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ABSTRACT

Our current research focuses on the application of visuo-haptic augmented reality in medical training. The setup developed

in this context enables collocated haptic interaction with scene objects. In order to allow natural manipulations, provision of

appropriate depth cues becomes a crucial factor. Therefore, we have included fast occlusion handling and shadow synthesis

in our augmented environment. The occlusion map is initialized using a plane sweep approach, followed by an edge-based

optimization via a Mumford-Shah functional. For obtaining the depth map three head mounted cameras are used and a left-

right consistency check is performed to provide robustness against half occlusions. Shadowing is implemented via shadow

mapping, considering both real and virtual objects. All steps have been implemented on GPU shaders and are performed in

real-time.

Keywords: Augmented reality, occlusion handling, shadow casting.

1 INTRODUCTION

Augmented Reality (AR) extends the real environment

with virtual components. In a video-see-through sys-

tem, virtual objects are superimposed onto the image

stream of the real world. By integrating a collocated

haptic device into the setup, also haptic augmentations

can be provided. Our current research focuses on the

application of such visuo-haptic AR setups in medical

training of open surgical procedures. In this setting, a

user actively manipulates the augmented, collocated en-

vironment, leading to occlusions between real and vir-

tual objects.

Depth perception has been identified as a major con-

cern in AR systems [28]. This becomes even more criti-

cal if interactions with scene objects are performed. Oc-

clusions and shadows provide key cues for visual per-

ception to infer depth, thus also increasing immersion

into the simulated environment [4, 29, 22]. Absence or

incorrect presentation of these effects can lead to sen-

sory conflicts. Therefore, we developed approaches to

incorporate appropriate visual depth cues into our AR

rendering pipeline. We focused on accurate occlusion

handling and shadow casting. Moreover, since low la-

tency in a visuo-haptic system is crucial for maintain-
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ing veridical haptic perception [15], we also targeted

providing these visual cues in real-time.

For occlusion handling we first obtain a depth map

using a plane sweep algorithm. For this step three cam-

eras integrated into a head mounted display are being

used. Thereafter, the depth is used to provide an initial

guess of occlusions, which is further optimized through

a segmentation process using a Mumford-Shah func-

tional. The occlusions are optimized by incorporating

the total variation of the color images to align the oc-

clusions with image edges. The main contribution of

our approach is that no a priori information about the

environment is required. This is in contrast to most

other approaches, which first perform a segmentation

in order to extract the possible occluders. Finally, the

reconstructed depth is employed to cast shadows in the

augmented scene. The details of these steps will be ex-

plained below.

2 RELATED WORK

Resolving occlusions is still a major issue in current

AR research. Approaches can be divided into four cat-

egories: model-, segmentation-, contour-, and depth-

based techniques. The former two require a priori in-

formation about the real environment. Model based

approaches use the shape and pose of the occluder

[6], while segmentation-based techniques incorporate

knowledge about the appearance of the occluder or the

background [7, 25]. The latter two approaches have

proven to be more flexible. Nonetheless, silhouette-

based approaches often need manual input or are not

feasible in real-time [2, 17], and occlusions obtained

from depth, in general, lack fidelity [32, 27]. Novel ap-

proaches make use of a combination of different infor-

mation for the detection of occluders. A depth recon-
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Figure 1: RGB images of left, center, and right camera.

struction step is often combined with a previous seg-

mentation, thus requiring knowledge about appearance

[18, 14, 31, 19]. To bypass these problems, a more so-

phisticated approach, has been presented in [33]. They

suggest to employ a probabilistic framework combining

color, depth, and neighborhood information to handle

occlusions. We also combine depth reconstruction with

image segmentation. However, we first reconstruct the

depth of the scene and then use this information in a

segmentation process in combination with the camera

images. No a priori information of the scene is there-

fore required. Different approaches can be used for the

depth reconstruction, e.g. shape from shading [8], but

application in AR has to be performed in real time.

