
Dynamic Visual Effects for Virtual Environments

Matthias Haringer

University of Hamburg, Germany

haringer@informatik.uni-hamburg.de

Steffi Beckhaus

University of Hamburg, Germany

steffi.beckhaus@uni-hamburg.de

ABSTRACT
We introduce a high level interface capable of instantly adding and manipulating a multitude of visual effects for

any object or area in VE scenes. This enables a controlling person or an automated system to react to the in scene

situation and the user’s actions by dynamically changing the scene’s appearance. Such a high-level scene and effect

access is also a powerful tool for story telling engines and scene authors to support the intended plot or impact. To

achieve this smoothly and effectively, our interface allows fading of effects to generate soft effect transitions and

grouped effects for controlling complex effect combinations in a simple way. We also describe our fully functional

implementation and the changes necessary to realize our concept in a scene graph based VR-system. We further

introduce a simple script interface to add new effects to the available effect pool. We present, but are not limited to,

three visual effect types: shader effects, post-processing effects, and OpenGl based effects. Our implementation

supports multi-pipe displays, multi-pass rendering, and an arbitrarily deep per-object post-processing effect graph.

Keywords
Effect control, dynamic effects, post-processing, shaders, virtual environments

1 INTRODUCTION

Visual effects are nowadays commonplace in VR ap-

plications and games. Up to now their usage is mostly

predefined by scene authors, but in principle many of

those effects are accessible and modifiable at run-time.

The effects we look at are not only high level effects

like depth of field, heat haze, high dynamic range ren-

dering, or lens flare, but also simple changes of bright-

ness, contrast, color balance, and basically everything

to change the appearance of the scene. The potential

of controlling such effects dynamically in an applica-

tion is rarely used, because there is no universal and

real-time interactive access to most of them. Author-

ing tools available for games and some VR-systems al-

low scene creators to place and test effects of a scene,

but do not provide for a general and intuitively con-

trollable effect integration. They help to create scenes

and introduce some dynamics via scripts, but they do

not provide run-time access and effect control for the

scene.

An analogy to our effect control concept from the-

ater and stage performances is the light designer and

the light board operator. The operator is able to con-

trol lighting and special effects with sliders and but-

Permission to make digital or hard copies of all or part of

this work for personal or classroom use is granted without

fee provided that copies are not made or distributed for profit

or commercial advantage and that copies bear this notice

and the full citation on the first page. To copy otherwise,

or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

tons. He can use one slider to control multiple effects,

preprogram spot locations, and fade between effects.

Usually a fixed schedule is prepared by the light de-

signer. But at live performances the operator has to

instantly react to the stage and audience and activates

appropriate effects. As we look on interactive VE’s,

this live performance case is what we aim at.

Our vision is to create an interface capable of influ-

encing the scene’s appearance via many implemented

effects. Operators of this interface only have to know

what the effects can do, how they can be influenced,

which user reactions can be expected, and which mood

they might create - like in the light board case. Such

an interface is not only useful for human control; it can

be as well used for automated story engines or can be

connected to user assessment systems to automatically

react to the users state. Our system is not limited to vi-

sual effects, but as the visual effects were the first to

be fully implemented, this paper concentrates on the

visual part of the work.

The reduction of the brightness of the sky, for example,

is achieved in our system by selecting the sky object,

adding a brightness effect from the list of available ef-

fects, and reducing the brightness value via a slider.

Other examples, which can be applied in a similar way

are: making waves and clouds move faster, fading to

night lighting conditions (by moving one slider which

controls many effects), introducing fog, and correlat-

ing the inverse distance to a house to a weather change

or a local glow effect on that house.

This paper presents our concept and implementation

of a system for such a dynamic effect based scene ma-

WSCG 2010 FULL Papers 49

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace at University of West Bohemia

https://core.ac.uk/display/295558212?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


nipulation. We introduce related work in Section 2 and

give an overview over the whole system in Section 3.

Section 4 introduces different types of effects and in

Section 5 we present the implementation of the sys-

tem. Section 6 lists some performance measurements

for different effect usages, and in Section 7 a summary

and outlook is given.

2 RELATED WORK
Various fields and methods informed the concept and

the resulting system presented in this paper. The most

important of them are discussed in the following. A

major feature of our approach is the manipulation of

different kinds of effects using a general interface.

