
are oriented toward the exploitation of GPUs.

Firstly, we believe it is important to mention the
works designed to exploit the complex memory hier-
archy of modern graphics platforms. In this sense, they
develop "GPU-friendly" static vertex and index buffers
and try to optimize their use by minimizing data trans-
fers between CPU and GPU [19, 20, 24]. This idea has
also been applied to rendering massive models in real
time [6, 7, 22, 26].

Following on with massive models, many researchers
have recently proposed methods for moving the gran-
ularity of the representation from triangles to triangle
patches [2, 6, 7, 26] in order to offer view-dependent
capabilities for rendering out-of-core models. Preserv-
ing boundaries is a key feature of these algorithms
and it is possible to find algorithms that propose
GPU-based solutions by means of geomorphing [2] or
border-stitching techniques [16].

Furthermore, it is also possible to find algorithms that
propose a progressive creation of geometry in the GPU
[3, 9, 13]. These models offer interesting results al-
though they are not aimed at rendering meshes in real-
time applications.

Recently, the work proposed in [21] presented a GPU
multiresolution model which updated vertices instead
of indices and used a fixed order of triangles that per-
mitted the use of a sliding-window scheme. Neverthe-
less, this fixed order simplified the algorithm while lim-
ited it to perform further extensions.

Finally, it is important to comment on those methods
which use the silhouette as their criterion for extract-
ing the desired approximation. Silhouettes are partic-
ularly important to offer realistic visualization. Many
authors have presented silhouette-preserving variable
multiresolution approaches [10, 25]. More recently, the
work presented in [12] introduces a GPU-based adap-
tive model for non-photorealistic rendering. They pro-
pose a hierarchical multiresolution model and use the
GPU to refine the areas around the silhouettes. Later,
Dyken et al. [9] introduced a framework for calculat-
ing silhouettes on the GPU and tessellating afterwards
those areas that need further detail. The main drawback
of this approach is the fact that the process for calculat-
ing the silhouettes is complicated and requires several
rendering passes.

3 OUR FRAMEWORK
The method we are presenting will perform the LOD
update in a Vertex Shader and the degenerate filter in
a Geometry Shader. As a consequence, we will be
able to apply the whole extraction process in only one
pass. The outputted geometry will be ready for passing
through the Pixel Shader to generate the final image.
It is worth mentioning that it would be possible to use
the Stream Output method to store the calculated ap-
proximation to use it in subsequent renderings. Figure
2 shows a diagram of the different processes that will
take place in each rendering stage.

3.1 Simplifying the original mesh
For our multiresolution model we decided to use an
edge-collapse simplification algorithm to obtain the hi-
erarchy of collapses. We could use any simplification
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Figure 2: Rendering pipeline for our approach.

algorithm [4, 8, 14]. Our solution is not restricted to
use half-edge collapses where we do not add new ver-
tices. The only restriction is to pre-calculate the ver-
tices so that we can store them properly before starting
to use our multiresolution model. Nevertheless, in the
examples that we present in this paper we will assume
that the half-edge collapse is the selected simplification
operation as it offers a less complex implementation.

3.2 Ordering of vertices
As we commented in the introduction, the work we are
proposing is based on the ideas presented in [21]. This
work introduced some basic ideas for managing col-
lapse information, which are:

• Ordering the vertices in collapse order, so that vertex
v will be collapsed when changing from LOD v−1
to LOD v.

• Calculating the evolution of each vertex, which con-
tains a list of all the vertices that the vertex will col-
lapse to.

In order to clarify this construction process, Figure
3 presents a section of the collapse hierarchy of one of
our test models after correct ordering of the vertices.
The evolution of each vertex stores the branch of this
tree that links it with the root node. Thus, for exam-
ple, the evolution of vertex 18 will be a list of indices
to vertices composed of values (38,49). These values
will indicate at which LOD we must perform a change
and, in addition, which change should be performed.
Thus, following on with the example we can say that
we must perform the collapse 18→ 38 when changing
to LOD 38, and that we must apply collapse 38 → 49
when swapping to LOD 49.

It is important to comment that the presented ap-
proach offers a truly selective refinement, where we can
apply any collapse without applying further collapses
or other requisites. As the simplifications are applied in

Figure 3: Example of the collapse hierarchy of a sam-
ple model.

a vertex-basis, all the triangles sharing that vertex will
be modified in the same way. Figure 4 shows an im-
age of a Beethoven model simplified with this method,
where half of the model is simplified to 80%. It can
be seen how no crack or other disturbing effect is pro-
duced, even though there is a severe change of resolu-
tion.

