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ABSTRACT 
Shape descriptors are used to identify objects in the same way that human fingerprints are used to identify 

people.  Features of an object are extracted by applying functions to the digital representation of the object.  

These features are structured as a vector which is known as the shape descriptor (feature vector) of that object.  

The objective when constructing a shape descriptor is to find functions that will yield shape descriptors that can 

be used to uniquely identify or at least classify an object.  A measure of similarity is required to identify or 

classify an object.  The similarity between two objects is computed by applying a distance function to the shape 

descriptors of the two objects. 

The objective of this paper is to examine two of the possible techniques in three-dimensional shape descriptor 

construction based on Fourier analysis, and to find a descriptor that is able to not only classify, but also identify 

objects.   

Keywords 
Shape descriptor, Fourier transform. 

1. INTRODUCTION 
The Fourier transform has long been used in image 

and signal processing to convert data from the spatial 

domain to the frequency domain.  Applying the 

Fourier transform to spatial data results in a set of 

coefficients that represent different frequency 

variations in the data.  Lower order coefficients 

represent low frequency variations that normally 

have large amplitudes while higher order coefficients 

represent high frequency variations that normally 

have small amplitudes.  The Fourier transform is 

normally used on data consisting of one dimension 

(signal processing) or two dimensions (image 

processing), but can also be applied to three 

dimensions as seen in Zhang & Chen [Zha01a] and 

Vranic & Saupe [Vra01a]. 

Fourier coefficients form conjugate pairs, except for 

the lowest order coefficient.  To create a descriptor 

from Fourier coefficients the magnitudes of the 

coefficients are calculated.  The first K of these 

values, corresponding to the K lowest Fourier 

coefficients, are used.  K is a threshold value to 

establish the smallest number of coefficients needed 

to identify each object. 

In this paper two methods are developed that can be 

used with the Fourier transform to identify objects.  

In both methods a θφ-matrix is created to which a 

Fourier transform is applied to create feature vectors. 

The data used in this project are in the form of three-

dimensional triangle mesh models.  In a triangle 

mesh model each object is approximated by a 

collection of structured triangles.  The triangles 

represent the faces of the mesh model and each face 

has three vertices.  Some of the faces share common 

vertices or sides.  The faces are represented by an 

N×3 matrix with N the number of faces.  The vertices 

are represented by an M×3 matrix with M the number 

of unique vertices.  The three values in each row in 

the faces matrix represent the three vertices of a face.  

Each value is the row number of a vertex in the 

vertices matrix.  The first step in calculating the 
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descriptor of an object is to obtain the N×3 matrix 

representing the N faces and the M×3 matrix 

representing the M vertices that approximate the 

object. 

Matching objects when they do not have the same 

pose causes a serious problem.  To solve this 

problem the descriptor has to be translation and 

rotation invariant.  The most frequent used method to 

solve this problem is to apply Principle Component 

Analysis (PCA, Hotelling transform, Karhunen-

Loeve transform) to the triangle mesh of an object 

before the descriptor is calculated [Zha01a, Vra01a, 

Vra03a, Pap06a].  The result of doing PCA is that all 

objects that are similar will have similar orientations 

and the descriptors that are calculated will have a 

smaller match distance.  PCA can be used as a 

second step in calculating a descriptor to ensure 

rotation and translation invariance when the 

descriptor technique itself is not invariant to rotation 

and translation.  An example of PCA can be seen in 

Figure 1.  When classifying objects scale invariance 

is required.  The objective of this project was to solve 

an exact matching problem, therefore scale variance 

was not considered.   

 

The PCA method uses the eigenvalues and 

eigenvectors, calculated from the covariance matrix 

of the vertices matrix, to rotate an object in such a 

way that the first principal axis aligns with the x-axis, 

the second principal axis with the y-axis and the third 

principal axis with the z-axis.  On completion of 

PCA the largest variance of mass is in the x-axis 

direction.  For highly symmetrical objects the 

eigenvalues are very similar.  The small differences 

in symmetrical objects cause errors during PCA 

because the eigenvalues are similar and a small 

change in the eigenvalues causes the eigenvectors to 

change dramatically.  Figure 2 shows the result of 

applying PCA on symmetrical objects.  Using PCA 

to normalize pose when objects are symmetrical is 

not very successful.  

 

2. REPRESENTATION 
Centroid distance is defined as the distance from the 

centroid of an object to the surface of that object.  

The object is centred and orientated using PCA.  