Conrad et al. introduced a tuner application for vir-

tual environments to be able to manipulate several as-

pects of virtual environments via a GUI [2]. Modifi-

able parameters were object transformations, material

properties, light source properties, and selecting the

navigation metaphor (fly, drive, and walk). Conrad et

al. use a fixed set of modifiable parameters. In our

approach we want a more general and extendable so-

lution, where new effects can be added easily.

To add effects at run-time, we have to be able to ac-

cess the scene’s objects. There exist many approaches,

which allow such an access on the authoring level.

[5] introduces an in-scene immersive authoring tool,

where authoring takes place in the running system. [9]

describes an easy to use rapid VE development envi-

ronment. Multimodal authoring approaches like [1, 4]

further allow the composition of multimodal scenes.

As we plan to use effects of other modalities, we

adopted the concept of a single object keeping the in-

formation for all modalities from these approaches.

The Listen project [3] introduces manipulating audi-

tive parameters in an audiovisual scene graph for re-

stricted zones in the scene. This enables authors to

create different auditive spaces in different parts of a

real or virtual room. We use this concept to apply our

effects to run-time definable spatial areas in the scene.

As we intend to use semantically meaningful objects

in our scenes and the objects can contain semantic in-

formation, we oriented on current findings of this area

for structuring the scene and its semantic information.

[6] and [7] present examples of semantically extended

scenes.

Another closely related field is game authoring and

in game effects. Most game engines support object

and special effect access on the authoring level. Some

game engines allow dynamic effect behavior for some

effects via scripts. Game effects are generally not run-

time changeable. Examples include the Unreal editor

for the Unreal Engine (Epic Games), which enables ef-

fect types like full-screen post-processing, particle and

audio effects. These effects are realized in separate

Figure 1: System overview

modules of the Unreal Engine. The effects can be ac-

cessed via the scripting language, but lack an uniform

and intuitive access. The Source engine [8] uses a two

step post-processing system for high dynamic range

rendering and a color adjustment step. The color ad-

justments are made available for authors and are baked

into game nodes for final game-play where they can-

not be changed anymore. We found that today’s game

editors and engines do not provide for the generality

of effects and run-time accessibility needed for our

main purpose: to change the multimodal appearance

and impact of the scene dynamically and uniformly.

[10] use non photo realistic rendering (NPR) tech-

niques to create abstract views of 3D scenes. They are

able to apply different NPR styles for different objects

to emphasize one or more objects, which is compara-

ble to our per object post-processing.

The introduced effects and effect mechanisms in Sec-

tion 4 are not new and have been used in several games

and VE’s. Our contribution to using effects is the

multi-pipe implementation, the mapping of technical

to intuitive parameters, the per object post-processing

effects, the general fading mechanism, and the flexible

effect assignment and combination.

3 SYSTEM DESCRIPTION
Our System concept can be structured in three parts:

The scene control level is the high level part, which

lets moderators, engines, and authors easily modify

the scene (middle and right part of Figure 1). The ef-

fect configuration level is a medium level, where ef-

fects and effect mappings can be defined (“EFFECTS“

box in Figure 1). In the low level the effect types

and the scene control with the per object effect manip-

ulation are implemented (implementation level, see

small squares and scene control extension in Figure 1).

The scene control level is discussed in Sections 3.1 -

3.4 and the effect configuration level in Section 3.5.

In Section 4 the effect types or effectors, as they are

called in the following, are described.

The main goal of our system is to enable dynamic run-

time assignable and changeable effects on a VE scene.

On the scene control level there are three important

questions that need to be answered when adding an ef-

fect to the scene. First, where do we want to apply the

WSCG 2010 FULL Papers 50



effect to (object/scene part selection). Second, which

effects are to applied (effect selection). Third, how and

when do we want to apply them (effect transition, ef-

fect timing).

To choose where we want to assign the effects to, or

which part of the scene should be affected by the ef-

fect, the scene has to be accessed in some way. This

interface to the scene is called scene control in the

following. On top of that scene control, we intro-

duce methods to help the easy handling of manipulat-

ing complex scenes and effects (box in the upper cen-

ter of Figure 1). The more important of those meth-

ods are fading, preparameterized effects, groups, and

a preselection capability. These techniques allow fast

and complex effect manipulation and define how and

when to apply the effects, which is especially impor-

tant for live performance and automated scene control.