3.3 Optimizing the rendering primitive
The solution presented in [21] proposed a sliding-
window approach as it entails a fixed order of triangles
which limits further extensions. This limitation is
overcome in our model with the use of primitives
optimized for the vertices cache [18], which orders the
indices in an optimized way which renders much faster
than the triangles ordered in eliminations fashion.

The pre-ordered list of triangles assured that no de-
generate triangle is rendered. In our framework, we
will control the appearance of degenerate information
directly in a Geometry Shader.

4 IMPLEMENTATION DETAILS
In this section we will address thoroughly the shaders
that we have developed. In Figure 5 we present a de-
tailed description of the implemented shaders using a
GLSL-like pseudocode. The Vertex Shader will be used
to update the level-of-detail following the silhouette cri-
terion. In the Geometry Shader we will mainly perform
the degenerate triangles elimination. We will later ad-
dress the possibilities offered by the Stream Output for
our multiresolution model.

4.1 Storage of information
Before describing the implemented process, it is impor-
tant to clarify the way the information is stored. The
model we are presenting has very low memory require-
ments. The only extra information that we will need
to store is the information about the evolution of each
vertex.

The information of the original mesh (vertex coor-
dinates, texture information, normals and so on) will
be stored in floating point textures. This information
will be accessed if necessary from the Vertex Shader.
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Figure 4: Beethoven model with its right side simpli-
fied to 80%.

The Shader Model 4.0 permits defining and using non-
squared textures without the restriction of having a size
power of two, offering a more cost-effective storage of
the information.

The evolution of the vertices will be stored in dif-
ferent sets of attributes. The Vertex Shader will be in
charge of obtaining the real vertex information so that
the final geometry is correctly rendered.

4.2 Vertex Shader
The Vertex Shader will be responsible of calculating
the appropriate LOD, updating vertices information and
performing geomorphing.

// Vertex Shader

uniform LOD;

varying newID;

float3 newCoords,nextCoords;

calculateAngle(view,normal);

calculated_lod=interpolate(LOD,angle);

newCoords=

getNewCoordinates(gl_VertexID,lod);

nextCoords=

getNextCoordinates(gl_VertexID,lod);

newID=getNewID(gl_VertexID,lod);

nextID=getNextID(gl_VertexID,lod);

gl_Position=

geomorph(newCoords,nextCoords,newID);

// Geometry Shader

varying newID;

if (isTriangle(newID[0],newID[1],newID[2]))

outputTriangle();

Figure 5: Pseudocode of the implemented shaders.

The first instructions of the Vertex Shader will calcu-
late the angle between the view vector and the normal

of the vertex. The Vertex Shader has full access to the
ModelView matrix. As a consequence, we can easily
calculate the dot product between the vertex normal and
the view direction.

We want to develop a model that will not need any
information from the CPU once the model is correctly
loaded into GPU memory. With that aim, we want
to calculate the appropriate LOD according to the
scene conditions inside the GPU. Knowing the angle
between the vector that points towards the camera
and the normal of the vertex will allow us to easily
perform a silhouette-based extraction process. In
those cases where the vectors are nearly perpendicular,
we will need to render highly-detailed geometry to
obtain the visual perception of the silhouette. In those
cases where the vectors are nearly parallel, we will
simplify the vertices as they do not contribute to the
silhouette. In the rest of cases, we will perform a linear
interpolation so that the geometry refines progressively
towards the areas of the silhouette.

After these different steps, we are able to extract the
correct geometry for the scene conditions. We will con-
sult the evolution information to know which vertex in-
formation must be used, recovering all the information
from the previously-defined textures.

It is important to note that we will recover the in-
formation of the vertex that we currently need and the
following one. With the two extracted vertices we can
make some simple calculations to assure a progressive
transition among LODs. The way that the evolution is
stored will assure that a vertex will collapse to its j-th
element of the evolution once we reach LOD j. Our
proposal is to geomorph between vertices stored in the
positions j−1 and j while the LOD value is contained
between j− 1 and j. Thus, once we reach LOD j the
vertex will be completely changed to vertex j, ensuring
that the collapse information is correctly applied. With
this approach the continuity of the mesh is ensured, as
all the vertices will be collapsed in the same way. Fol-
lowing with the example given in Figure 3, if we are
at LOD 48 the vertices 28, 19 and 45 will contain the
same interpolated value ensuring mesh continuity.