Several techniques have been used for shadow cast-

ing in AR, e.g. shadow volumes using stencil buffer

[10] or shadow textures [13]. More sophisticated ap-

proaches use image based information [30] or target

the detection, fusion and adjustments of virtual and real

shadows [24, 12, 23]. While knowledge about scene

depth has been used in other contexts in AR [9, 16], the

application to shadow casting for dynamic objects has

not been considered before. We use a soft shadow al-

gorithm combining shadow maps with the scene depth

reconstruction. A similar approach for casting static

shadows has recently been reported in [20].

3 VISUO-HAPTIC ENVIRONMENT

We use a stereoscopic video see-through setup with

three dragonfly2 firewire cameras, weighing in total

less than 300g. Two of the cameras are placed in front

of the head mounted display (HMD) to record the live

streams shown to the user. They are aligned with the

HMD displays with a baseline of 65mm. A third, cen-

tered camera is mounted on the HMD to support the

depth reconstruction process. The HMD provides a 40

degree field of view (FOV). To increase camera over-

lap for the depth reconstruction, the image size of the

cameras is increased towards the opposite side by 60

pixels (i.e. 5 degrees). However, only a 400x300 pixel

region corresponding to 40 degrees FOV is presented to

the user. The center camera acquires 500x300 pixel im-

ages at a FOV of about 50 degrees. The colorspaces of

the three cameras have been precalibrated to each other

by using a color checker. An example view of the en-

vironment captured by the three cameras is shown in

Figure 1. The head pose of the user is provided by an

external infrared tracking system. Haptic feedback is

rendered on a PHANToM 1.5 interface, simulating the

kinesthetic force response from virtual scene objects.

The overall setup and the HMD used are depicted in

Figure 2. More details on the system and the calibra-

tion procedures can be found in [11]. Known real ob-

jects in the scene, e.g. the haptic device stylus or the

table, are registered in the environment and represented

by virtual counterparts. The latter can for instance be

used for shadow casting as well as occlusion handling.

4 DEPTH RECONSTRUCTION

In order to recover the scene depth in real-time we ex-

tend the approach suggested in [3]. Depth is recon-

structed via a plane sweep technique. The basic idea

of this class of algorithm is to sweep the space between

a near and far limit with parallel planes at an arbitrary

number of discrete depths. Pixels in a reference image

are projected onto corresponding pixels in additional

test images at each plane depth. Thereafter, the errors

between the RGB values of these pixels are determined.

The depth of a pixel in the reference image is then set

to that of the plane resulting in a minimal error mea-

sure. Cornelis et al. further increase the robustness of

this technique by performing a hierarchical plane sweep

with connectivity constraints.

When reconstructing depth in a video-see through

setup, camera baseline and FOV are given by the

hardware specifications. Moreover, the working

distance is in general below 1m. This leads to strong

Figure 2: Collocated visuo-haptic AR environment

(left) and three camera HMD setup (right).
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half occlusions and differences in object appearance in

the images (see Figure 1). The original approach by

Cornelis et al. is not sufficiently robust in this case.

Smooth transitions or wrong depth values for the half

occluded regions result. Therefore, we have applied

several modifications to their approach.

Coarse level depth initialization: Our depth recon-

struction process is performed on a four-level hierar-

chy. The coarsest level is a 8x8-downsampling of the

original reference image. In the first step, the depth for

the center view at the coarsest level is determined. The

space from 1000 cm to 10 cm is swept by 64 planes.