After PCA the centroid distance is calculated for 

angles θ and φ with θ[0,π] and φ[0,2π].  θ is the 

polar angle from the z-axis and φ the azimuthal angle 

in the xy-plane from the x-axis.  The centroid of the 

object is located at the origin of the coordinate 

framework.  A two-dimensional θφ-matrix is created 

where the rows represent θ-values and the columns 

represent φ-values.  The value located at index [θ,φ] 

of the matrix is the distance from the centroid, in the 

direction (θ,φ), to the surface of the object.  If the 

surface of the object is intersected more than once, 

the maximum value is used.  In the result for 

θ[0,2π] the elements in the matrix for θ[π,2π] will 

be a mirror of the values for the elements with 

θ[0,π].  For this reason θ[0,π] is used. 

 

 

The discrete Fourier transform (DFT) of the θφ-

matrix is calculated and the result used to create the 

feature vector.  The feature vector is created by 

applying a method, similar to the process used by 

Vranic & Saupe [Vra01a], to the Fourier coefficients.  

For a chosen integer value K, the (2K+1)×(2K+1) 

matrix centred on the lowest frequency coefficient is 

returned.  Except for the lowest frequency 

coefficient, all other coefficients form conjugate 

pairs.  The feature vector is defined as the 

magnitudes of the Fourier coefficients.  The 

coefficients are ordered according to distance from 

the lowest frequency coefficient.  

Algorithm: 

1. Get faces matrix and vertices matrix 

2. Do PCA 

3. Centroid is located at origin after PCA. 

Figure 2. The top row shows three different 

orientations of a symmetrical object.  The 

bottom row shows the result of applying PCA 

to the top row. 

 

Figure 1. The top row shows three different 

orientations of the same object.  The bottom 

row shows the result of applying PCA to the 

top row. 
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4. Get θφ-matrix by calculating distance from 

centroid to last triangle intersected for each 

[θ,φ] (Two different methods are discussed in 

paragraph 2.1 and 2.2) 

5. Calculate 2D Fourier transform of θφ-matrix 

6. Set the number of Fourier coefficients by 

choosing value for K 

7. Get the feature matrix by calculating the 

absolute value of the elements in the 

(2K+1)×(2K+1) matrix in the centre of the 

Fourier transformed θφ-matrix (centred on the 

lowest frequency coefficient) 

8. Calculate the 2D Euclidean distance of each 

element in the feature matrix from the centre 

9. Reorder the elements in the feature matrix into a 

one-dimensional array, sorting them according 

to the distance calculated in step 8 (For 

elements at the same distance, the same order is 

used for each object as they are orientated with 

PCA) 

10. The result is the feature vector. 

Two techniques to calculate the distance from the 

centroid to the surface of an object were evaluated.  

2.1.  Method 1 
In this technique four θφ-matrices are created with 

θ[0,π] and φ[0,2π].  Increments of 1, 4, 9 and 18 

degrees for θ and φ are used for each of the four 

matrices respectively.  Larger increments will result 

in smaller matrices.  For each of the directions (θ,φ) 

in the θφ-matrix the distance is calculated from the 

centroid to an intersection with a face.  If more than 

one face is intersected, the maximum distance is 

used.  Each face may be intersected multiple times 

for different directions (θ,φ). 

2.2.  Method 2 
In the second technique four θφ-matrices are also 

created with θ[0,π] and φ[0,2π].  Increments of 1, 

4, 9 and 18 degrees for θ and φ are used for each of 

the four matrices respectively.  For each of the faces 

a range of θ and φ values is determined to create a 

region surrounding the face.  Depending on the 

increment length, the number of intervals for θ and φ 

are calculated.   

This number of intervals is used to create a set of 

points on the face defined by intervals of λ and β in 

λE + βF + (1 – λ - β) G with 0 ≤ λ ≤ 1, 0 ≤ β ≤ 1 and 

0 ≤ λ+β ≤ 1.  E, F and G are the vertices of the face.  

The distance from the centroid to the plane defined 

by the vertices of the face is calculated for the 

directions (θ,φ) for all the points in the set.  This 

procedure ensures that distances are calculated only 

for the set of points on a face.   

Using method 2 speeds up the process of calculating 

the θφ-matrix considerably as there is no need to 

repeat the calculations for all the directions of all the 

faces.  The process is applied to each face and the 

results obtained for all the faces are combined.  The 

results obtained with these two techniques are given 

in section 4.1. 

