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ABSTRACT

Our goal is to develop a smoothing algorithm, which would be feature preserving and simple to use without the
need of extensive parameter tuning. Our method does the smoothing of vertices based on local neighbourhood
character, which is modeled by a covariance matrix of neighbourhood triangle normals. The eigenvalues and
eigenvectors of the covariance matrix are used for local weighting of the displacement vector of laplacian operator.
This way the method is locally auto-tuned.
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1 INTRODUCTION

One of the key phases of modelling a 3D polygo-
nal mesh is smoothing. It can substantially reduce
the amount of artifacts and noise within the mesh.
A rather important features of a smoothing algo-
rithm is how it treats different mesh features. A
feature preserving algorithm should leave corners
and sharp edges untouched while smoothing and
flattening the other areas of the mesh.
Different algorithms have approached this with

varying success and there is no general algorithm,
which works reliably in all cases. Moreover, the
best algorithms often require tuning of several pa-
rameters. Our approach attempts to address these
problems and offer a simple to use, yet relatively
powerful smoothing method.

1.1 Related work

One of the basic approaches to smoothing is lapla-
cian operator [7] which works by averaging posi-
tion of the vertex with it’s neighbourhood, defin-
ing a vector by the previous and average position
and then moving the vertex in this direction by a
fraction of the vector length. The algorithm is very
simple and is easily tunable by only one parameter.
The main disadvantages are volume shrinking and
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reducing sharp edges and corners. Therefore, an
improved laplacian smoothing algorithm presented
in [1], which improves the results of laplacian op-
erator by pushing the smoothed vertex a bit back,
thus reducing the volume shrinking effect. The per-
formance of this algorithm can be adjusted by two
parameters. Another improvement was presented
in [3] and [4] which operates in alternating inward
and outward diffusion of vertices in order to main-
tain the shape of the mesh. Again, the algorithm is
controlled by two parameters. The bilateral mesh
denoising approach from [5] and similar method
from [6] has been quite successful. It is essentially
a bilateral filter applied on a mesh topology and
works by filtering vertex positions in directions of
their normals. Adjustable filter parameters can af-
fect the output.

1.2 Structure of the paper

In second chapter, we would like to show a matrix
feature of a vertex and suggest how it can be used
to improve the results of laplacian operator. This
approach will be further described in chapter 3. In
the fourth chapter, we will look at experimental
results of our method on geometrical primitives and
non-primitive models. Evaluation metrics will be
introduced and results will be summarized. The
paper will be concluded in the fifth chapter and
some directions of future work will be pointed out.

2 VERTEX PROPERTIES FROM
NORMAL COVARIANCE MA-
TRIX

In this section we will describe the background for
our method. The main idea lies in altering the
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laplacian operator effect for each vertex type cor-
ner, edge, flat areas. First, let us define some
basic notations. Let v denote the vertex that is be-
ing smoothed and n it’s normal. Consequently let ti
and ni denote i-th face(triangle) and normal of v’s
neighbourhood. Let N be a matrix with ni forming
it’s columns.
Let us take a look at matrix C :

C = NNT

We can see that this is a zero-mean covariance
matrix (covariance matrix for average normal zero
(N − 0)(N − 0)T ) of normals in the neighbourhood
of v. This matrix has been used in [2] for construc-
tion of quadric error metric and was shown to have
a couple of its interesting properties. We can use C
as a robust local vertex feature, which reflects the
character of the vertex neighbourhood. The zero-
mean covariance matrix C can be interpreted as a
quadratic form defined for v and forms a quadric
centered at v. Since quadric matrices are always
symmetric, we can perform it’s spectral decompo-
sition into A and X , where the columns of A are
the eigenvectors of C and li are the corresponding
eigenvalues :

C = AXA−1,whereX = diag(l1,l2,l3)

Now let’s take a look at the eigenvalues of C. We
can distinguish three main cases :

• if l1
∼= l2

∼= l3, then there is a large variation
of normals in every direction around the vertex
and it can be assumed to be a corner.

• if l1
∼= l2 < l3, then there is a direction of max-

imum covariance of neighbourhood normals and
the direction corresponds to an edge.

• if l1 < l2
∼= l3, then there are two directions of

maximum covariance and the vertex lies on a
flat area.

