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ABSTRACT
In this paper we consider the problem of processing scanned datasets of man-made scenes such as building interiors and office
environments. Such datasets are produced in huge quantity and often share a simple structure with sharp crease lines. However,
their usual acquisition with mobile devices often leads to poor data quality and established reconstruction methods fail – at least
at reconstructing sharp features. We propose to overcome the lack of reliable information by using a strong shape prior in the
reconstruction method: we assume that the scene can be represented as a collection of cuboid shapes, each covering a subset
of the data. The optimal configuration of cuboids is found by formulating the reconstruction problem as a discrete maximum a
posteriori (MAP) optimization in a statistical sense. We propose a greedy algorithm which iteratively extracts new shape can-
didates and optimizes over the shape of the cuboids. A new candidate is selected by scoring its ability to reconstruct previously
uncovered data points. The iteration converges at the first significant drop in the score of new candidates. Our method is fast and
extremely robust to noisy and incomplete data which we show by applying it to scanned datasets acquired with different devices.
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1 INTRODUCTION
An ever-increasing number of more powerful 3D scan-
ning devices are being constructed (e.g. [BFW+05]),
leading to a huge number of datasets of many different
environments. One class of scenes, which has gained a
specifically great attention, especially in the computer
graphics and the robotics communities, is the class of
building interiors and office environments. However,
since most scanning devices focus on fast and easy
acquisition, the resulting data quality is often limited.
Many systems have in common, that they capture the
general structure of a scene very well, but fail to scan
the fine details in a sufficient resolution. On the other
hand, many applications, including surveillance sys-
tems, cultural heritage projects, path planning for au-
tonomous robots or emergency and evacuation simula-
tions require high-quality models of the general struc-
ture of a scene.

Recently, some authors proposed to use statistical
surface reconstruction methods building upon Bayes’
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theorem which allow to include external knowl-
edge about the scene into the reconstruction process
(e.g. [DTB06, JWB+06, HAW07]). However, since
these methods are usually applied on a local scale,
they pose strong requirements on the quality of the
data which the previously mentioned datasets rarely
meet (non-uniform sampling, low signal-to-noise ratio,
holes). In such cases, the methods tend to fall back
to a smooth reconstruction such as Moving Least
Squares (MLS, [ABCO+03]). For the reconstruction
of man-made scenes, however, this is not desirable,
since the sharp creases, which are very descriptive for
the structure of the scene, are then lost. We preserve
this information by putting more knowledge about the
scene into the reconstruction. In the Bayesian setting
this means that a stronger prior has to be used. Jenke et
al. [JWB+06], for instance, only provide priors on the
local smoothness and density of their reconstruction.

When selecting a strong prior for a reconstruction
system, one therefore has to balance it between two
poles. On the one hand, the statistical model has to be
general enough to fit to all the scenes of the type one
addresses. On the other hand, it has to encode as much
external knowledge about the scene structure as possi-
ble in order to overcome the limitations of the data. For
the scans of building interiors, the general structure of
the scenes can often be assembled from a combination
of cuboids. We therefore describe our reconstruction
model as a set of cuboids of unknown size, orientation
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and scale: each cuboid is parameterized via a rotation
R ∈ R3×3, an anisotropic scaling S ∈ R3×3 and a trans-
lation t ∈ R3, leading to the 9-dimensional parameter
vector (α,β ,γ,sx,sy,sz, tx, ty, tz). These parameters in
combination with the unknown number of cuboids are
the free variables of our reconstruction model.

We formulate the reconstruction problem as an iter-
ative optimization process. At each iteration, we add
a new cuboid candidate which covers a previously un-
covered subset of the data points to the model and opti-
mize for the parameters of all cuboids. For each candi-
date, we compute a score, based on its power to explain
data points which were previously not covered by other
cuboids. We run the iteration until the score drops sig-
nificantly compared to scores of cuboids which are al-
ready in the model. In order to find good initializations
for new cuboid candidates, we detect planes in the un-
covered data points by using a RANSAC (random sam-
ple consensus) approach. Then, we establish a topol-
ogy graph over the planes and connect spatially close
planes with perpendicular normals. From all the sub-
graphs which match the graph generated from a cuboid
(Figure 1), we choose the one that best fits into the un-
covered data points.