The following sections describe the introduced steps in

more detail.

3.1 Scene and Effect control
For intuitive and run-time assignable effects an inexpe-

rienced user should be able to select a part of the scene

and assign an effect from a list of implemented effects

to them. However, for which parts of a scene is assign-

ing effects reasonable? The first case of entities we

identified, are semantically meaningful objects in the

scene (like sky, buildings, and trees). Which objects

are meaningful and which granularities to use, heavily

depends on the scene and the application. A second

case where applying effects is important in our opin-

ion, are semantic spatial areas in the scene. Such areas

are volumes, which do not have a direct visual rep-

resentation. Examples for effects on areas are a cool

scene appearance around a specific house, brightness

on the beach, or a greenish look in a forest.

In our system, objects and areas can be structured in

a tree hierarchy and each of these objects or areas can

hold multiple effects. The implementation of this part

has to be able to extract and manipulate objects from

the scene, it has to provide areas, and it has to realize

the connection between the effects and the objects (see

Section 5.3).

After we know where to place an effect, we have to

decide which specific effect is to be applied. The con-

trol over the effects should be equally high level. For

choosing an effect, we only need to know what the

effect does (name and description) and how we can in-

fluence its behavior (parameters). It is not important

at that point whether the effect is realized via shaders,

post-processing or manipulating OpenGL states. Our

interface for selecting effects is an effect pool with

descriptions of effects and parameters. All currently

available effects in the system are in that pool and can

be arbitrarily added to objects.

3.2 Preparameterized effects and groups
Most effects can be customized via parameters, for ex-

ample red, green and blue parameters that adjust a sim-

ple RGB color balance effect. Because of the lack of

time for adjusting the parameters online and the need

to access some previously optimized parameters, pre-

definable settings are additionally required. In our sys-

tem preparameterized effects allow users to store an

effect with a specified set of parameter values. The

preparameterized effects can be created anytime while

experimenting with the parameters of an effect. They

can be applied to objects like any other effect.

Our second method to enable an intuitive and quick ef-

fect handling are the following grouping mechanisms:

Object groups allow us to add an effect to multiple

objects at once. For example, say we want to modify

the color of sky and water simultaneously. An object

group holding the sky object and the water object is

created and an effect is added to this group. Effect

groups allow us to add multiple effects to an object or

an object group. They make it possible to switch or

fade all effect members on and off together. For order

dependent effects, like post-processing, an effect order

can be defined. Multi-object effect groups allow us to

assign multiple objects with one or more different ef-

fects. They can be used for complex effect settings like

to represent different weather situations. A dark rainy

day multi-object effect group might combine dark sky,

high waves, grey water, dull landscape (low satura-

tion), and rain on all outdoor objects, which can be

switched or faded as one. Object and multi-object ef-

fect groups are, because of their reference to specific

objects, scene dependent. Effect groups and preparam-

eterized effects can be shared between scenes.

3.3 Effect preselection
Not all effects are a good choice at all times or for all

places and objects. Therefore, the number of avail-

able effects can be reduced per object, area, or by time

constraints. This gives a live operator or an automated

process the simplification that only effects that make

sense at the current place and time are possible to se-

lect. Those restrictions and context dependent effects

have to be prepared as an authoring step using the

scene control, areas, and groups.

3.4 Effect intensity and fading
Being able to switch effects on and off at run-time for

arbitrary objects is already a valuable improvement

for manipulating a scene. Often, however, a subtle

fade in, fade out, or fade between effects is required.

When adding or removing effects at run-time, fading

is in most cases preferable, as smooth changes are per-

ceived as more natural. One example is slowly intro-

ducing a cold scene look by a darker and bluish ap-

pearance of the landscape and sky or the simulation of

WSCG 2010 FULL Papers 51



Figure 2: First row: Effects in a marketplace VE scene (left to right): Fog, bleach bypass, bloom, rain. Second row:

Island scene (left to right): a) different brightness adjustments for water, land, and sky, color balance on the whole scene,

sunset sky; b) no landscape textures, random gray tone per face, edge enhance, rain; c) bloom on landscape, different

color balance and brightness effects on landscape, water, and sky; d) daylight sky, adjusted landscape detail shader.

a cloud covering the sun by fading out a glow effect

and fading in a low brightness effect. Another appli-

cation of fading is, when different areas of the scene

should have different appearances. When moving over

the border, fading between the two appearances is re-

quired.