Let e1,e2,e3 denote the eigenvectors of C. In the
second case, the e3 is aligned with the direction of
the edge. In the third case, e3 will be perpendicular
to the ideal plane of the flat area. Let us define
vertex v′ which is the average of vertices from a
neighbourhood of size M.

v′ =
1
M
(v0 + v1+ . . .+ vM)

Then w = v− v′ would be the vector along which
the vertex would move using the laplacian operator.
The laplacian operator based smoothing method

computes the new position v̂ of v as v̂ = v+aw. In
our method, we project w into the vector space with

base vectors being the columns of A, then weight
the projected vector by inverse eigenvalues in di-
rection of each base vector and project it back to
obtain the final displacement position :

v̂ = v+aAYA−1w,Y = diag(l−1
1 ,l−1

2 ,l−1
3 )

3 USING VERTEX NORMAL CO-
VARIANCE FOR SMOOTHING

Consider a vertex and it’s zero mean local covari-
ance matrix C. The eigenvectors of C form an or-
thogonal basis with the center at the current vertex.
We have designed following procedure for smooth-
ing of a current vertex v (see figure 1 graphical in-
terpretation of the scheme in 2D) :

1. compute position difference vector w after ap-
plying the laplacian operator

2. compute eigenvalues and eigenvectors of zero
mean covariance matrix for v’s neighbourhood.
We have been using the neighbourhood of 3 sur-
rounding triangle layers, because if less layers
are used, the covariance statistic is less robust.
For example on a very noisy but otherwise flat
surface, using only one surrounding layer would
result in wrong C, which would resemble that of
a corner vertex. However using the larger the
neighbourhood, the more C approaches the cor-
rect form (that of a flat area vertex).

3. express w within the basis formed by eigenvec-
tors of C to obtain w′ expressed in new basis
coordinates

4. weight the coordinates of w′ by inverse eigenval-
ues of C to obtain w′

1

5. multiply w′
1 by the smoothing factor a , which

regulates the amount of smoothing

6. express w′
1 back within the canonical basis of

three dimensional space to get the final displace-
ment vector for the current vertex

These steps are to be performed on the whole
mesh. Our algorithm is also iterative, so multiple
runs are often required to achieve desired result.

3.1 Improving the eigenvalue
weighting by heuristic

When we look at our weighting formula for a ver-
tex, we can see, that we are using the inverse eigen-
values of C as the weights for laplacian operator.
This works in theory, however on real models, we
have to adjust the weighting so that extreme values
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Figure 1: left : w denotes the vector to the new po-
sition of vertex, right : w′ denotes the same vector
after having its coordinates weightened by eigenval-
ues of C in the local coordinates of C’s eigenvectors

and therefore extreme deformations are not permit-
ted. Let fw denote a function mapping a three di-
mensional vector onto another. Let l denote the
vector of eigenvalues. Then, the smoothing formula
will take the following form :

v̂ = v+aAYA−1w,Y = diag( fw(l))

a) b)

c) d)

Figure 2: visualizing vertex weights a) original
mesh b) noisy mesh c) covariances as degenerated
elipsoids d) visualization on noisy mesh

The weighting function we have been
using is a heuristic. The function is

fw(l1,l2,l3) = normalize(l)−
2
3 . The normal-

ization of eigenvalues will ensure, the weights sum
to one and the vertex displacement will not be
greater than using the standard laplacian opera-
tor. The − 2

3 power reduces the large differences
between weights for a vertex.

3.2 Vizualizing vertex weights

The algorithm therefore treats directions of eigen-
vector differently. The smaller the weight corre-
sponding to a direction, the stiffer the movement
of this vertex in that particular direction will be.
Figure 1 shall give us better idea behind the algo-
rithm. Suggested method of visualizing C can be
found in [2]. C is the main part of quadric - an

ellipsoid centered at the current vertex and with
it’s principal axes aligned with the eigenvectors of
C and its principal radii proportional to the inverse
eigenvalues. We can use the same principle but the
ellipsoid will be slightly deformed by our weighting
function fw.

a) b)

c) d)

Figure 3: iterations of our algorithm on cube model
a) original mesh b) iteration 1 c) iteration 3 d) it-
eration 7

Figure 2 shows the visualization. At the corner
of the cube (green), the ellipsoid almost reduces to
a sphere. This means, that the weights are close
to being equal in all directions and the movement
of this point should be restricted the most. At an
edge vertex, the ellipsoid is reduced to elongated
line, which is aligned along the direction in which
the vertex can move without damaging the edge.
At a flat area vertex, the ellipsoid reduces to a
disc. The left set of images show a cube that is
no longer regular, but we can see, that the ellipsoid
characteristics still hold. Figure 3 shows the result
of smoothing the noisy cube using our algorithm.