(a) template graph of a cuboid
(6 nodes)

(b) primitive graph P created
from adjacent planes of a fictive
dataset

Figure 1: Graph matching.

The remainder of the paper is structured as follows:
Section 2 describes work related to our reconstruction
method, Section 3 presents the reconstruction pipeline
in detail and Section 4 discusses results we were able to
produce. Finally, Section 5 concludes the paper.

2 RELATED WORK
Due to its comparatively long history, the literature
in the field of surface reconstruction is very rich.
It includes implicit methods [HDD+92], Moving
Least Squares [ABCO+03] and Multilevel Partition
of Unity [OBA+03] approaches, Poisson Surface
Reconstruction [KBH06] methods as well as sta-
tistical techniques [DTB06]. However, most of
these traditional approaches fail to handle datasets
of poor quality such as the ones addressed here.
They make implicit assumptions about the sam-
pling quality which datasets of real environments
rarely meet. Especially feature-preserving methods
(e.g. [FCOS05, JWB+06, DHOS07]) are only applica-
ble to datasets which meet stringent sampling spacing
requirements and have a high signal-to-noise ratio.

Debevec and colleagues addressed the problem
of reconstructing building exteriors in [DTM96].
They merge geometric components computed from
photogrammetric modeling from images with an
image-based analysis-by-synthesis approach. The
main reason for the astonishingly good reconstructions
is that the general geometry is created in a manual
modeling process. Overcoming the limitation of poor
depth data has been addressed by some authors by
focusing on the type and properties of specific datasets
– especially for the reconstruction of buildings. Most
of them approach the problem from an outside per-
spective since aerial images are broadly available.
The group of Vosselman (see e.g. [SV02]), use a
parametric model to describe buildings as a set of
basic building blocks in a Constructive Solid Geometry
(CSG) representation, which they try to fit into the
aerial images. Similarly, Hu et al. [HYNP04] represent
building facades as cuboids, which they fit into edges
detected in aerial images combined with depth values
from registered airborne 2 1

2 D LiDAR height field
data. Another approach for building reconstruction
has been proposed by Lafarge et al. [LDZD06]: from
stereo satellite images of cities they extract candidate
positions for buildings. Then, they fit a simple model
of buildings consisting of rectangular ground shapes
with a roof to the height field data in a Bayesian sense.
Compared to our method, these systems operate on 2D
input (height field data or images), while we use 3D
point clouds from scanners within the scene as input.

Some authors tried to infer semantic knowledge
about a scene from connected components in a graph
structure over extracted primitives. Nüchter et al.
[NSH03] suggest a model for building interiors con-
sisting of floors, ceilings, walls and doors. In order
to classify the different entities, they encode the rela-
tionship between the classes (e.g. ’a ceiling is always
above a wall’). The additional information gained from
this process is used to improve the quality of the input
data. Schnabel and colleagues extend their previous
system [SWK07] to detect primitive shapes in point
clouds in [SWWK08]. They enrich the primitives with
topological connectivity. Upon the resulting topology
graph they build a query-interface to allow for the
recognition of user-specified patterns (e.g. of windows
or roofs) in the data. We use a similar query method
for our template matching (see Section 3.3).

An alternative is to approach building reconstruction
from a 2D perspective. Schindler and Bauer [SB03] de-
tect planes and principle directions in scans of building
facades and afterwards employ the specific characteris-
tics of facades such as 2D features and 2D primitives
to reconstruct the fine details. Jenke and colleagues
[JKS08] assemble a reconstruction directly from prim-
itive structures which they detect using the RANSAC
approach. For datasets of low quality, our method is

WSCG 2009 Full papers proceedings 18 ISBN 978-80-86943-93-0



more stable, since the lack of information in poorly
sampled facets can be compensated for by the infor-
mation in adjacent facets in a cuboid shape. The ap-
proach of Chen and Chen [CC08] works rather sim-
ilar: they extract planar regions in range images by
normal clustering and afterwards extract simple poly-
hedrons by computing the intersections between adja-
cent planes. In cases, where this approach fails, they
propose a user-guided process.