Implementing the fading capability involves being

able to manipulate an effects intensity without altering

the other effect parameters. The effect intensity

defines the range of the full effect to some zero

effect. Directly fading between two effects is only

possible, if the two effects can exist simultaneously.

For this kind of fading the intensity of the first effect

is lowered and the intensity of the second effect is

raised over a defined time interval. Fading is simple

to realize for post-processing effects and some object

shader effects, because they can easily be mixed

with the original scene to an adjustable degree. For

other effects the intensity mapping can be more

complicated, but the generic fading capability for all

effects exceeds the effort spent here.

3.5 Effect definition and mapping

The configuration layer in between the scene control

interface and the implementation has two sub-layers:

the definition of the effects to be used in the interface

and the mapping of the parameters of the implemen-

tation to high level parameters. The mapping also in-

troduces descriptions of effects and their parameters.

The effect definition holds resources like shaders and

textures and combines them to form an effect. All nec-

essary functions to easily create and configure effects

are provided by the implementation layer (effectors).

The effect definition part requires shader and script

programming and is intended for effect artists.

The effect mapping can directly assign, combine, or

modify internal parameters (e.g. uniforms) to form

the final effects parameters. Descriptions, effect name,

and parameter names to be seen in the final effect are

supplied here. The mapping part requires only sim-

ple script programming and is, therefore, easily ad-

justable. It is intended to separate the technical for-

mulated and parameterized effects from the final ef-

fects, which use meaningful parameters with appropri-

ate ranges for their intuitive control. Effect definition

and mapping build together a complete effect, which

can be accessed from the effect pool.

4 EFFECTORS AND THEIR EFFECTS
Effectors are the implementations of effects or types of

effects with the same implementation base. Effectors

encapsulate the system internals needed for an effect

type and they have to provide everything to assem-

ble the effects in the effect definitions. The shader

effector, for example, provides the interface for all

shader based effects. Effectors can control the ren-

dering pipeline, if necessary, and they are aware of

restrictions of the system or restrictions regarding the

coexistence with other effectors. In this section three

effectors for a large number of possible visual effects

are introduced. Examples of effects from these effec-

tors can be seen in Figure 2. Effectors for ambient

lighting, navigation effects, and auditive effects are

currently under development.

4.1 Post-processing effector
Post-processing effects are a very powerful type of

visual effects. They adjust the appearance of the

scene with image processing techniques. Up to

now, post-processing has mainly been used on the

whole visible display area. In our implementation,

it can also be applied on a per objects basis to better

WSCG 2010 FULL Papers 52



Figure 3: Scene without (left) and with (right) per object

post-processing effects for sky, water, ground, and chapel

match our object based effect approach. Allowing

different post-processing pipelines for sky, ground,

and water surfaces already permits us to refashion

the appearance of the scene more efficient than full

screen post-processing. Figure 3 shows an example of

per object post-processing. Post-processing effects of

this kind have the advantage over shader effects that

they are universally applicable, i.e. they can be added

to any object in the scene and will have the intended

effect, where shader effects often rely on specific

geometry and vertex properties. The implementation

is done via frame buffer objects and specialized

shaders and is usable for multiple graphics pipes (see

Section 5.6). The passes, shaders, uniforms, and effect

parameters are defined and assembled to form the

specific effects in the effect definition and mapping.

Our post-processor system is highly flexible. Each ob-

ject or area can have several post-processing effects

and each post-processing effect can incorporate sev-

eral post-processing passes. Each pass has a post-

processing shader, up to six input textures, an arbitrary

number of uniforms and a result texture. Passes can be

stacked and the results of different passes can be com-

bined, i.e. the passes can be laid out in a directed graph

structure, which allows for very complex effects. A

simple two pass example is a bloom shader, which ex-

tracts all bright pixels in a first step and applies a blur

shader to the extracted regions as a second step.