4 EXPERIMENTAL RESULTS

We have tested our method and compared its re-
sults with the algorithms presented in section 1 ([4],
[5], [1]). We had a collection of 3D meshes, which
include geometrical primitives (cube, sphere, cylin-
der, torus, etc.) to test the feature preservation
properties and a collection of real models (Stan-
ford bunny, Stanford dragon, skull model, etc ).
The rough data for the smoothing algorithm were
obtained by adding a gaussian noise to the mesh.
For the s2 of the noise, we have chosen values be-
tween 0.05 to 0.1 times the mesh size. The noise
was added in normal direction (see fig. 3). Each
model was well tessellated.
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The metric chosen for algorithm performance
evaluation was histogram based. Since the origi-
nal, noisy and smoothed models are topologically
equivalent we have chosen following metrics :

• Histogram of differences between normal angles
of corresponding faces. The method, which
outperforms the others should have minimal
amount of corresponding normal angle differ-
ences (HN).

• Histogram of distances between corresponding
vertices. This metric reflects the ability of the
method to preserve shape of the model (HV ).

Since we are using gaussian noise to alter the
mesh, it is safe to assume, that the angle differences
and distance differences should have approximately
a gaussian distribution with mean and deviation.
After the smoothing has been performed on an al-
tered mesh, we are going to observe that the new
histogram will show, that the mean shifted towards
zero and the deviation shifted towards zero as well.
This should be easily observed on the histograms.
We will also include a table of the mean and de-
viance approximations for each algorithm at the
end of this section. For the methods that require
parameter tuning, we have adjusted the parameters
to perform as good as possible for every particular
model.

4.1 Cube model analysis

The figure 4 shows the results obtained on the
cube model. The HN(our) shows that our algorithm
tends to minimize the larger differences better than
hc while the majority of differences are zero (con-
trary to taubin). This shows, that our method was
able outperform the others as far as edge preserva-
tion is concerned.
The figure 5 shows HV histograms of the cube

model. According to this metric, our method is
outperformed by hc and tabuin. If we compare
HV (our) with HV (bmds), we see that better shape
preservation was achieved with our method, than
with bmds. Figure 10 shows visual comparison of
the results on the cube model.

4.2 Real model analysis

The cube model discussed above was an example
from the set of ideal model with clearly distinguish-
able features. We have also tested our method on
models that are not geometric primitives. Follow-
ing histograms were obtained from the model of
the Stanford bunny. Figure 6 shows that the shape
similarity of HN(original) and HN(our) is good (see
fig. 8 for visual comparison).

a) b)

c) d)

e)

Figure 4: HN Histogram of corresponding normal
angle differences. The sixth bar corresponds to
a difference of around pi

3 rad. a) HN(noisy) b)
HN(taubin) c) HN(bmds) d) HN(hc) e) HN(our)

a) b)

c) d)

e)

Figure 5: HV Histogram of distances between cor-
responding vertices. The histogram is scaled for
the maximum allowed displacement on the right
(concidering the noise parameters). a) HV (noise)
b) HV (taubin) c) HV (bmds) d) HV (hc) f) HV (our)

The comparison of HV histograms (figure 7)
shows that the best shape preservation was
achieved by hc algorithm. our method has shown
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a) b)

c) d)

e)

Figure 6: HN Histogram of corresponding normal
angle differences. The sixth bar corresponds to a
difference of around pi

3 . a) HN(noisy) b) HN(taubin)
c) HN(bmds) d) HN(hc) e) HN(our)

a) b)

c) d)

e)

Figure 7: HV Histogram of distances between cor-
responding vertices. The histogram is scaled for
the maximum allowed displacement on the right
(concidering the noise parameters). a) HV (noisy)
b) HV (taubin) c) HV (bmds) e) HV (hc) e) HV (our)

comparable results with taubin method and clearly
outperformed bmds.