These are equally distributed in reciprocal depth space,

thus providing a more equally distributed sampling in

image space. For a plane located at depth d, the pixel at

pc = (xc, yc) with color value Cc in the reference im-

age is projected onto the left and right view, resulting

in image coordinates pd
l and pd

r . Using homogeneous

coordinates the projection from view a to b is given by




x

d
b

y

d
b

w

d
b



 = [Pra
b |0]


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Pra
b and Pta

b are the 3×3 and 3×1 submatrices of the

3× 4 projection matrix given by

[Pra
b |Pta

b ] = [KbR
a
bK

−1
a |Kbt

a
b ] (2)

with the internal camera parameters K and the trans-
formation [Ra

b |t
a
b ] from view a to b. The projected pix-

els are then normalized resulting in the image coordi-
nates pd

l,r = (xd
l,r/w

d
l,r, y

d
l,r/w

d
l,r) and the color values

Cl(p
d
l ) and Cr(p

d
r) are interpolated in the full resolu-

tion images. Based on these, the matching score for the
depth d is determined through sums of squared differ-
ences (SSD).

ǫ
d(pc) =

SSD(pc,p
d
l ) + SSD(pc,p

d
r) + SSD(pd

l ,pd
r)

3
(3)

determined for coordinates pa and pb and color values

Ca and Cb via

SSD(pa,pb) =
1

|NW |

∑

p̃a∈NW (pa)
p̃b∈NW (pb)

‖Ca(p̃a)−Cb(p̃b)‖
2
2

(4)

in the 3x3 neighborhood

NW = {(x, y) : |x− x0| ≤ 1, |y − y0| ≤ 1} (5)

The initial depth estimate is then obtained through

drec(pc) =

{
d : min

d
(ǫd(pc)) ≤ ǫmax

∞ : ǫ

d(pc) > ǫmax ∀d
(6)

Thus, if for a pixel no matching score below a threshold

ǫmax is found, we assume that a half occlusion occurs.

However, it is still possible to determine depths for

these points in the subsequent steps. Parameter ǫmax is

set to 0.01 for the normalized pixel color range [0, 1].

Hierarchical refinement: In the next steps, the

lower-level depth estimates are repeatedly upsampled

to higher levels until the original resolution is reached.

After upsampling one level, two iterations of a median

filter are performed first to reduce the influence of

outliers. Thereafter, the depth map is refined using

a connectivity constraint. In this step, the depth

values of neighboring pixel are evaluated for the

current pixel and the best match is set. The search

neighborhood is alternated in each iteration between an

orthogonally-adjacent

Nort = {(x, y) : |x− x0|+ |y − y0| = 1} (7)

and a diagonal one

Ndiag = {(x, y) : |x− x0|+ |y − y0| = 2} (8)

Only valid, non-occluded depth values are considered

in this step, thus resulting in a first set of neighboring

depth values DN . Note that these have either been de-

termined during the initial sweep or during one of the

following refinements. In order to obtain a piecewise

smooth depth approximation, this set is then extended

with the mean value of the neighboring depth values

d̄N . This set of possible depth values is then evaluated

for the current pixel. To determine the best match, a

modification of Equation 6 is used. For computing the

SSD this time no neighborhood window is applied.

SSDfine(pa,pb) = ‖Ca(pa)− Cb(pb)‖
2
2 (9)

Note that to further prioritize a smooth reconstruction,

the matching score of the mean depth is multiplied by

0.75 when finding the depth according to Equation 6.

The best matching depth is then assigned to the cur-

rently examined pixel.

The described refinement process with connectivity

constraints is carried out five times on each level.

Additional iterations were not useful, since only

negligible changes occurred. The resulting fine-level

depth reconstruction for the central view is shown in

Figure 3 (right).

Consistency check: The reconstructed depth of the

center camera is finally projected onto the left and right

view. In order to enhance the result, the previously de-

scribed refinement step is applied two times, using the

left and right view as starting reference images, respec-

tively. However, especially in half occluded regions still

mismatches are present. These can for instance be seen

in the example image in Figure 3 (middle) in the oc-

cluded region right to the sponge.
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Figure 3: Depth reconstructed for center camera in Figure 1 (left). Fully refined depth map for right camera before

and after outliers removal (right).