Bahmutov et al. presented a combined acquisition
and reconstruction system in [BPM06] in an operator-
guided system. Similar to our system, they employ
external knowledge about the scene: they assume that
each room can be represented as a box and addition-
ally provide a set of construction blocks for all other
parts of the building (e.g. hallways). However, this lim-
its the shape space of their system, e.g. they would not
be able to reconstruct the cuboids of different height
as in Figures 2 and 3. The impressive results they are
able to get come at the cost that their method is lim-
ited to their self-made acquisition device and requires
for some user-intervention.

3 ALGORITHM
We formulate our surface reconstruction method as an
optimization problem on the free parameters of the
cuboid shapes. However, due to the discrete nature of
the problem (unknown number of cuboids) we run the
optimization in an iterative manner. At each iteration,
we add a new cuboid to the model. A new candidate
is selected by scoring its ability to reconstruct previ-
ously uncovered data points. The iteration converges at
the first significant drop in the score of new candidates.
The pipeline of our method is shown in Figure 2.

Following the ideas of Jenke et al. [JKS08], we com-
pute a sampling estimate ε j and a noise standard de-
viation σnoise, j for each data point d j ∈ D (set of all
input data points) in a preprocessing phase: we em-
ploy an extended definition of sampling which goes be-
yond the average spacing of a point towards the near-
est neighbors. Instead, with the term sampling we de-
note the radius of the minimal influence sphere required
for a stable normal estimation. This also takes the lo-
cal signal-to-noise ratio and sampling anisotropy into
consideration. The size of this sampling is determined
by iteratively growing the sampling radius and com-
paring the eigenvalues and eigenvectors of the covari-
ance matrices of the data points in the environments.
The process stops when the eigenvalues are sufficiently
anisotropic and the direction of the eigenvector corre-
sponding to the smallest eigenvalue (normal direction)
does not change any more. Then, we fit a second-order
polynomial to the points within sampling-radius and
infer the local noise level from the offsets of the data
points to the polynomial surface. We use this estimate
later to determine if a data point d j fits into a primitive

(distance to the primitive is smaller than 3σnoise, j, corre-
sponding to a 99% probability in an assumed Gaussian
noise distribution).

3.1 Model Description
Our scene model assumes that the general structure of
all (indoor building) scenes can be assembled from a
combination of a finite and small number of cuboid
shapes. The number of parameters in the reconstruction
is 9|M|, where M is the set of cuboids. For each cuboid i
we maintain a list of assigned data points Di ⊂ D. A
point x in each cuboid’s local coordinate system can be
transformed into world coordinates via

x→ RiSix+ ti,

with rotation Ri, scaling Si and translation ti. For the
optimization we use its inverse to transform a point x
into the corresponding cuboid coordinate system:

x→ S−1
i R−1

i (x− ti).

Cuboids with parallel facets, which are close to each
other, most likely result from a surface structure which
consists of a combination of several cuboids – e.g. an
L-shaped object. In order to enforce consistency con-
straints in such an arrangement, we need to track the
connectivity between the cuboids. We organize this
connectivity in a shape graph structure S . Parallel
facets of cuboids which are close to each other (distance
< 3σi; σi is the average noise standard deviation of the
data points in cuboid i) are connected in the graph. Two
facets are considered parallel, if the absolute dot prod-
uct of the normals is larger than 0.9 (≈ 25 degrees). For
such connected facets, we check if either corner points
of the connected cuboids are close or if a corner point
of one cuboid is close to a facet of the other cuboid. We
denote the shape graph storing the corner to corner con-
nections by SCC and the graph storing the connections
between corner points and facets SCF . Figure 3 shows
this connectivity between facets and corner points (cor-
ner to corner connections are visualized as red cubes,
corner to facet connections as blue spheres).

