
Efficient Non-Linear Editing of Large Point Clouds

Fabian Aiteanu Patrick Degener Reinhard Klein

Universität Bonn
Institut für Informatik II - Computergraphik

D-53117 Bonn, Germany
{aiteanu, degener, rk}@cs.uni-bonn.de

ABSTRACT
Editing 3D models is often performed on triangular meshes. We generalize editing operations based on differential coordinates
to work on point clouds without explicit connectivity information. This allows a point cloud to be interpreted as a surface
or volumetric body upon which physically plausible deformations can be applied. Our multiresolution approach allows for a
real-time editing experience of large point clouds with 1M points without any offline processing. We tested our method on
a range of synthetic and real world data sets acquired by laser scanner. All of them were interactively editable and produced
intuitive deformation results within few minutes of editing.
Keywords: Point clouds, non-linear editing, real-time, differential coordinates, subsampling.

1 INTRODUCTION

Virtual 3D objects are a common asset for movies and
games. In former years those were predominantly cre-
ated manually, but in later years it has become more
common to scan real objects and then edit and modify
their virtual counterparts. For some application areas,
e.g. structured light scanning, data is available only
as point clouds, though editing 3D models is predomi-
nantly performed on triangular meshes. Despite ongo-
ing efforts in the area of surface reconstruction, trian-
gulating point sets remains computationally demand-
ing and is error-prone in the presence of noise and out-
liers. Additionally, point clouds are usually sampled
much denser than meshes and thus contain amounts of
data, which are several times larger than for compara-
ble meshes. This in turn can negatively influence the
interactivity of editing operations.

To address this problem specialized editing ap-
proaches for point sampled models have been
proposed. However, to handle the larger complexity
of point clouds, these methods resort to relatively
simple deformation models like transformation in-
terpolation or linear models based on differential
coordinates. As recently analysed by Sorkine and
Botsch [SB09], a common problem of these simple
deformation models is a counterintuitive deformation
behaviour. For deformation of triangle meshes this
problem is well known, and subsequently non-linear
deformation models have been developed that do

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the
first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.

not show these problems. The higher intuitivity
though comes at the cost of a significantly higher
computational effort.

Space deformations are a different approach towards
editing operations. They can conceptually be calcu-
lated quickly, but lack the ability to respond to the
structure of the edited model. Points which are far
apart in geodesic distance can be close in space and
thus be influenced by editing operations unintention-
ally. To overcome this limitation, cage-based tech-
niques try to separate such geodesically distant regions
from each other, but the user is required to create or at
least adjust the cage manually. In contrast, our solu-
tion does not require any manual intervention.

We present a novel method to enable direct real-time
editing of point clouds without the need for prior

Figure 1: Armadillo model after 3 editing steps:
head has been twisted by 45◦, left arm twisted by
90◦, right arm bent by 30◦.

WSCG 2010 FULL Papers 105

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace at University of West Bohemia

https://core.ac.uk/display/295558203?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

meshing. Our method shows intuitive, physically
plausible deformation behaviour and does not require
manual preprocessing like cage construction. It is
based on geodesic distances only and avoids the
problems of space deformation based approaches
described above. Using our method, large point
sampled geometry (Figure 1) can be edited as a whole
at interactive frame rates.

In summary our contribution is this:

• We present an approach for editing point clouds
while preserving local surface details. Due to an
underlying non-linear deformation model, the ob-
tained deformations are physically plausible, even
for large handle transformations.

• Our algorithm does not pose any specific assump-
tions upon the structure of the point cloud being
edited. The input requires solely the vertex posi-
tions in 3D space, but no explicit connectivity in-
formation. The point cloud may be irregularly sam-
pled or contain outliers. It is even possible to han-
dle point sampled volumes.

• As point clouds are usually sampled much denser
than comparable meshes, we present a means
of performing the deformation calculations on a
coarse scale and transfer the results to the fine scale
representation of the point cloud at interactive
frame rates. To the best of our knowledge, no other
system has been presented which could perform
similar non-linear deformations without offline
processing.