3. MATCHING 

3.1.  Distance functions 

Distance functions are used to determine the distance 

between two feature vectors f1 and f2.  A number of 

distance functions are defined, among others, by 

Vranić [Vra03a], Osada et al. [Osa01a] and Long et 

al. [Lon02a].  Distance functions used in this project 

are: 

 l1 norm 

                             

 

   

 (1)  

This function defines the distance between two 

feature vectors as the sum of the absolute values of 

the differences between each set of corresponding 

elements. 

 l2 norm 

                              
 

 

   

 (2)  

With this function the distance between two feature 

vectors is the square root of the sum of the squares of 

the differences between each set of corresponding 

elements. 

 Minkowski with p=0.8 

The next two distance measures use the Minkowski 

norm given in Long et al. [Lon02a] as 

                    
 

 

   

 

 
 

  (3)  

The value of p was chosen as 0.8 for this norm. 

 Minkowski with p=1.2 

This norm uses the same form as in Equation (3), but 

with p chosen as 1.2. 

 lmax norm 

The lmax norm is the maximum of the absolute values 

of the differences between the sets of corresponding 

elements. 

 

                      
     

          (4)  
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3.2.  The matching process 

Matching is done by first applying the same 

descriptor method to two different objects after 

which the distance between the two feature vectors is 

calculated.  This distance is used as a measure of the 

similarity of the two objects. 

When working with sets of objects, a matrix of 

distance values is created to match two sets of 

objects.  The rows represent the objects of the first 

set and the columns represent the objects of the 

second set.  Each value in the matrix is used as a 

measure of the similarity between two objects, an 

object from the first set as defined by the row number 

and an object from the second set as defined by the 

column number.  For each object in the first set, the 

closest match is found from the second set.  With this 

technique an object can be identified from a set of 

possible objects. 

The elements in a similarity matrix M are calculated 

using one of the distance functions, therefore   

M(i,j)=d(fi,fj) where fi is the feature vector of object i 

on row i of matrix M and fj is the feature vector of 

object j on row j of matrix M.  d is the chosen 

distance function. 

In this study three sets of 60 objects are used to test 

the usability of the descriptors for identification.  

Examples of these objects are given in Figure 3.  

Each of the three datasets used in the matching 

process consist of 600 triangle mesh models 

representing the 60 objects.  Each object is digitized 

10 times resulting in 10 representations of each 

object.  Due to the nature of the digitization process 

there are small variations in the representations of the 

objects.  The 600 models in each dataset are divided 

into two sets with five models representing each 

object in a set.  During the matching process the 300 

models representing 60 objects from the first set are 

matched to the 300 models representing the same 60 

objects from the second set.  The matching process 

creates a similarity matrix with the models from the 

first set represented by 300 rows and the models from 

the second set represented by 300 columns.  Each 

element in the matrix is the result of a distance 

function applied to the object represented by the row 

from the first set and the object represented by the 

column from the second set.  Five different distance 

functions are used to create five different similarity 

matrices.  Because multiple rows and columns are 

used to represent feature vectors calculated from 

different representations of the same object, 

aggregates of these columns and rows are taken.  The 

aggregate functions used are minimum, mean, 

maximum and sum.  This results in a matrix with 60 

rows and 60 columns.  The objective is to identify 

and match objects in a set using similar 

representations of the same objects in another set.  

Because both sets contain models of all 60 objects, 

an object in a specific row must be matched with an 

object in a specific column.  This is done by finding 

the object with the smallest distance function result. 

 

4. RESULTS 

4.1.  Feature vector creation 

The project was implemented using Matlab 2007 on 

an Intel Core2 Quad 2.4GHz PC.  The first tests are 

to show the results obtained when applying the two 

techniques to calculate the θφ-matrix as discussed in 

section 2.1.  A sphere with radius 3 consisting of 88 

faces is used to evaluate the two techniques.  

The results when calculating the θφ-matrix of the 

sphere using method 1 are shown in Table 1.  The 

first column lists the sizes of increments used for θ 

and φ and the second column lists the time it took to 

create the θφ-matrix using method 1.  The third 

column show the time it took to create the θφ-matrix 

using method 2.  

 

 

Calculating the θφ-matrix is considerably faster when 

using method 2 and incrementing θ and φ with 4 

degrees or more as seen in Table 1.  

Increments 

(degrees) 

Time (s) 

Method 1 

Time (s) 

Method 2 

1 630 506 

4 40 0.9 

9 9 0.2 

18 2.3 0.06 

Table 1. Time needed to calculate θφ-matrix 

using method 1 and 2. 