3.2 Bayesian Problem Formulation
We use a statistically motivated formulation similar to
[JWB+06, DTB06] based on Bayes rule:

p(M|D) =
p(D|M)p(M)

p(D)
, (1)

where our model M is the set of cuboids represented via
their free parameters (rotation, translation and scaling).
The term p(M|D) is the posterior, p(D|M) the likeli-
hood and p(M) the prior. In the optimization process,
we maximize the right-hand side of Equation 1, leading
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Figure 2: Reconstruction pipeline: data preprocessing, plane detection (extent of planes is downscaled), cuboid
candidate extraction, optimization, meshing.

to the maximum a posteriori (MAP) optimization prob-
lem. For the sake of stability and simplicity, we dis-
card the constant evidence term p(D) and transform the
formulation into negative log-space. Therefore, from
now on, we will denote the resulting potentials with
φ =− log p:

φmap(M|D) = argmaxM(φ(D|M)+φ(M)). (2)

The likelihood potential φ(D|M) models the attrac-
tion between each cuboid i and its associated data
points Di:

φ(D|M) =
1
|M|

|M|

∑
i=1

1
|Di| ∑

j∈Di

1
σ2

noise, j
τ

2
i (d j),

where τi(x) is a function which computes the distance
to the closest projection of the point x onto the facets of
cuboid i.

The prior potential φ(M) ensures consistency be-
tween connected cuboids. It attracts corners connected
in the shape graph SCC and corners connected to facets
in SCF towards each other:

φ(M) = 1
|E (SCC)| ∑(k,l)∈E (SCC)

1
σ2

noise,k,l
||ck− cl ||22

+ 1
|E (SCF )| ∑(k,l)∈E (SCF )

1
σ2

noise,k
d2

l (ck),

where σnoise,k,l = σnoise,k+σnoise,l
2 is the average noise of

the cuboids and dl(x) is the distance of point x from
facet l. The set of edges in SCC|CF is denoted by
E (SCC|CF).

3.3 Detection of Cuboids
Equation 2 can not directly be solved, because it is nei-
ther known in advance, how many cuboids are optimal
to cover the input data points, nor which data point is
represented by which cuboid. We propose an iterative
greedy algorithm to determine this information. In each
iteration, we use the RANSAC principle as presented in
[SWK07] to automatically detect plane primitives in the
data (Figure 2, second step). From this forwards, by the
term plane we will mean a bounded planar surface. The

extent of a plane is given by the lengths of the tangents
tu and tv:

x = pplane +λutu,plane +λvtv,plane,

with λu,λv ∈ [−1,1]. The scaling of the planes is re-
quired to determine distances between planes. We align
the tangent vectors of each plane to the principle axes
of the corresponding data points and scale them such
that the projections of the associated data points fit into
the span of the tangent vectors. The planes are then
organized in a primitive graph structure P: we insert
an edge for each pair of perpendicular planes (absolute
value of the dot product is smaller than 0.1, which cor-
responds to approx. 85 degrees). In order to avoid con-
nections between nodes which are not reasonable, we
prune connections between planes k and l if their short-
est distance d is larger than the smaller diagonal of the
area spanned by the tangent vectors of the planes:

d > min(
√
||tu,k||22 + ||tv,k||22,

√
||tu,l ||22 + ||tv,l ||22).

In the assembled graph structure, we search for the
graph pattern of a cube (Figure 1a). For most datasets,
this pattern can be found several times in P . However,
not all of these combinations lead to cuboid shapes ex-
isting in the data. In order to only extract the candidate
with the highest probability, we rerun the pattern ex-
traction process several times (50 in all our examples)
and compute a score δ for each candidate:

δ =
∑ j∈Dcand

exp(− τ2
cand(d j)
σ2

noise, j
)

Acand
,

where τcand(x) is the distance function of the candidate
shape, Dcand denotes the set of data points represented
by the planes in the current pattern. Acand is the sur-
face area of the candidate cuboid which can easily be
computed from its scaling parameters. Deprecated can-
didate shapes with small volume due to close parallel
planes (distance between opposite planes smaller than
noise level) are automatically pruned. In order to cor-
rectly evaluate the score for a candidate, it has to be (at
least roughly) fitted to its final shape. This is done by
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initializing the rotation parameters from the perpendic-
ular normals of the planes in the pattern and adjusting
the scaling and translation to best fit the cuboid’s facets
to the planes. For the subgraph-matching we use a sim-
ple randomized approach which randomly chooses a
seed node and then grows along the primitive graph P
– if possible – until all nodes and edges of the template
are matched.