1.1 Related Work

As mentioned in the introduction, several methods ex-
ist for editing meshed input data, but which are not
directly applicable to point clouds. In the following
we concentrate on methods targeting point clouds.

The challenge of editing point clouds interactively has
been pursued in a number of papers. In an early work
of Pauly et al. [PKKG03] they deform point clouds in
real-time using linear interpolations between the han-
dles. Miao et al. [MFXP08] use a more sophisticated
method with differential coordinates. Like all linear
methods they both produce counterintuitive results for
large deformations.

Especially for editing large models the required
storage can exceed the available main memory, or
the computation time can become prohibitively high.
It is thus often necessary to use a simplified model
upon which the editing is performed. Wand et al.
[WBB+07] describe a method to visualize data sets
with a size of several gigabytes in a multi-resolution
out-of-core method. The direct editing operations are

limited to simple translations or deletions of vertices.
More complex operations can only be performed in
offline computations. Boubekeur et al. [BSS07] use a
streaming method to perform an offline simplification
of a large mesh into a smaller point cloud, which
can then be edited interactively. A second offline
streaming step applies the modifications to the original
mesh.

Wicke et al. [WSG05] use the concept of thin shells to
construct a network of so-called fibres on the surface
of a point cloud, which are then used to model and
calculate possible deformations. The fibres provide a
mesh representation at a coarse scale, and the defor-
mations are later applied to the detailed representation.
As both of the methods of Boubekeur and Wicke re-
quire time-consuming steps before and after the user
performs the actual editing, the user has to wait for the
post-editing steps to complete in order to view the fi-
nal result. We deem this unsuitable for ad-hoc editing,
because any corrections or further editing steps require
repeating the whole procedure.

In our method, the actual editing of the point cloud is
performed on a differential representation of its sur-
face. This has recently gained much attention in the
context of mesh editing. Sorkine and Botsch [SB09]
compare gradient-based methods and Laplacian-based
methods as the predominant methods used for differ-
ential representation-based deformations. They iden-
tify two classes: linear methods can provoke a counter-
intuitive behaviour for deformations, since they cannot
handle both rotations and translations of local frames
simultaneously, resulting in artifacts of different kinds.
Non-linear methods [BPGK06, SA07] solve these is-
sues, but are time-consuming to compute. The mesh
editing framework presented by Paries et al. [PDK07]
represents local frames using quaternions. By en-
forcing additional frame constraints they produce in-
tuitive results for translations, rotations and scaling.
Their non-linear approach is computationally demand-
ing and thus applicable only to medium sized meshes.
We generalize their approach to be applicable to large
point clouds.

Space deformations (see e.g. [HSL+06, XZY+07,
BPWG07, AOW+08]) are a different approach to-
wards editing operations. They do not directly manip-
ulate the points’ positions, but warp the space and thus
indirectly manipulate the points. The space deforma-
tions can conceptually be calculated quickly, but they
lack the ability to respond to the structure of the edited
model. Points which are far apart in geodesic distance
can be close in space and thus be influenced by edit-
ing operations unintentionally. To overcome this lim-
itation, Huang et al. [HSL+06] used a control mesh
enclosing the model to separate such geodesically dis-

WSCG 2010 FULL Papers 106

tant regions from each other. In their approach the user
is required to define the control mesh. In contrast, our
solution does not require any manual intervention.

The multiscale representation introduced by Pauly
et al. [PKG06] and extended by Duranleau et al.
[DBP08] encodes the displacement of points between
the representations at different scales. It allows to
edit the representation for a specific detail level
using a space warping function and then apply the
deformation to the other detail levels. This enhances
interactivity and controllability of the result, but still
has the mentioned limitations of space deformations.

Meshless methods, of which space deformations are
one specialization, provide further aspects. The phyx-
els proposed by Müller et al. [MKN+04] are used to
fill a volume and preserve it during editing operations.
The small amount of phyxels required to fill a volume,
allow for physically plausible deformations which can
be calculated quickly. However, as Müller et al. al-
ready mention, such volumetric approaches are not ap-
plicable to point clouds representing a surface.