To remove these outliers, a left-right consistency

check is carried out. For both views, pixels are

projected from one into the other. The pixel is then

backprojected into the first one by using the depth

of the second view. If the distance in image space

between the backprojected and the original pixel is

below a threshold distmax, the depth is assumed to

be correct. Otherwise the left and right images do not

describe the same world point and we set drec =∞ for

that pixel. To allow for small outliers and perspective

distortions, distmax was set to 3 pixels.

After this outliers removal the neighbor refinement

is again performed two times to fill gaps in the depth

maps. The final result after consistency check is also

depicted in Figure 3 (right).

In order to determine occlusions, the reconstructed

depth drec could be compared to that of the virtual

scene. However, the obtained depth map is still of in-

sufficient quality, exhibiting several inaccuracies as can

be seen in Figure 4 (left). Therefore, the determined

depths are used to provide an initial guess in a further

optimization step.

5 OCCLUSION OPTIMIZATION

The central idea of the occlusion optimization is to align

the initial occlusion with image edges. This assumes

that the occluding objects exhibit visible contours. To

this end, we apply the Mumford-Shah segmentation

model [21], resulting in a piecewise smooth approx-

imation of image intensity by minimizing the energy

functional

EMS =

∫

Ω

(u− g)
2
dΩ+α

∫

Ω\Γ

|▽u|2dΩ+β len(Γ)

(10)

where g is the image, u the smooth approximation, and

len(Γ) the length of the set of evolved edges Γ in g. The

positive tuning parameters α and β are related to scale

and contrast in the image. Pock et al. [26] showed that

the model can be applied, as well, to evolve a piecewise

smooth approximation of a color image and a smooth

depth map exhibiting the same set of edges Γ by using

an iterative update process.

However, this scheme does not allow to account for

missing depth values due to half occlusions. Therefore,

we first determine a dense occlusion map and assume

that half occlusions only effect image background. This

is done by comparing the reconstructed depth map of

the real environment drec with that of the virtual scene

dvr. In addition, the depth of any known precalibrated

objects dpre, e.g. the haptic device stylus, is also inte-

grated. The initial dense occlusion map o is thus deter-

mined according to

o(x, y) =






1 : drec(x, y) < dvr(x, y)
0 : dvr(x, y) ≤ drec(x, y)

0.25 : dvr(x, y) ≤ dpre(x, y)∧
dvr(x, y) =∞

0.75 : dpre(x, y) < dvr(x, y)∧
dvr(x, y) =∞

(11)

An example of an initial occlusion map and the corre-

sponding augmentation is illustrated in Figure 4 (left).
Starting from the initial RGB image u0 and occlu-

sion map o0, an iterative update process is then carried
out, evolving both towards the edges Γ through linear
diffusion. The RGB images are updated by

u
k+1(x, y) =

u
0(x, y) +

∑

(x̃,ỹ)∈N (x,y)
µk(x, y, x̃, ỹ)uk(x̃, ỹ)

1 +
∑

(x̃,ỹ)∈N (x,y)
µk(x, y, x̃, ỹ)

(12)

where the µ

k are diffusion weights defined below.
The neighborhood N is alternated in each iteration be-
tween the previously used Ndiag and Nort to remove
sampling artifacts. Next, we update the occlusion map
according to

o
k+1(x, y) =

δo0(x, y) +
∑

(x̃,ỹ)∈N (x,y)
µk(x, y, x̃, ỹ)ok(x̃, ỹ)

δ +
∑

(x̃,ỹ)∈N (x,y,x̃,ỹ)
µk(x, y)

(13)

where δ is a smoothing weight. However, the latter hin-

ders evolution and does not allow for strong outliers.

Pock et al. [26] apply a term including multiple depth

hypotheses to encounter the problem. In our case, we

use the matching cost ǫ of the assigned depth value

drec(x, y) to regulate the smoothness of the occlusion

map with a maximum weight δmax.