 

Figure 3. Representations of the first nine 

objects in dataset 1 used during matching. 
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Figure 4 shows the θφ-matrix for increments of 1 

degree obtained using method 2.  The next step is to 

test the technique used for the creation of the Fourier 

descriptors.  Figure 5 shows 3 representations of 

objects used to construct the feature vectors.  Object 

A is a sphere consisting of 88 faces.  Object B is a 

rounded cube consisting of 188 faces.  Objects C and 

D are irregular objects consisting of 2476 and 1372 

faces respectively.  The results of constructing the 

feature vectors are listed in Table 2.  The θφ-matrix 

is calculated using the second technique with 

increments of 4 degrees.  The feature vectors are 

calculated with threshold K=10.  Figure 6, 7 and 8 

shows the θφ-matrix, Fourier coefficients and feature 

vector for object C.   

 

A B 

         

C D 

       

 

Object 

 

Time (s) 

Method 2 

A 0.7 

B 0.9 

C 4.4 

D 3.5 

 

 

 

 

Figure 8. Feature vector constructed from 

Fourier coefficients for object C 

 

Figure 7. Fourier coefficients obtained from 

the DFT of the θφ-matrix for object C. 

 

Figure 6. θφ-matrix for object C using 

method 2 with increments of 4 degrees. 

 

Table 2. θφ-matrix obtained by using method  

2 with increments of 4 degrees. 

 

Figure 5. (A) A sphere with radius 3 

consisting of 88 faces.  (B) A rounded cube 

consisting of 188 faces.  (C) An object 

consisting 2476 faces. (D) An object 

consisting of 1372 faces 

 

Figure 4. θφ-matrix using method 2 with 

increments of 1 degree. 
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Figure 9 shows the feature vectors of 9 objects.  

Object A is the sphere (object A) consisting of 88 

faces in Figure 5.  Object B is a sphere consisting of 

66 faces.  Object C is a rounded cube consisting of 

188 faces.  Objects D through G are different 

representations of object C in Figure 5, consisting of 

2384, 2268, 2476 and 2444 faces.  Object H and I are 

very similar objects consisting of 1372 and 1932 

faces respectively.  Different colours are used to 

indicate the different objects.  Below is a list of 

colours used. 

 Object A - (green).   

 Object B - (dark green).   

 Object C - (red).   

 Object D - (blue).   

 Object E - (dark blue).   

 Object F - (cyan).   

 Object G - (dark cyan).   

 Object H - (purple).   

 Object I - (magenta). 

 

 

 

Smoothing of feature vectors as in Figure 10 is done 

only to improve the visualization of the feature 

vectors for printing.  The original feature vectors are 

used in the matching process as smoothing causes a 

loss of feature information.  Smoothing is done using 

a moving average of length 21. 

When comparing the feature vectors in Figure 10 it is 

clear that the four feature vectors at the top are 

grouped together.  These feature vectors are for 

objects D, E, F and G.  When comparing the four 

triangle mesh models, it is clear that they are 

different representations of the same object, hence 

the similarity in their feature vectors.  Objects A, B, 

H and I are very rounded in shape, and their feature 

vectors are also very close together. 

For method 2 the θφ-matrix is calculated with 

increments of 4, 6 and 10 degrees for angles θ and φ 

giving 4050, 1800 and 648 elements for each of the 

matrices.  Using increments of 1 degree result in 

excessive processing time requirements.  Using large 

increment sizes produce feature vectors that result in 

inaccurate matching.  For this reason increments of 4, 

6 and 10 degrees where chosen. 

The time needed to calculate the θφ-matrices for the 

different increments are compared in Figure 11.  In 

Figure 11 the number of faces is not the only 

influence on processing time.  The rightmost four 

objects in the figure are very similar, and variations 

in the complexity and orientation of the faces 

influences the processing time.  Increasing the 

increment sizes for angles θ and φ decreases 

calculation speed, but causes a loss of accuracy.   

    

 

 

Figure 11. Processing time required to 

calculate the θφ-matrix for the 9 objects of 

Figure 9 using method 2 with increments of 

10, 6 and 4 degrees.   

 
Figure 10. Moving average of length 21 of the 

feature vectors in Figure 9.   