Some already implemented post-processing effects are

color balance, bloom, blur, depth of field, edge de-

tection, edge enhance, tone mapping, rain, and some

sketch effects like hatching. An important group of

post-processing effects, which can easily change the

impact of an object, are color manipulation effects.

We have implemented two approaches to modify the

coloring of the scene. Our color grading effect as-

signs each color value a different color via a predefined

color map. Combining simple post-processing effects

like color balance, brightness, contrast, saturation, and

gamma adjustment can produce similar but not as ex-

act results to the mapped color grading approach. The

advantage of this approach is the dynamic manipula-

tion possibility of all components.

Realizing effects via post-processing has also some

disadvantages. A problem with post-processing for

stereo displays is that brought in content like a texture

appears only on the screen plane. A rain effect, for

example, which is believable on mono displays, can

not be used for a stereo setting because of this effect.

Our solution is to introduce a pipe dependent shift of

the images to produce an eye offset. Using this, the

seen plane can be moved before or behind the viewing

plane, but it still appears as plane. In our rain post-

processing effect five rain planes with different depth

are used to simulate the rain in stereo. Each rain plane

uses 5 differently sized versions of a rain texture which

are moved with different speed over the screen using a

post-processing vertex shader.

4.2 Shader effector
Object shader effects are common in most VR-systems

and game engines. They are mostly used to realize

specific surface materials and moving surfaces like

water and clouds. Many effects which are usually im-

plemented as normal shaders can be created via the per

object post-processing effects in our setup. Whenever

vertex based information is needed (position, normals,

texture coordinates) a conventional shader has to be

used. Being dependent on geometry, many shader ef-

fects are less generally applicable than post-processing

effects. Because of that, shader effects are mainly used

for the basic appearance of our scenes, which can be

modified by the parameters of the shader effects.

The shader effector provides a means to simply add

shaders and supply them with input textures and uni-

form variables. This makes it possible to easily inte-

grate any existing GLSL shader in a few minutes. Our

current implementation allows only one object shader

effect per object. Most multi-pass shaders like non

photo-realistic shader effects can be created by using

one object shader and several post-processing shaders.

Currently integrated shader effects are: animated wa-

ter, sky, and grass, as well as a level of detail terrain

shader and materials like plastic and glass.

4.3 GeoState effector
GeoStates encapsulate OpenGL graphics properties

for the geometry (GeoSets) in OpenGL Performer

style scene graphs. The GeoState of an object’s

geometry can be overridden with a GeoState effector.

The effect definition and mapping defines which prop-

erties of the GeoStates are to be overridden and which

property values should be applied instead. GeoState

effectors can affect the following states: lighting,

texture, fog, wireframe, highlighting, material, alpha

function, transparency, decals, and light sources.

The fading of most GeoState effects is more problem-

atic than for post-processing and shader effects. When

exchanging textures, enabling highlighting, etc., there

is no simple way to avoid a sudden change. One pos-

sibility, which we use for texture fading, has following

WSCG 2010 FULL Papers 53



Figure 4: Scene Control GUI: Left: Object and effect

control. Right: add a new effect.

process. We start from a single textured object without

a shader. As a first step, we add a shader effect with

two configurable textures, the one that was present and

a new one. We fade from the first to the second tex-

ture via the shader effect’s intensity. In the mean time a

GeoState effect with the new texture is applied (hidden

by the shader) and finally the shader effect is switched

off again. We use this technique to fade between dif-

ferent sky textures for different times of day or weather

conditions.

5 IMPLEMENTATION

This chapter gives an overview of the implementation

of our system. The VR-system dependent parts of our

implementation use Avango [12] which is based on

OpenGL Performer [11]. Future adaptions for Avan-

goNG and VRJuggler (using OpenSceneGraph) are

planned. Section 5.1 describes the implementation of

the scene control interface and Section 5.2 the imple-

mentation of the effect control layer. Sections 5.4– 5.7

lay out the implementation of the effectors and neces-

sary adjustments to the render pipeline.