δ =

{
0 : dvr(x, y) =∞

δmax
ǫmax−ǫ

ǫmax
: else

(14)

Thus, the error norm is removed if no correspondence

can be detected, while it is preserved if an accurate
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Figure 4: Occlusion map and augmentation before (left) and after refinement (right).

match is found. This results in stronger diffusion in

regions where no or less accurate depth values could

be found and weaker in those with accurate correspon-

dences. The parameter δmax was set to 100. The diffu-

sion weights µ

k are given by

µ

k(x, y, x̃, ỹ) =
AN · BN

1 + BN ·G(x, y, x̃, ỹ)
(15)

with AN and BN being positive constants and G a

joint color-occlusion gradient. The former parameters

depend on the constants α and β as well as on the spe-

cific neighborhood. In our caseAN and BN were given

as 15.54 and 705.09 for Nort, and 11.64 and 470.4 for

Ndiag , respectively. Finally, the joint gradient term is

specified by

G(x, y, x̃, ỹ) = γ‖u(x, y)− u(x̃, ỹ)‖22
+(1− γ) |o(x, y)− o(x̃, ỹ)|2

(16)

where the γ weights the influence of color and occlu-

sion on the evolved edges. Since strong discontinuities

are present in the initial occlusion map, we determine

the gradients at the beginning of the iterations only from

the color images by setting γ = 1.0. After 50 iterations

the value is changed to 0.9. The overall update process

is only carried out inside regions where virtual objects

are rendered. If none is present, no information about

occlusions is required.

Sufficient results using this optimization were

achieved after 100 iterations. Figure 5 illustrates the

evolution outcome for a subregion in the example

scene of Figure 4. The left image shows the original

RGB data located under the rightmost virtual cube,

while the other two images depict the evolved edges

and the diffused RGB data. The final evolved occlusion

Figure 5: Original RGB image before, and evolved

edges and diffused RGB image after optimization.

map as well as the augmentation is shown on the right

of Figure 4. The final occlusion is determined by a

binarization of the evolved result with a threshold of

0.5.

6 SHADOW CASTING

In AR shadow casting should occur between real and

virtual objects. In general, a light emitter casts upon

an occluding object, while light occluder and shadow

receiver can both be real or virtual. By using shadow

maps discussed in [20], convincing soft shadowing can

be provided in real-time [1]. If a depth map of the

scene is acquired, the approach shows another advan-

tage. A key step for the algorithm is the determination

of the depths of the first light-blocking objects. This al-

lows to adjust the shadow map using the previously re-

constructed depth map and thereby to include dynamic

shadow casting of real objects.

When rendering virtual objects, shadows are cast

from virtual and real entities. Therefore, the first oc-

cluder in either of the two environments has to be de-

termined. To this end, shadow maps are determined for

the virtual Svirt and the real Sreal scene. The former

is acquired by rendering the scene from the viewpoint

of the tracked real light source. For the latter, the re-

constructed depths of the camera views are rendered as

point clouds from the view of the light source. Outliers

are removed by median filtering. Moreover, the geome-

tries of calibrated objects, e.g. the haptic device stylus

or the table, are also integrated. For these, a shadow

map Spre is determined by rendering their virtual repre-

sentation from the direction of the light source. A mod-

ified map is obtained by combining this shadow map

with the real by determining

S̃real =

{
Sreal : Sreal < (Spre − ts1)
Spre : else

(17)

The threshold ts1 is introduced to increase robustness

against outliers. In our examples it is set to 10mm. The

final shadow map for rendering the augmented scene is

then obtained as Sfin = min(S̃real, Svirt).
For rendering shadows on real surfaces, we currently,

only determine virtual shadows on precalibrated ob-

jects, e.g. the table. This is done by casting shadows
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Figure 6: Augmentation without and with shadows cast from a tracked real lightsource.

on the known real world geometry based on the deter-

mined virtual shadow map. Here, it has to be noted that

occlusion handling has to be performed as well for the

newly added shadows. In order to prevent occlusions

from the real surface the shadow is cast upon an offset

ts2 is added to the virtual depth dvr when the occlusion

map is initialized through Equation 11. This parameter

is also set to 10mm.