1.2 Overview

First we present a brief explanation of the mesh editing
framework of Paries et al. [PDK07] in Section 2 as it
constitutes the basis upon which our work is built. Our
generalization to point clouds follows, including the
concepts developed to use the mesh editing framework
without the need for meshing the input data. In Sec-
tion 3 we explain our multiresolution method, which
allows editing point cloud data sets which are consid-
erably larger than comparable meshes. Although the
amount of data points may be up to two scales of mag-
nitude higher, our parallel GPU implementation still
provides several frames per second during editing op-
erations. We conclude this paper with an overview of
the results (Section 4) and our planned extensions for
the future (Section 5).

2 EDITING

2.1 Mesh Editing

As the underlying model for a mesh Paries et
al. [PDK07] employ a differential representation
of local surfaces. For each vertex in the region of
interest xi ∈ R they define an orthonormal local frame
Fi = (t1

i , t2
i ,Ni) with right hand orientation. Fi can be

interpreted as a rotation matrix and thus be expressed
in terms of a unit quaternion qi.

For each pair of adjacent vertices (i, j) in the mesh
M the difference between the quaternions is calculated
as q j

i = q̄i ·q j. During editing and user interaction the

mesh surface can be reconstructed from the differential
representation and the equation

qi ·q j
i = q j (1)

which is a linear system. Fixing a single unit quater-
nion qi0 is sufficient for getting a unique solution (ex-
cept for its rotation), by iteratively solving the remain-
ing equations.

Reconstructing the mesh solely based on the local
frames and ignoring the geometry can lead to unin-
tuitive results, because translations are not accounted
for. To overcome this, Paries et al. added constraints
which impede a change of coordinates of 1-ring neigh-
bors in the local frames Fi. They formulate the con-
straints as

qi(1,c j
i)

t q̄i = (1,x j− xi)t (2)

where c j
i := F−1

i (x j− xi) are the local coordinates of
x j in frame Fi.

User input consists of a set of handle vertices H which
specify additional frame constraints qconst

k and posi-
tional constraints xconst

k . Given those two sets of con-
straints, the frame differences q j

i and the local coordi-
nates c j

i , the constrained reconstruction problem is to
find a set of local frames ql and absolute vertex coor-
dinates xl for all vertices within the region of interest
R that satisfy Equations (1), (2) and

qk = qconst
k xk = xconst

k ∀k ∈ H. (3)

As the resulting equation system is overconstrained,
Paries et al. solve it in least squares sense using a non-
linear optimization procedure. They alleviate the com-
plexity issue by parting the original non-linear prob-
lem into several linear equation systems of which the
LU-matrices remain constant throughout one editing
step. Thus after specifying a region of interest and
editing handles, a precomputation step factorizes the
original matrices in parallel on the GPU. During the
actual editing the linear equation systems are solved
on the CPU with backsubstitution, which can be per-
formed at several frames per second even for medium
sized meshes with up to 100k vertices.

2.2 Editing Point Clouds

The intention to seek for a generalization of the editing
operations from mesh data structures to arbitrary point
clouds, comes from the observation that in practice
raw data from range scanning devices often is avail-
able only in form of 3D vertex coordinates. Depending
on the device, color information may also be available,
but it plays only a minor role for editing operations.

WSCG 2010 FULL Papers 107

Though advanced triangulation techniques like MLS
surface approximation exist, they are usually depen-
dant upon a specific structure of the point cloud, e.g.
a closed surface. Margins, outliers, or in general ar-
bitrarily distributed points pose severe problems. To
be more robust, most methods have the undesired ef-
fect of smoothing the surface represented by the point
cloud, thus degrading the quality of the data set. Fur-
thermore, the computation time for the triangulation
becomes notably high for large data sets.

Although the editing framework of Paries et al. relies
upon mesh data structures to ensure connectivity of the
vertices and to find a vertex’s 1-ring, the basic equation
systems are formulated without the need for an explicit
mesh. They do though require the definition of a local
neighborhood in order to calculate the local frames.
The simplest choice for a local neighborhood, which
comprises each vertex’s nearest neighbors in 3D space,
is sufficient for our needs and very fast to calculate.