4.3 Summary

Tables 1 and 2 sumarize the results on several mod-
els we have used. In order to quantify the results,
we have reduced the histogram metric to comput-
ing mean and standard deviation approximation
(m,s2) of the data. The key idea which was out-
lined at the begining of this section is, that if the
original model and the smoothed one are similar,
then the angles between corresponding face nor-
mals should be small and the distance between cor-
responding vertices should be small as well.

taubin bmds hc our

cube (m) 0.156 0.13 0.148 0.117
cube (s2) 0.09 0.181 0.174 0.125
cylinder (m) 0.106 0.076 0.084 0.084
cylinder (s2) 0.103 0.166 0.157 0.155
bunny (m) 0.270 0.216 0.143 0.128
bunny (s2) 0.171 0.228 0.094 0.103
dragon (m) 0.214 0.277 0.17 0.182
dragon (s2) 0.252 0.335 0.231 0.274
bull (m) 0.121 0.145 0.143 0.11
bull (s2) 0.114 0.165 0.083 0.108
skull (m) 0.38 0.53 0.25 0.267
skull (s2) 0.401 0.62 0.256 0.302

Table 1: Angles of corresponding face normals(rad)

For the models to be similar as far as feature
preservation is concerned, we need the mean angle
difference to be small. The edge preserving ability
manifests itself through the standard deviation of
angles (this can be observed on ideal meshes). For
the models to be similar in shape, we expect the
corresponding vertices distance to be small. There-
fore the smaller average distance, the better the
models correspond to each other shape-wise.

taubin bmds hc our

cube (m) 0.099 0.146 0.076 0.129
cube (s2) 0.045 0.07 0.056 0.06
cylinder (m) 0.067 0.073 0.075 0.071
cylinder (s2) 0.035 0.038 0.046 0.038
bunny (m) 0.046 0.053 0.034 0.05
bunny (s2) 0.021 0.032 0.022 0.023
dragon (m) 0.031 0.044 0.033 0.031
dragon (s2) 0.015 0.023 0.018 0.015
bull (m)l 0.572 0.41 0.356 0.389
bull (s2) 0.255 0.2 0.19 0.192
skull (m) 0.31 0.455 0.562 0.713
skull (s2) 0.747 0.277 0.346 0.446

Table 2: Distance between corresponding vertices
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On the ideal models (cube, cylinder), the best
feature preserving algorithms are bmds with our
method being only slightly less effective. On real
models, the best shape preserving methods are hc
and our method. With the overall shape preserva-
tion, our algorithm outperforms bmds and is com-
parable with taubin and hc.

a) b)

c) d)

e) f )

Figure 8: the stanford bunny a) original b) noisy
c) taubin d) bmds e) hc f) our

5 CONCLUSION

We have been trying to develop a smoothing
method, that would aim to perform well on
different types of meshes and would not require
extensive amount of tuning to do so. Our method
is not the best performing in all cases however
it’s performance is rather stable and comparable
to the best methods for particular case. Another
advantage of our method is it’s robustness, since
we are using broader vertex statistics (zero mean
covariance).

5.1 Future work

We would like to focus on developing a robust
smoothing method based on local normal covari-

ance. Our approach currently extends the standard
laplacian operator by locally modifying it’s results
to reflect local mesh characteristics. In the future,
we would like to explore following possibilities for
improving the method performance :

• Explicitly clustering the vertex characteristics
(eigenvalues) into categories edge, corner, flat
and designing and applying custom smoothing
function based on vertex type.

• Finding connectivity between vertices of the
same type and using the average computed
from vertices of the same type.

• Improving our zero-mean covariance metric.
The matrix is constructed from a fixed size
neighbourhood of the vertex. We would like to
develop an adaptive approach, that selects the
neighbourhood shape, so that the metric itself
isn’t damaged.

Another important task for the future will be
evaluating the time complexity of the algorithm.
Since the method uses lot of computations, this
should become an important criterion. The opti-
mization of the algorithm to be less time consuming
will also be one of our proximate tasks. We would
also like to explore other applications of the vertex
normal covariance feature, for example using it for
other mesh related tasks (matching, registration,
etc. )
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a) b) c)

d) e) f )

Figure 9: the stanford bunny a) original b) noisy c) taubin d) bmds e) hc f) our

a) b) c)

d) e) f )

Figure 10: cube a) original b) noisy c) taubin d) bmds e) hc f) our
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a) b) c)

d) e) f )

Figure 11: cylinder a) original b) noisy c) taubin d) bmds e) hc f) our

a) b) c)

d) e) f )

Figure 12: bull a) original b) noisy c) taubin d) bmds e) hc f) our
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