Since we do not have information about the diffuse

albedo of the real object, the shadowed pixel is modified

by multiplying its color value with a shadow coefficient

ks and using an offset off to preserve an ambient light.

Cout = Cin (off + (1.0− off)(1.0− ks)) (18)

The offset off is set to 0.5. For computing the penum-

bra of the shadows a percentage-closer filtering is ap-

plied [5]. Sixteen texture lookups are used for occluder

search and shadow coefficient computation. These are

performed based on a randomly rotated Poisson disk

distribution. Results of the shadow casting approach

are depicted in Figure 6.

7 RESULTS

Visual processing in our AR system is fully imple-

mented on the GPU. Camera images are transferred to

GPU texture memory, where all processing is carried

out. Unconverted bayer images of all three cameras are

uploaded, demosaiced by downsampling to half reso-

lution, color adjusted by precalibrated 3x3 conversion

matrices and undistorted. Based on these images the

depth reconstruction is carried out. Thereafter,the vir-

tual scene is rendered with shadows and the coarse oc-

clusion map is determined and refined. Finally, the oc-

clusion map is applied and the augmented scene is visu-

alized to the user. Note that rendering the virtual scene

and occlusion handing are only performed for the left

and right camera only.

The overall process can be carried out at 20 fps on a

GTX 285 graphics card. Timings for the different steps

of the pipeline are provided in Table 1. The time for the

occlusion refinement is given for a masked frame buffer

corresponding to the virtual objects. The mask is ren-

dered once to the depth buffer and regions outside the

virtual drawing are culled by using an OpenGL depth

test. The occlusion handling using the masking requires

two rendering passes for either updating the color im-

ages or the occlusion map. An alternative implemen-

tation without masking can use rendertargets providing

updates for both, the color images and the occlusion

map, in one render pass. By using this technique oc-

clusion handling can be performed in 38 ms for the full

image. Example stereo frames of the full application

are shown in Figure 7.

Nevertheless, the depth reconstruction has some lim-

itations. Accurate depth maps can be acquired if the

scene is well textured. However, homogeneous areas

in the background or repetitive patterns decrease the re-

liability. In these cases, color keying or background

subtraction can be employed to solve for occlusions.

Furthermore, specular highlights can lead to additional

errors in the depth reconstruction. Still most of these

problems can be resolved in the occlusion refinement

step.

The choice of the parameter ǫmax directly influences

the resulting depth map. A high threshold causes sev-

eral outliers while lower values result in a sparse depth.

The latter, however, is suitable for the occlusion opti-

mization.

The total variation term of the occlusion optimiza-

tion performs well without incorporation of a priori in-

formation. The fidelity of the occlusion is sensitive to

the parameters α and β, which can be used to adjust

to the scene. High α values result in a kernel (Equa-

tion 5) which provides stronger diffusion across image

boundaries. In this case, the occlusion in half occluded

regions becomes a smooth approximation. In contrast

to this, higher values for β increase the influence of

Processing step Performance in ms

Image upload 1.1

Demosaicing 0.4

Undistortion 0.3

Depth reconstruction 16

Virtual rendering with shadows 2.5

Occlusion refinement 24

Augmentation 0.3

Overall performance 47.6

Table 1: Performance of augmentation pipeline.
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Figure 7: Examples of left and right view of final augmentation during collocated interaction with virtual objects.