Finally, the Vertex Shader, in addition to outputting
the vertex information, will also output the ID of the
vertex we have collapsed to.

The LOD traversal algorithm is efficient and is capa-
ble of extracting any level-of-detail with the same cost.
Thus, making big LOD changes is not penalized. More-
over, the Pixel Shader is not necessary and remains
available for any further extension that we may wish
to apply.

4.3 Geometry Shader
The development of the Geometry Shader has made it
possible to work directly with triangles in a new stage.
This feature is very powerful but the Geometry Shader
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is not a stage that must be activated. Consequently, the
use of Geometry Shaders involves slowing down the
whole rendering process. Nevertheless, it is worth ac-
tivating this rendering stage when we are able to dis-
card a considerable amount of geometry or when we
need to create geometry on-the-fly. In our case, we can
expect that the more coarse the approximation that we
want to render, the greater the number of degenerate
triangles that will be obtained. Thus, we decided to use
the Geometry Shader to filter the degenerate triangles in
real time. As a consequence, we will perform a simple
test using the ID of the vertices output from the Vertex
Shader to discard those triangles which have repeated
vertices.

4.4 Exploiting Stream Output
An important drawback of the scheme we have pre-
sented is that it obliges us to make the LOD calcula-
tions for every frame, even when the level-of-detail is
maintained. To overcome this limitation we can use the
Stream Output possibilities. With this feature enabled,
we are able to store the new vertices and indices, and
use the modified buffers in subsequent renderings until
the application updates the viewing conditions.

Storing the calculated information forces us to per-
form two rendering passes to obtain the correct geom-
etry: one pass to output vertex information and another
one to store the index information. Obviously, we need
two new buffers to store the vertices and indices gener-
ated.

The first pass will be used to store the vertices calcu-
lated. In this case we will use no index buffer to ensure
that the vertices are processed and output in the correct
order.

The second pass will be the one that creates the cor-
rect index buffer. The Geometry Shader performs this
calculation. We will slightly modify the shader to out-
put a special varying containing, for each triangle pro-
cessed, the three indices. In addition, when using the
Stream Output it is possible to query the number of
primitives generated from the CPU. This information,
as well as the recently filled index buffer, will be used
to render the model in successive frames.

In the results section we will show that the imple-
mentation of the Stream Output using OpenGL does
not greatly affect the final performance. Nevertheless,
depending on whether the application is updating the
LOD in every frame or maintaining it, we can decide to
switch the Stream Output on and off.

5 RESULTS
In this section we will present some tests that analyze
the rendering performance of the model presented. The
experiments were carried out using Windows Vista on
a PC with a 2.8 GHz processor, 2 GB RAM and an
nVidia GeForce 8800 graphics card with 256MB RAM.

The different implementations have been done in C++,
OpenGL and GLSL. Finally, it is important to note that
we have used the GL_TIME_ELAPSED_EXT exten-
sion, which provides a query mechanism to determine
the amount of time used for completing a set of GL
tasks without stalling the rendering pipeline.

Table 1 presents the results obtained for a scene with
a lit model of a man. This Table provides the rendering
and extraction times obtained throughout three different
levels of detail for given viewing conditions. The Dis-
crete LOD row offers the times that would be obtained
with three precalculated approximations. In this case,
we have assumed that there is no extraction time. The
following rows present the costs of our model, with-
out and with the Stream Output extension. It can be
seen how, on average, our model increases the render-
ing time by approximately 30%. Nevertheless, this time
is necessary to perform all the tasks that are part of our
view-dependent rendering pipeline. Finally, including
the Stream Output capabilities entails slightly higher
times, as we need to perform two rendering passes.
Nevertheless, this extra time would allow us to reduce
the extraction cost to zero in subsequent passes.

6 CONCLUSIONS
This paper has presented a new multiresolution model
that combines the power of current GPUs with tradi-
tional techniques. Updating vertices instead of indices
allows us to perform geomorphing among the differ-
ent levels of detail to offer smooth transitions. The
framework also allows for variable resolution, which
can be oriented toward applying silhouette-based vi-
sualizations that better preserve the appearance of the
model. This method is suitable for combining with
other techniques, such as normal mapping, hardware
skinning, and other pixel-based approaches.

From the results obtained we can conclude that the
extraction process is expensive, as it entails increasing
the final rendering time by 30%. Nonetheless, the level-
of-detail extraction would be much more costly if it was
applied in a CPU-based way. Furthermore, the extra
cost that our model introduces is compensated by the
number of calculations performed and the final visual
quality.
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