In our approach we use the k nearest neighbors of each
vertex, which are computed in a pre-processing step.
To determine the nearest neighbors, we use an octree
to partition the point cloud, which can be calculated in
O(n logn) time. The choice of k was experimentally
determined, and may theoretically be any k ≥ 2, since
we need at least two neighboring points to define the
local frame for xi. In practice, choosing k too small,
like e.g. k = 2 leads to line-shaped disconnected com-
ponents, which are not treatable well as a surface by
the later algorithm steps. On the other hand, choosing
k too large linearly slows down all calculations which
iterate the nearest neighbors. We found k = 5 or k = 6
to provide a good tradeoff between speed and stabil-
ity, and it is also the average number of neighbors in a
regular triangulation.

Using only the initially found nearest neighbors for
each vertex can lead to non-symmetric relations, es-
pecially if the input point cloud is irregularly sampled.
This can prevent a complete traversation of the graph
induced by the nearest neighbors, and split it into sev-
eral seemingly disconnected components. Although
removing the non-symmetric neighbors reduces the
amount of data to process, it may lead to more frag-
mentation. Our choice of inserting the missing links to
create bi-directional nearest neighbors relations coun-
teracts the possible fragmentation. At the same time it
ties outliers to the main connected component(s). The
problem with auxiliary connected components which
do not include user-defined constraints is that they ren-
der Equation system (1)-(3) underdetermined, and thus
provide no stable solution. During the preprocessing
step these unconstrained components are detected and
removed from the editable part of the model.

2.3 Area and Volume Preservation

Volume preservation is a key feature used in mesh edit-
ing and has also been applied to point cloud editing
[MKN+04]. It is however not unambiguous how to
define this property, since a point cloud does not pos-
sess an inherent volume, as opposed to a closed mesh.
This is especially the case for point clouds originating
from single-image 3D capturing devices, which can
only capture one side of any given object at a time. As
our method strives to preserve the local neighborhood
of each point, the volume is only an affected property,
not one which is calculated or optimized.

In particular, if a surface is stretched using handles on
opposite sides, the surface is also enlarged in perpen-
dicular direction to preserve the local shape of each
point’s 1-ring. This is a rather counterintuitive be-
haviour, since most materials in nature exhibit the op-
posite behaviour of shrinking in perpendicular direc-
tion when stretched in the other direction (e.g. rub-
ber and metal). Nevertheless, auxetic materials exist,
which do enlarge in perpendicular direction (e.g. spe-
cial foams), and others which do not change their per-
pendicular size at all (e.g. cork). Our method can be
parameterized to exert any one of these elasticity be-
haviours by scaling the local frames qi in each itera-
tion before solving the equation systems, as detailed
in [PDK07].

3 SAMPLING

The matrix factorization step performed during pre-
computation is necessary to reduce the calculation
time during the actual editing of a model. We em-
ployed the SuperLU library [DEG+99] which is suited
well to decompose the sparse matrices. Although the
matrix size grows squarely with the number of han-
dle vertices, the sparsity leads to a computation ef-
fort which grows below quadratic. Nevertheless, from
100k vertices onwards this requires several minutes of
precomputation and eventually the matrix size grows
too large to be handled in main memory.

Since complex operations on large data sets are today
still limited in their speed by the available computa-
tion power, we devised a multiresolution scheme sim-
ilar to Wicke et al. [WSG05]. The time-consuming
solving of the Equation systems (1)-(3) is performed
on a coarse-scale subsample of the input point cloud,
and the fine-scale representation is then interpolated.
Pauly et al. [PGK02] survey different point based sim-
plification methods. For our subsampling we chose
a method from the category of hierarchical cluster-
ing methods, since they adapt well to point clouds
with varying point sampling densities. To generate the
subsamples, we use an octree partitioning the original

WSCG 2010 FULL Papers 108

point cloud. Taking the sample points from each leaf
of the octree allows us to handle arbitrary point clouds,
not only those representing implicit surfaces. At the
same time, areas of the original point clouds which
have a high sampling density will receive a higher
amount of sample points, thus preserving local details.