edges and reduce the diffusion across image bound-

aries. However, some problems occur if only small re-

gions are detected for either fore- or background during

the depth reconstruction. In this case the refinement

tends to prioritize the larger areas. Using an enlarged

bounding box for virtual objects could solve this prob-

lem. In addition, another problem occurs if no edge be-

tween fore- and background objects is evident. This can

lead to occlusions leaking from foreground objects into

half occluded regions until the diffusion is stopped by a

strong edge. Additional stereo or temporal constraints

of the occluding contour could be used to encounter this

problem. In addition, due to the resemblance of the pro-

cedure used to level set implementation, additional en-

ergy components, e.g. gradient vector flow or curvature

forces could also be integrated. Finally, instead of de-

termining the occluder with a fixed threshold, connec-

tivity of occluding segments and adaptive thresholding

could lead to better results.

The depth used for shadow casting was based on the

camera view. Projection of the reconstructed depth map

only produces correct results, if the perspectives are not

too different. It would be better to recover the depth di-

rectly from the direction of the light source, for instance

by using additional cameras. Noise in the depth maps

in general reduces the quality of shadow casting.

8 CONCLUSION

In our current work we are developing a visuo-haptic

AR system to be applied in medical training of open

surgical procedures. In order to provide enhanced depth

cues in the augmented scene, as well as to increase user

immersion, we integrated real-time occlusion handling

and shadowing in our system. The depth of the scene

is recovered using a hierarchical plane sweep process

combined with a left-right consistency check. Opti-

mization applying a Mumford-Shah functional is car-

ried out to obtain accurate occlusions. Moreover, the

depth map is used for casting dynamic shadows.

Future work will investigate additional constraints for

occlusion refinement, e.g temporal or stereo constraints

as well as contour curvatures. In addition, a more de-
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tailed quantitative evaluation of the approach will be

carried out. Furthermore, we will also investigate possi-

bilities for fusing real and virtual shadows in real-time.

Acknowledgments This work has been performed

within the frame of the EU project Immersence

IST-2006-27141.

REFERENCES

[1] L. Bavoil. Advanced soft shadow mapping techniques.

In GDC slides, 2008.

[2] M. O. Berger. Resolving occlusion in augmented re-

ality: a contour based approach without 3d reconstruc-

tion. In CVPR, pages 91–96, 1997.

[3] N. Cornelis and L. V. Gool. Real-time connectivity con-

strained depth map computation using programmable

graphics hardware. CVPR, 1:1099–1104, 2005.

[4] D. Drascic and P. Milgram. Perceptual issues in aug-

mented reality. In SPIE Volume 2653: Stereoscopic

Displays and Virtual Reality Systems III, pages 123–

134, 1996.

[5] R. Fernando. Percentage-closer soft shadows. In SIG-

GRAPH, page 35, 2005.

[6] M. Fiala. Dark matter method for correct augmented

reality occlusion relationships. HAVE, pages 90–93,

2006.

[7] J. Fischer, H. Regenbrecht, and G. Baratoff. Detecting

dynamic occlusion in front of static backgrounds for ar

scenes. In EGVE, pages 153–161, 2003.

[8] D. Gelli and D. Vitulano. Surface recovery by self

shading projection. Signal Processing, 84(3):467–473,

2004.

[9] G. Gordon, M. Billinghurst, M. Bell, J. Woodfill,

B. Kowalik, A. Erendi, and J. Tilander. The use of dense

stereo range data in augmented reality. In ISMAR, pages

14–23, 2002.

[10] M. Haller, S. Drab, and W. Hartmann. A real-time

shadow approach for an augmented reality application

using shadow volumes. In VRST, pages 56–65, 2003.

[11] M. Harders, G. Bianchi, B. Knoerlein, , and G. Székely.

Calibration, registration, and synchronization for high

precision augmented reality haptics. TVCG, 15(1):138–

149, 2009.

[12] K. Jacobs, J.-D. Nahmias, C. Angus, A. Reche,

C. Loscos, and A. Steed. Automatic generation of con-

sistent shadows for augmented reality. In GI, pages

113–120, 2005.