 

Figure 9. Feature vectors of 9 objects, also 

represented in the Figure 10.     
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4.2.  Matching  

The feature vectors are calculated with K=5 resulting 

in 36 elements in each feature vector.  These feature 

vectors are calculated using increments of 10 degrees 

for angles θ and φ.  It takes 350 seconds to calculate 

the feature vectors of all 600 mesh models in a 

dataset using increments of 10 degrees.  For 

increments of 6 degrees it takes 940 seconds, and 

2650 seconds for increments of 4 degrees.  The 

process of calculating the θφ-matrix takes up most of 

the time during feature vector generation.  Four 

aggregate functions are applied to the results of each 

of the distance functions, as discussed in section 3.2.  

The results for each of these functions are listed in 

the columns marked “Min”, “Mean”, “Max” and 

“Sum”.  The results are the number of errors made in 

matching the two sets of mesh models.  Figure 12 

contains four similarity matrices for the l1 norm 

distance function calculated from the results of the 

four aggregate functions.  Colours closer to blue 

indicate similar objects, while colours closer to red 

indicate dissimilar objects. 

 

The first elements of the feature vectors correspond 

to the lower order Fourier coefficients.  The lower 

order Fourier coefficients relate to large changes in 

shape while the higher order coefficients relate to 

smaller variations in shape.  For this reason only a 

number of coefficients surrounding the first 

coefficient is needed to create a feature vector.  This 

approach will also reduce the influence of noise, 

which is usually associated with small variations.  As 

the first elements have very large values, they will 

have a greater influence during the distance 

calculations between feature vectors.  Therefore large 

variations in shape will result in bigger differences 

between feature vectors.  From the results it is clear 

that this feature vector creation method will produce 

feature vectors that can be used to identify objects.   

The results of the matching process are given in 

Tables 3 to 5.  These results show that the four 

distance measures performed well during the 

matching process.  Table 5 shows that without PCA 

the results are inferior.  The errors made during 

identification were of objects that are exceptionally 

similar.  

A good method for identification should have a low 

probability of false acceptance and a low probability 

of false rejection.  The area closer to the origin in the 

ROC graph will reveal the more accurate method.  

For this reason the ROC graphs are displayed for a 

probability of false acceptance and false rejection up 

to 50%.  The ROC graphs in Figure 13 illustrate that 

the distance functions yield very similar results.  The 

two graphs in Figure 13 yielding poor results are the 

Kullback-Leibler divergence and Jeffrey divergence.  

These two distance functions gave poor results in all 

the preliminary tests and where excluded from the 

rest of the study.  Even though using smaller 

increments result in better matches, the differences 

between the results observed when incrementing 

angles θ and φ by 10, 6 and 4 degrees are very small.  

The time needed for processing make increments 

smaller than 10 ineffective.  With all techniques the 

“minimum” aggregate gave better results and 

“maximum” aggregate gave inferior results.  

  

Figure 13. ROC graph of matching results 

for l1 norm distance function applied to 

feature vectors generated using method 2. 

 Figure 12. A similarity matrix for the l1 norm 

distance function obtained from Fourier method 1 

using Min aggregate.  Colours closer to blue 

indicate similar objects, while colours closer to red 

indicate dissimilar objects. 
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Distance function Min Mean Max Sum 

  norm 1 2 22 2 

   norm 3 10 31 10 

Minkowski with 

      
1 2 18 2 

Minkowski with 

      
2 2 24 2 

     norm 4 18 36 18 

 

Distance function Min Mean Max Sum 

  norm 1 3 12 3 

   norm 0 7 23 7 

Minkowski with 

      
2 3 13 3 

Minkowski with 

      
0 4 16 4 

     norm 5 11 27 11 

 

Distance function Min Mean Max Sum 

  norm 30 49 52 49 

   norm 31 52 55 52 

Minkowski with 

      
30 47 51 47 

Minkowski with 

      
29 49 52 49 

     norm 39 50 53 50 

 

5. CONCLUSION 
Principal Component Analysis (PCA) plays a vital 

part in normalizing the orientation of objects during 
identification.  Symmetrical objects result in errors 
during PCA.  Two methods to obtain feature vectors, 
using the Fourier transform, are described in this 
paper.  Fourier methods are effective in identifying 
objects as they are fast and accurate.  Their only 
drawback is that accuracy decreases when large 
numbers of objects in the datasets are very similar.  
Of the five distance measures evaluated the l1 norm, l2 
norm, Minkowski with p=0.8 and Minkowski with 
p=1.2 distance measures are best suited for 
identification. 

6. FUTURE WORK 
Alternative methods to normalize orientation can 

also be explored to improve results. 

The CSS descriptor method [Dre05a, Zha01b] is 

another technique that could possibly be adapted for 

three-dimensional identification in future research. 
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