Calculating the nearest neighbors for the sample
points can be performed with the octree that was
already calculated. For some models like the dragon
model this can yield undesired connections between
points (Figure 2b), which cannot be considered
adjacent in the original, but become adjacent in the
sampled point cloud due to the lower point density.
In the work presented by Xu et al. [XZY+07] the
user is required to manually create a control mesh

Figure 2: a) Original point cloud with sample
points drawn in black. b) Sample points connected
using nearest neighbors. Wrong connections be-
tween originally separated parts are created due to
proximity. c) Calculating nearest neighbors on the
original point cloud with a breadth first search pre-
vents wrong connections.

which prevents such connections between originally
unconnected parts. Our connected sample points
are in effect similar to the control mesh used by
Xu et al., but we sought for an alternative working
without manual intervention. The idea is to find
the nearest neighbors in a geodesic sense instead
of the euclidean distance. As the geodesic distance
conceptually requires a surface to be applicable, using
the nearest neighbors relation of the original point
cloud satisfies this need, but still makes it applicable
to non-surface-like point clouds. With a breadth first
search (Algorithm 1) for each point in the original
point cloud, the geodesic nearest neighbors can be
found in O(n · r) time, where n is the number of
original points and r is the original-to-sample number
ratio. The result can be seen in Figure 2c.

After each iterative solving step for the basic equa-
tions, the new position p′i and normal n′i of each orig-
inal point is interpolated from the translations and ro-
tations of its nearest sample points:

p′i = ∑
s∈neighbors(i)

ws
i · (qs · ps

i + ps) (4)

n′i = ∑
s∈neighbors(i)

ws
i · (qs ·n0

i) (5)

with
ws

i =
1

|ps
i |

2 / ∑
s∈neighbors(i)

1

|ps
i |

2 (6)

where ps
i = p0

i − p0
s is the coordinate of point pi in the

local coordinate system of ps, and qs is the quaternion
describing the rotation of s from its original to its new
orientation. The weights ws

i account for a smaller in-
fluence of neighbors which have a greater distance.

We implemented this interpolation method on the
CPU first, but the involved quaternion multiplications
proved to be a limiting factor to the achievable

Input: point i0; number of sample neighbors to find
k; Samples S; Original nearest neighbors relation N
init queue q⇐ i0
init geodesic neighbors G(i0) = /0
repeat

j = q.dequeue()
for all n ∈ N(j) do

if n not visited then
q.enqueue(n)
mark n as visited

if j ∈ S then
add j to G(i0)

until |G(i0)| ≥ k or q = /0

Algorithm 1: Geodesic nearest sample neighbors
for a point

WSCG 2010 FULL Papers 109

Model # points # sample Subsampling Precompu- Equation Upsampling
points tation solving

Bunny 35k 100 4.0 0.1 0.001 0.003
Bunny 35k 1000 0.5 2.0 0.019 0.004
Armadillo 172k 200 101.3 0.1 0.002 0.016
Armadillo 172k 5000 3.2 18.3 0.098 0.018
Dragon 437k 200 390.2 0.1 0.002 0.037
Dragon 437k 5000 13.7 23.3 0.116 0.040
Plain 1000k 200 1923.0 0.1 0.002 0.083

Table 1: Computation times in seconds on a 2.4GHz CPU and a NVidia GeForce 8800 GTX GPU. Subsam-
pling and precomputation are executed once, while equation solving and upsampling occur each frame.

speed, since multiplying two quaternions includes
16 floating point multiplications, and multiplying
a quaternion with a 3D vector includes 27 floating
point multiplications. The sheer amount of operations
required to perform the interpolations for large data
sets with over 1M points does not allow for a true
real-time editing experience using this approach,
as the frame rates can drop to 1-2 frames per sec-
ond. The implementation of the upsampling step
in CUDA for parallel computation on the GPU is
straightforward, since p′i and n′i can be computed
independently for each point on the available GPU
processors. Our current implementation running on
an off-the-shelf graphics card (NVidia GeForce 8800
GTX) performs on average 5-8 times faster than the
CPU version. During the editing operation, for 1M
points we measured 8 frames per second for the GPU
implementation, while the CPU variant yielded only
1.4 frames per second.