[13] T. Kakuta, T. Oishi, and K. Ikeuchi. Virtual kawaradera:

Fast shadow texture for augmented reality. In CREST,

pages 79–85, 2005.

[14] H. Kim, D. Min, S. Choi, and K. Sohn. Real-

time disparity estimation using foreground segmen-

tation for stereo sequences. Optical Engineering,

45(3):037402(1–10), 2006.

[15] B. Knörlein, M. di Luca, and M. Harders. Influence

of visual and haptic delays on stiffness perception in

augmented reality. In ISMAR, pages 49 – 52, 2009.

[16] A. Ladikos and N. Navab. Real-time 3d reconstruc-

tion for occlusion-aware interactions in mixed reality.

In ISVC, November 2009.

[17] V. Lepetit and M.-O. Berger. A semi-automatic method

for resolving occlusion in augmented reality. CVPR,

2:225–230 vol.2, 2000.

[18] L. Li, T. Guan, and B. Ren. Resolving occlusion be-

tween virtual and real scenes for augmented reality ap-

plications. In HCI (2), pages 634–642, 2007.

[19] Y. Lu and S. Smith. Gpu-based real-time occlusion in

an immersive augmented reality environment. Journal

of Computing and Information Science in Engineering,

9(2):024501(1–4), 2009.

[20] C. B. Madsen and R. E. Laursen. A scalable gpu-based

approach to shading and shadowing for photorealistic

real-time augmented reality. In GRAPP (GM/R), pages

252–261, 2007.

[21] D. Mumford and J. Shah. Optimal approximations by

piecewise smooth functions and associated variational

problems. Communications on Pure and Applied Math-

ematics, 42(5):577–685, 1989.

[22] T. Naemura, T. Nitta, A. Mimura, and H. Harashima.

Virtual shadows - enhanced interaction in mixed reality

environment. In VR, pages 293–294, 2002.

[23] G. Nakano, I. Kitahara, and Y. Ohta. Generating

perceptually-correct shadows for mixed reality. ISMAR,

0:173–174, 2008.

[24] M. Nielsen and C. B. Madsen. Graph cut based seg-

mentation of soft shadows for seamless removal and

augmentation. In SCIA, pages 918–927, 2007.

[25] J. Pilet, V. Lepetit, and P. Fua. Retexturing in the pres-

ence of complex illumination and occlusions. In Ismar,

pages 249–258, 2007.

[26] T. Pock, C. Zach, and H. Bischof. Mumford-shah meets

stereo: Integration of weak depth hypotheses. In CVPR,

pages 1–8, 2007.

[27] J. Schmidt, H. Niemann, and S. Vogt. Dense dispar-

ity maps in real-time with an application to augmented

reality. In WACV, pages 225–230, 2002.

[28] T. Sielhorst, C. Bichlmeier, S. Heining, and N. Navab.

Depth perception a major issue in medical ar: Evalua-

tion study by twenty surgeons. In MICCAI, pages 364–

372, 2006.

[29] N. Sugano, H. Kato, and K. Tachibana. The effects of

shadow representation of virtual objects in augmented

reality. In ISMAR, pages 76–83, 2003.

[30] P. Supan, I. Stuppacher, and M. Haller. Image based

shadowing in real-time augmented reality. IJVR,

5(3):1–7, 2006.

[31] J. Ventura and T. Hollerer. Depth compositing for aug-

mented reality. In SIGGRAPH posters, page 1, 2008.

[32] M. M. Wloka and B. G. Anderson. Resolving occlusion

in augmented reality. In SI3D, pages 5–12, 1995.

[33] J. Zhu, Z. Pan, C. Sun, and W. Chen. Handling occlu-

sions in video-based augmented reality using depth in-

formation. In Computer Animation and Virtual Worlds,

Special Issue, page n/a, 2009.

WSCG 2010 FULL Papers 204


	!_Full.pdf
	F29-full.pdf