The cuboid with the highest score is then added to
the set of cuboids M. After each iteration, we rerun the
optimization of Equation 2 and update the data point as-
signment. Therefore, we compute the distance of each
data point d j to all cuboids in M and assign it to the
cuboid with the smallest distance, if this distance is
smaller than 2σnoise, j. The RANSAC plane detection
is only applied to data points which have not previously
been assigned to a cuboid. We also insert a plane node
for each facet of already detected cuboids into the prim-
itive graph P . This is especially required for structures
where cuboids share a facet. In order to be able to also
handle surfaces with open ends, we additionally use a
template of a cube with a missing facet which consists
of 5 nodes only.

Finding an automatic iteration stopping criterion is
generally hard and very much depends on the expecta-
tions one has of the reconstruction. Some might only be
interested in the general interior structure of a building,
while others might want to extract each cuboid-shaped
small box in a room. A good compromise in our expe-
rience is to stop the process when a significant drop of
the score of a newly inserted cuboid appears (we set this
threshold to 0.25 times the average score of the shapes
which are already in the model M). In all our tests, this
criterion found all the cuboids expected in a dataset.

Figure 3: Connectivity between cuboids: corner-corner
(red cubes), corner-facet (blue spheres).

3.4 Meshing
The final step in the reconstruction process is the ex-
traction of a triangle mesh (Figure 2, right). For a single
cuboid, this is rather simple: two triangles are created
for each facet. However, for cuboids, which are con-
nected in the shape graph S , parts of some facet area
need to be left open. In such cases, we use the Geo-

metric Tools1 library, to intersect the polygons of adja-
cent facets and triangulate the resulting polygons with
holes. However, the intersection routine runs into sta-
bility problems for polygons with parallel edges. We
solve this problem by slightly extruding the subtrahend
polygon along such edges. Cuboid facets which ac-
count for less than 1% of the data points assigned to a
cuboid are completely left open, since they most likely
result from open ends in the data.

For the textured meshes in Section 4, we created a
texture image for each facet from the color information
given at the data points. Please note, that incorrect col-
ors (Figure 4 d) result from calibration errors in the data
and cannot be corrected by our reconstruction method.

4 RESULTS
In this section, we present reconstruction results pro-
duced with the described method. Our prototype imple-
mentation was written in C++ using Visual Studio 2008
on the Windows XP platform. The timings in Table 1
were performed on an Intel Core 2, 2.4 GHz system
with 4 GBs of RAM. We optimize the energy function
with the Polak-Ribiere conjugate gradient optimization
routine described in the Numerical Recipes [PTVF07].
The threshold on the minimal number of points required
to accept a plane candidate in the RANSAC detection
phase nRANSAC is a user parameter which we set to 3000
in the examples in the paper. A data point j is consid-
ered to fit into a plane, if its distance is smaller than
3σnoise, j.

The dataset in Figure 4 was acquired with a mobile
device based on a laser-scanner setup mounted on a cart
which is dragged through the scene. 2D scans are con-
tinuously acquired and registered into a global coordi-
nate system solving the self-localization and mapping
(SLAM) problem with the data from a second, horizon-
tally oriented 2D laser scanner [BFW+05]. This setup
on the one hand allows for the reconstruction of large
scenes, but on the other hand produces data of poor
quality. Especially, frequently occurring 2D scans for
which the registration into the world coordinate system
was incorrect, pose a great challenge to any reconstruc-
tion system (Figure 4a). Figure 4b shows the recon-
structed cuboid shapes and their connectivity between
adjacent facets (red and blue spheres). Especially in
the detail view one can see, that the consistency con-
straints between adjacent facets from different cuboids
cannot perfectly be met. This results from the slightly
incorrect global registration during the data acquisition.
However, our reconstruction method is still able to find
an optimal alignment of the cuboid shapes. Figures 4c
and d show renderings of the extracted meshes. Please
note, that some facets seem to be tessellated with too

1 http://www.geometrictools.com
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(a) input data