5.1 Interface

The scene control interface is realized with XML-

RPC. The implementations of objects, effects, and

parameters define RPC functions for all functionali-

ties of the interface. On the remote side, handles of

the objects, effects, and parameters are used to ac-

cess their interface functions. The modules for fad-

ing, groups, and preparameterized effects provide their

functionalities also as an XML-RPC interface. Exter-

nal applications like storytelling or user state estima-

tion can use the complete XML-RPC interface. The

GUI which was implemented for moderators and au-

thors also supports the complete interface inclusive

fading and groups. The GUI is intended for control-

ling the scene during run-time and represents the light

control board from our analogy in the introduction. A

screen-shot of the GUI can be seen in Figure 4. The

scene control GUI has three colums for displaying ob-

jects, effects, and effect parameters respectively. If an

Figure 5: Extension of the scene graph

object is selected, its effects are displayed in the effects

column. If an effect is selected or added, its parame-

ters are displayed in the effect parameter section.

5.2 Effect definitions and mappings
The effect definitions are currently implemented in

Scheme, which is the scripting language of Avango.

We plan a reimplementation using Python to be more

easily adaptable to other systems. To create an effect

of a specific effector type, a C++ instance of this ef-

fector is created and initialized by loading the effect

definition via its name. Each effect is located in a

file system directory containing effect definition, ef-

fect mapping, descriptions, and resource files.

5.3 Scene control implementation
The main idea in our scene control implementation is

to use the existing scene graph of a given VR-system

and extend it to match our scene concept of seman-

tic objects and effects per object. As scene graphs are

extensible, the required nodes can be derived from ex-

isting nodes. The scene abstraction is mapped to the

OpenGL Performer style scene graph as follows: Ob-

jects are inherited from transformation nodes (DCS) in

the underlying scene graph. Each object has its visual

contents as a special child (VC in Figure 5). Our im-

plementation also allows for other content types, like

auditive, haptic, or physics based content which can be

rendered by the respective engines. The actual visual

appearance of an object can be an arbitrarily deep sub

scene graph or a loaded model (LF in Figure 5). Child

objects and areas are also children of the transforma-

tion node (A1 and O2 in Figure 5). Other children

than child objects and content are not allowed in the

structure. Effects are not implemented as scene graph

nodes, they are properties of the object node.

For applying shader and GeoState effects, special

override nodes are placed between the VC node and

the actual content (OG and OS in Figure 5). They

allow to override the GeoState and shader settings of

all underlying content geometry. The VC nodes also

hold a post-processing ID to be used in object based

post-processing (see Section 5.6).

WSCG 2010 FULL Papers 54



5.4 GeoState effector
The GeoState effector is implemented using override

nodes, which partly use the OpenGL Performer

GeoState override functionality and in some cases

manipulate OpenGL states directly. When a GeoState

effect is activated, an override node is placed above

the geometry of an object. This allows GeoState

effects to change one or more states of this geometry.

5.5 Shader effector
The shader effector is implemented using a shader

override group, which activates the shader for all un-

derlying geometry. The shader uniform variables to

manipulate the shader can be mapped directly or can

be further processed to form effect parameters. Stan-

dard uniforms variables like time, user position, and

light source positions are automatically provided for

all shader effects.

Complex material properties like reflection and refrac-

tion may need additional render passes. An example

is a water shader with water reflection and water re-

fraction, which requires two additional render passes.

In those cases, the scene or a part of the scene is ren-

dered before the main render pass. For example, an

upside down version of the scene is rendered for re-

flection which is stored in a texture. The shader effect

can use this texture afterwards like any normal shader

input texture.

5.6 Post-processing effector
The post-processing effector requires a more elaborate

extension to the VR-system. The scene is rendered

into a frame buffer sized texture using frame buffer

objects (FBO) for each graphics pipe. A shader is then

applied on a 2D rectangle holding this texture. The

result is again rendered to a texture or, if the last post-

processing effect has been reached, the final result is

rendered in the frame buffer. In fullscreen mode, the

post-processing shader is applied to all pixels of this

texture. In the object based case, all objects with post-

processing effects are assigned an ID. This number

is used to mask the object in the stencil buffer dur-

ing the rendering of the scene into the texture. The

stencil/depth buffer is rendered in an additional tex-

ture using frame buffer objects, which can be accessed

in the shaders. Only pixels with the according value in

this texture are changed by the shaders. This way the

shaders only affect the visual geometry of the masked

objects.