4 RESULTS

We tested our method on a variety of point clouds, in-
cluding both artificial and scanned models. All of the
models have been used without manual preprocessing.
Table 1 gives an overview of the computation time for
setup and each iteration step during the editing phase.
Usually the model converges to its final shape during
3-5 iterations.

As we have explained before, the equation solving
time consumption grows slower than O(n2) where n
is the number of sample points, while the upsampling
step requires only linear time depending on the num-
ber of points to be interpolated.

The visual quality of the result is largely independant
of the number of sample points, unless it falls below
a certain threshold depending on the complexity of
the model. This means e.g. for the Stanford Bunny
(Figure 3), which does not have a complex structure,
that the resulting point positions have very small de-
viations when calculated with 100, 1,000 or 10,000
sample points. Only with fewer than about 100 sam-
ple points the upsampling step produces artifacts for
large deformations (Figure 4). For the Dragon model

(Figure 5), which is more complex due to its wind-
ing body, sampling artifacts can be observed for less
than 500 points (Figure 4). Those artifacts could be
circumvented by a more sophisticated interpolation
scheme which does take into account not only the near-
est neighboring sample points, but a selection of sam-
ple points which are evenly distributed on the surface
around the point to be interpolated. A too low sample
density does however defeat the purpose of our non-
linear editing method by reducing it to the linear inter-
polation.

One minor drawback of our implementation using
quaternions is the inability to perform handle rotations
of more than 360◦ within one editing step. This
is due to the normalization of quaternions which
we perform for stability reasons when solving the
equation systems. In practice however this is not of
concern, as it is possible to perform several editing
steps with smaller rotations to achieve the desired
result.

Figure 3: Bunny model with 2 editing steps.

Figure 4: Bunny and Dragon models edited with
only 50 sample points each. Sampling artifacts can
be observed in the head area of the Bunny and neck
of the Dragon.

WSCG 2010 FULL Papers 110

Figure 5: Dragon model after rotation and trans-
lation of the head. Session time including sub-
sampling and precomputation for each result: 1
minute.

5 CONCLUSIONS AND FUTURE
WORK

We have presented a novel method to interactively edit
large point clouds. Using a non-linear deformation
model allows to produce physically plausible defor-
mations even for large modifications. The multireso-
lution approach faithfully handles the coarse scale de-
formations while the model details are preserved. Our
parallel implementation provides the speed necessary
for real-time editing scenarios, shortening the time re-
quired to produce a desired result. For models which
are larger than the available main memory, our method
could be extended with a further sampling level, for
which the upsampling step would be performed off-
line. Our method does not require any manual precon-
ditioning steps to create a control mesh, and is thus
suited for direct editing of arbitrary point clouds.

For the future we plan to incorporate the deformation
features into a model reconstruction framework
which can work on a number of scanner-acquired
time-varying point clouds.

REFERENCES
[AOW+08] B. Adams, M. Ovsjanikov, M. Wand, H. Seidel, and

L. Guibas. Meshless modeling of deformable shapes
and their motion. In ACM SIGGRAPH/Eurographics
Symposium on Computer Animation, pages 77–86,
Dublin, Ireland, 2008. ACM/Eurographics, Euro-
graphics Association.

[BPGK06] M. Botsch, M. Pauly, M. Gross, and L. Kobbelt. Primo:
coupled prisms for intuitive surface modeling. In SGP
’06: Proceedings of the fourth Eurographics sympo-
sium on Geometry processing, pages 11–20. Euro-
graphics Association, 2006.

[BPWG07] M. Botsch, M. Pauly, M. Wicke, and M. Gross. Adap-
tive space deformations based on rigid cells. Computer
Graphics Forum, 26(3):339–347, 2007.