(b) extracted shapes with shape graph S (c) created mesh

(d) textured mesh

(e) remaining uncovered data points

Figure 4: Dataset floor (detail views as sub-images).
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many triangles which is due to the polygon intersec-
tion routine, which sometimes produces unnecessary
additional polygon points. Finally, Figure 4e shows the
points remaining unassigned during the reconstruction
process. Most of them belong to small objects in the
scene which are not scanned with a sufficient resolution
or are outlier points created outside of windows. The re-
maining points either result from incorrectly registered
frames during the acquisition or from parts of the build-
ing interior which were only partly acquired (center part
of the left wing). There, no primitive planes could be
detected by the RANSAC method which would allow
for the extraction of cuboid shape candidates.

The scanning system used to assemble the corner
dataset in Figure 5 consists of a 2D laser scanner and
a color camera mounted on a pan-tilt unit. Compared to
the floor dataset, its data quality is significantly better
allowing the system to correctly reconstruct the room
and a doorway. In order to improve the performance of
the method, we down-sampled the original datasets to
the sizes provided in this section and used the original
point cloud for the texture-creation only.

Considering the huge number of data points, our re-
construction method is comparatively fast. However,
it is very hard to compare either the timings or the re-
construction quality with previous work. To our knowl-
edge, no previous method is able to automatically re-
construct sharp crease lines in datasets of the quality
presented here. The reconstruction times for the pre-
processing phase are roughly linear in the number of
data points, however, the absolute timings strongly de-
pend on the local characteristics of the data (stronger
noise requires for larger influence radii which makes
the point neighborhood queries more expensive). The
overall time consumptions are quite acceptable since
we use the efficient method of [SWK07] to improve a
naive RANSAC plane detection. The randomized ap-
proach to detect the template cuboid shapes in the plane
primitive graph P is rather fast, however, the itera-
tively computed score for new cuboid shape candidates
makes the candidate selection process the most time-
consuming part. The time required to extract the mesh
for the final reconstruction is negligible and the time re-
quired to create the textures is linear in the resolution of
the textures created. For all the renderings in the paper,
we extracted textures of the size 512× 512 pixels. Ta-
ble 1 lists the timings required for the datasets in this
section.

4.1 Limitations
Our method is not capable of analyzing holes in the
data: while the intersection of cuboids is correctly
handled, missing data resulting from scanning errors
(e.g. due to occlusions) as well as holes in the scene
(e.g. windows or doors in a room) will completely be
filled by the algorithm. Also, large rectangular furni-

(a) input data

(b) extracted shapes with shape graph S

(c) extracted mesh

Figure 5: Dataset corner.

ture pieces will be reconstructed as cuboids, which can
be considered incorrect if one only looks for building
geometry. We believe that distinguishing between such
cases can be done within the same model by more care-
fully analyzing the scene semantics. Another limitation
results from the fact that we only reconstruct cuboids if
at least 5 facets have been detected as planes. Conse-
quently, some doors in Figures 4 and 5, where the scan-
ner acquired too few points at the door frames for the
detection of a planar structure, cannot be reconstructed.
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#data prepro- plane/cand. optimi-
points cessing extraction zation

floor (5) 509k 461.8s 96.7s/108.3s 9.4s
corner (3) 106k 28.9s 11.8s/8.6s 1.2s

Table 1: Timing results in seconds: name (number
of extracted shapes), input data points, preprocessing
time, plane detection (RANSAC) and the candidate ex-
traction time, parameter optimization time.

5 CONCLUSIONS
We have presented a robust and fast method to ex-
tract the general structure of indoor-scans of many man-
made scene environments such as office or department
buildings. We cast the surface reconstruction problem
to a discrete optimization problem which we solve in
an iterative manner. The underlying energy function is
motivated in a statistical Bayesian sense and consists of
a data fitting and a consistency potential. At each iter-
ation, we add one more cuboid shape until the recon-
struction does not improve any more. From the recon-
structions, we extract a textured triangle mesh which
can be used for many further processing applications
including efficient rendering of the scene and compres-
sion of the point-based datasets to a representation us-
ing only few triangles.
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