In each shader pass the first two texture units are as-

signed to the color texture of the previous pass and the

stencil/depth texture. The stencil/depth texture is only

used for reading the depth and the object mask values

during the post-processing. Six additional textures (as-

suming 8 texture units) can be freely used by the spe-

cific shaders. The number of simultaneously displayed

per object post-processing effects is limited by the size

of the stencil buffer. As a stencil buffer of 8 bit is

available on most systems, this would limit the objects

for holding separate post-processing effects in a scene

to 255. To relax this limit we dynamically reassign

the stencil values for the currently visible objects with

post-processing effects. 255 visible objects with post-

processing should suffice for most scenes and view-

points.

5.7 Multi-pass rendering

Shader and post-processing effectors need to modify

the render behavior of the VR-system. Each graphics

pipe can have several pre-render passes, which render

the scene with different settings and one main render-

ing pass. The pre-render passes are passed as FBO

textures. These textures can be accessed by shader ef-

fects. The pre-render passes are only activated, if an

effect is currently using them. The main render pass

incorporates either the post-processing rendering pro-

cess described earlier or a standard scene rendering. In

the post-processing case, the main render pass renders

the scene normally, then applies a post-processing pass

per post-processing effect and object holding such an

effect. The last post-processing pass writes to the

frame buffer.

6 SYSTEM PERFORMANCE

Among several test scenes the system has been tested

with three larger scenes. Two of them were conven-

tional scenes adapted to the extended system. The

adaption needed following steps: Splitting the scene

into semantic parts to be used in the scene control, us-

ing these parts as visual content of our enhanced object

nodes, and adding areas. The whole adaption process

of the scenes has been managed in several hours.

An island scene (seen in the lower row of Figure 2)

was designed for our system and uses advanced shader

concepts and incorporates many areas. The main com-

ponents are a 2.5km2 terrain mesh generated from

a 512*512 point height-map and using a 4096*4096

pixel base texture rendered with Terragen, a 5km2 wa-

ter plane, and a sky dome with a 2048*768 pixel base

texture. The scene is currently populated with some

buildings and billboard trees. The complete scene has

approximately 450k polygons. For the landscape a

LOD detail shader effect that uses textures for grass,

sand, rock, and forest is used. The water is realized

via a multi-pass watershader effect.

Our hardware setup is a dual Opteron HP XW9300

workstation with two synchronized Nvidia Quadro

4600 graphics boards. Our L-Shape display is driven

by two Projectiondesign active stereo projectors,

which are fed with two graphic pipes each.

WSCG 2010 FULL Papers 55



1Pipe 2Pipe 4Pipe

1. Basic island scene (Avango) 81fps 62fps 50fps

2. with our extensions 81fps 61fps 50fps

3. 2. + 2 render passes 65fps 35fps 25fps

4. 3. + water & land shaders 60fps 27fps 22fps

5. 4. + medium effect usage 58fps 25fps 20fps

6. 4. + heavy effect usage 55fps 22fps 16fps

Table 1: Performance for 1, 2, and 4 pipes.

Our measurements are taken for a single, a two, and a

four pipe setup. A predefined path in the scene is used

to generate an average frame rate. Table 1 shows the

performance for different configurations from the bare

scene to heavy effect usage. The heavy effect usage

performance run includes 5 full screen post-processing

effects, 15 post-processing effects on currently visible

objects (landscape, sky, water), and several shader and

GeoState effects. The medium effect usage run is done

with 2 full screen and 5 currently visible object based

post-processing effects.

The small difference of the first and second run show

the low performance impact of our system extension.

The high performance penalty for 4 pipes in run 3 to

6 is mainly caused by the two additional render passes

(synchronization issues). To reduce this effect, we in-

tend to introduce optimizations of the graphics pipes,

like assigning processes to processors and sharing GL

context for the pipes for the left and right eye, to re-

duce the texture load per PCIe interface. Nevertheless,

the relatively small differences of run 4 to 6 show that

high quality scenes and a large amount of effects are

possible using a 4 pipe display.

7 CONCLUSION

We introduced a system, which is capable of dynam-

ically manipulating a VE scene by adding effects for

specific objects, areas, or the whole scene. The imple-

mented system provides an intuitive interface allowing

moderators, authors, or automated systems to modify

the scene online using all available effects. It also pro-

vides an internal effect definition and mapping inter-

face, which makes it possible to easily create new ef-

fects for already implemented effectors, like shaders or

post-processing, and which maps technical variables

to meaningful effect parameters. We introduced and

discussed our implementation of the system, currently

supporting Avango as a VR-system.