[BSS07] T. Boubekeur, O. Sorkine, and C. Schlick. Simod:
Making freeform deformation size-insensitive. In
IEEE/Eurographics Symposium on Point-Based
Graphics 2007, September 2007.

[DBP08] F. Duranleau, P. Beaudoin, and P. Poulin. Multires-
olution point-set surfaces. In GI ’08: Proceedings
of graphics interface 2008, pages 211–218, Toronto,
Ont., Canada, Canada, 2008. Canadian Information
Processing Society.

[DEG+99] J. Demmel, S. Eisenstat, J. Gilbert, X. Li, and J. Liu. A
supernodal approach to sparse partial pivoting. SIAM
J. Matrix Analysis and Applications, 20(3):720–755,
1999.

[HSL+06] J. Huang, X. Shi, X. Liu, K. Zhou, L. Wei, S. Teng,
H. Bao, B. Guo, and H. Shum. Subspace gradi-
ent domain mesh deformation. ACM Trans. Graph.,
25(3):1126–1134, 2006.

[MFXP08] Y. Miao, J. Feng, C. Xiao, and Q. Peng. High fre-
quency geometric detail manipulation and editing for
point-sampled surfaces. Visual Computer, 24(2):125–
138, 2008.

[MKN+04] M. Müller, R. Keiser, A. Nealen, M. Pauly, M. Gross,
and M. Alexa. Point based animation of elastic, plas-
tic and melting objects. In SCA ’04: Proceedings of
the 2004 ACM SIGGRAPH/Eurographics symposium
on Computer animation, pages 141–151, Aire-la-Ville,
Switzerland, Switzerland, 2004. Eurographics Associ-
ation.

[PDK07] N. Paries, P. Degener, and R. Klein. Simple and effi-
cient mesh editing with consistent local frames. Tech-
nical Report CG-2007-3, Universität Bonn, July 2007.

[PGK02] M. Pauly, M. Gross, and L. Kobbelt. Efficient simpli-
fication of point-sampled surfaces. In VIS ’02: Pro-
ceedings of the conference on Visualization ’02, pages
163–170, Washington, DC, USA, 2002. IEEE Com-
puter Society.

[PKG06] M. Pauly, L. Kobbelt, and M. Gross. Point-based mul-
tiscale surface representation. ACM Trans. Graph.,
25(2):177–193, 2006.

[PKKG03] M. Pauly, R. Keiser, L. Kobbelt, and M. Gross. Shape
modeling with point-sampled geometry. ACM Trans.
Graph., 22(3):641–650, 2003.

[SA07] O. Sorkine and M. Alexa. As-rigid-as-possible sur-
face modeling. In SGP ’07: Proceedings of the fifth
Eurographics symposium on Geometry processing,
pages 109–116, Aire-la-Ville, Switzerland, Switzer-
land, 2007. Eurographics Association.

[SB09] O. Sorkine and M. Botsch. Tutorial: Interactive shape
modeling and deformation. In Eurographics, 2009.

[WBB+07] M. Wand, A. Berner, M. Bokeloh, A. Fleck,
M. Hoffmann, P. Jenke, B. Maier, D. Staneker, and
A. Schilling. Interactive editing of large point clouds.
In Baoquan Chen, Matthias Zwicker, Mario Botsch,
and Renato Pajarola, editors, Symposium on Point-
Based Graphics 2007 : Eurographics / IEEE VGTC
Symposium Proceedings, pages 37–46, Prague, Czech
Republik, 2007. Eurographics Association.

[WSG05] M. Wicke, D. Steinemann, and M. Gross. Efficient ani-
mation of point-sampled thin shells. Computer Graph-
ics Forum, 24(3):667–676, 2005.

[XZY+07] W. Xu, K. Zhou, Y. Yu, Q. Tan, Q. Peng, and
B. Guo. Gradient domain editing of deforming mesh
sequences. ACM Trans. Graph., 26(3):84, 2007.

WSCG 2010 FULL Papers 111

WSCG 2010 FULL Papers 112

	!_Full.pdf
	D13-full.pdf