Our implemented visual effects have demonstrated the

effectiveness and flexibility of the concept and our im-

plementation. The full potential of the system for mul-

timodal and varying content will show, when more

modalities are supported and complex multimodal ef-

fect combinations can be generated. Effect perfor-

mance tests with a complex scene showed that our im-

plementation can enhance scenes with many real-time

changeable effects without substantially limiting the

performance.

Future work includes effects for the auditive and hap-

tic modality, as well as the addition of several external

effects like generating wind and ambient lighting. We

are currently working on introducing a mapping of ef-

fects to moods they might produce. As a result of that,

a target mood selection will cause appropriate effects

and parameterizations to be used. As the impact of

effects depends on scene context and users, this map-

ping is a big challenge. Integrating such a system with

user assessment systems will make it possible to di-

rectly react with specific effects to the current state of

the user.

REFERENCES
[1] M. Billinghurst, S. Baldis, L. Matheson, and M. Philips. 3d

palette: A virtual reality content creation tool. In Proceed-

ings of the ACM Symposium on Virtual Reality Software and

Technology, pages 155–156, Lausanne, Switzerland, 1997.

[2] S. Conrad, H. Krüger, and M. Haringer. Live tuning of virtual

environments: The vr-tuner. In Virtual environments 2004.

10th Eurographics Symposium on Virtual Enviroments, pages

123–128, Grenoble, France, 2004.

[3] G. Eckel. Immersive audio-augmented environments - the lis-

ten project. In Proceedings of the 5th International Conference

on Information Visualization (IV2001), 2001.

[4] M. Green. Towards virtual environment authoring tools for

content developers. In VRST ’03: Proceedings of the ACM

symposium on Virtual reality software and technology, pages

117–123, New York, NY, USA, 2003.

[5] R. Holm, E. Stauder, R. Wagner, M. Priglinger, and J. Volkert.

A combined immersive and desktop authoring tool for virtual

environments. In VR ’02: Proceedings of the IEEE Virtual Re-

ality Conference 2002, page 93, Washington, DC, USA, 2002.

[6] E. Kalogerakis, S. Christodoulakis, and N. Moumoutzis. Cou-

pling ontologies with graphics content for knowledge driven

visualization. In Proceedings of the IEEE Virtual Reality Con-

ference 2006, pages 43–50, 2006.

[7] M. E. Latoschik, P. Biermann, and I. Wachsmuth. Knowledge

in the loop: Semantics representation for multimodal simula-

tive environments. In Smart Graphics, volume 3638/2005 of

Lecture Notes in Computer Science, pages 25–39. 2005.

[8] J. L. Mitchell, G. Mc Taggart, and C. Green. Shading in

valve’s source engine. In SIGGRAPH Course on Advanced

Real-Time Rendering in 3D Graphics and Games, 2006.

[9] X. Qian, Z. Zhao, and R. Thorn. Rapid development of vir-

tual environments a systematic approach for interactive de-

sign of 3d graphics. In WSCG 2007, SHORT COMMUNI-

CATIONS PROCEEDINGS I AND II, pages 117–124, W Bo-

hemia, Plzen, CZECH REPUBLIC, 2007.

[10] N. Redmond and J. Dingliana. A hybrid technique for creat-

ing meaningful abstractions of dynamic 3d scenes in real-time.

In WSCG 2008, FULL PAPERS, pages 105–112, Univ W Bo-

hemia, Plzen, CZECH REPUBLIC, 2008.

[11] J. Rohlf and J. Helman. Iris performer: a high performance

multiprocessing toolkit for real-time 3d graphics. In SIG-

GRAPH ’94: Proceedings of the 21st annual conference on

Computer graphics and interactive techniques, pages 381–

394, New York, NY, USA, 1994.

[12] H. Tramberend. Avocado: A distributed virtual reality frame-

work. In Procedings of IEEE Virtual Reality 1999 (IEEE VR

1999), pages 14–21, 1999.

WSCG 2010 FULL Papers 56


	!_Full.pdf
	B73-full.pdf


