Torsional vibration analysis of shafts based on Adomian decomposition method

R. Tabassian ${ }^{a, *}$
${ }^{a}$ Department of Mechanical Engineering, Ferdowsi University of Mashhad, Mashhad, Iran

Received 15 April 2013; received in revised form 6 December 2013

Abstract

In this paper free torsional vibration of shafts is studied using a new approach of solving differential equations called Adomian decomposition method (ADM). Applying this method to free torsional vibration of shafts means a systematic and straightforward procedure for calculating both low and high frequency modes. In this paper different boundary conditions are applied to both end of the shaft and first five natural frequencies and mode shapes are calculated for four different cases. Obtained results are compared with results presented in literature. These results demonstrate that ADM is a suitable approach for analysis of free torsional vibration of shafts which provides precise results with high order of accuracy. (c) 2013 University of West Bohemia. All rights reserved.

Keywords: Adomian decomposition method, torsional vibration, natural frequencies, shafts, differential equations

1. Introduction

Rotating shafts are extensively implemented for power transmission in different industries. Most machinery may encounter torsional vibration in their rotary elements. Such vibrations could be caused by environmental shocks, random exciting torque, disturbance of electricity or interaction of different parts of system like shafts and bearings. However, the most common type of vibration which occurs in rotary systems is torsional vibration of elements due to resonance phenomenon. In such case, vibration amplitudes may grow quickly to an unacceptable value, by approaching rotational speed to the natural frequencies of system. The demands for higher operational speeds have been increased and resonance instability in such speeds can lead to drastic accidents. Therefore, accurate prediction of natural frequencies is completely crucial for a successful design of rotary systems and free vibrations analysis of shafts is the main problem in the area of rotary dynamics. Importance of this problem has persuaded many researchers to work on this field [1-4]. The most important part of solving a vibration problem is the mathematical modelling. Calculations based on mathematical models, whether complex or simple, can be of value in design, development and fault diagnosis in machines. Although, for solving governing equation of motion of simple shafts, some analytical models have been presented, they are not capable of solving more complicated problems [5]. By development of computers, numerical methods like FEM, FDM or BEM were also developed which are efficiently capable of solving complex problems [6]. However, these methods are not accurate and do not give the exact results. The natural frequencies and the mode shapes obtained from such method are approximate. This inaccuracy is more evident in high natural frequencies and mode shapes which refers to discretisation of problem object.

[^0]In this study a new approach called Adomian Decomposition Method (ADM) is applied to solve torsional vibration of shafts with high order of accuracy in both low and high natural frequencies. ADM was first presented by George Adomian in the early 1980s [7-9]. This method was applied to solve linear and nonlinear initial/boundary-value problems in physics [10]. Lots of reviews and modifications have been done on this approach [11,12]. The ADM has been receiving much attention in recent years in the area of series solutions. A considerable research work has been devoted recently to this method in order to solve wide class of linear and nonlinear equations [13, 14]. It has been found that, unlike other series solution methods, ADM is easy to program in engineering problems, and provides immediate and visible solution terms without linearisation and discretisation. However, it has not extended in engineering problems properly except a few works. Lai et al. [15] investigated vibration of Euler-Bernoulli beams with different boundary conditions using Adomian decomposition method. Farshidianfar et al. [16] solved free vibration of stepped beam using ADM. They investigated a beam with different cross-sections and also different materials in the step point and obtained natural frequencies and mode shapes of the beam.

In this work we tried to deal with free vibration problem of shafts taking advantage of ADM. Firstly, equations of motion of the shaft is written. Then by substituting series instead of rotational displacement and applying the ADM, recursive relations for the terms of series are obtained. A two-term polynomial with unknown coefficients is considered as the first term of recursive relations. By employing this polynomial in recursive relations, all terms of series are calculated. Applying boundary conditions at both ends of the shaft, a homogeneous system of equations is obtained. A characteristic equation for natural frequencies is obtained by setting the determinant of coefficient matrix to zero. After calculating natural frequencies, mode shapes are also obtained calculating eigenvectors. In order to show capability and accuracy of this method, obtained results are compared with analytical results of other researchers. Unlike FEM and other numerical methods, calculated frequencies by ADM are in precise agreement with analytical solution. Expanding this method to further vibration problems can lead to establishing a powerful exact method in the area of free vibration analysis.

2. Solution Method

2.1. Adomian Decomposition Method

In this section, ADM for solving linear differential equations is briefly explained. Consider the equation

$$
\begin{equation*}
F y=g(x), \tag{1}
\end{equation*}
$$

in which F is a general differential operator that contains derivatives with different orders and $g(x)$ is a specific function. Fy could be decomposed as $F y=L y+R y$ such that L is an invertible operator which contains a highest order of derivatives and R contains reminder order of derivatives. Hence, Eq. (1) can be rewritten as

$$
\begin{equation*}
L y+R y=g(x) . \tag{2}
\end{equation*}
$$

Solving for $L y$, one can obtain

$$
\begin{equation*}
y=\psi+L^{-1} g-L^{-1} R y . \tag{3}
\end{equation*}
$$

In Eq. (3), ψ is the constant of integral such that $L \psi=0$. For solving Eq. (3) by ADM, y can be written as series

$$
\begin{equation*}
y=\sum_{k=0}^{\infty} y_{k} . \tag{4}
\end{equation*}
$$

Substituting Eq. (4) into Eq. (3) yields

$$
\begin{equation*}
\sum_{k=0}^{\infty} y_{k}=\psi+L^{-1} g-L^{-1} R \sum_{k=0}^{\infty} y_{k} \tag{5}
\end{equation*}
$$

In above equation by assuming $y_{0}=\psi+L^{-1} g$, the recursive formula is obtained as follows:

$$
\begin{equation*}
y_{k}=-L^{-1} R y_{k-1}, \quad k \geq 1 \tag{6}
\end{equation*}
$$

In practice all terms of series cannot be determined exactly, however the solutions can only be approximated by a truncated series $y=\sum_{k=0}^{n-1} y_{k}$ [7].

2.2. Applying ADM to Free Vibration Formulation of Shafts

The circular shaft shown in Fig. 1a is considered. Fig. 1b illustrates a differential segment of the shaft with length $\mathrm{d} x$ for which all internal torsional moment and deformations are displayed. In this figure T represents torsional moment and θ denotes angular displacement. The equation of motion of shaft is written using the equilibrium equation of the internal moments acting on differential segment

$$
\begin{equation*}
\left(T+\frac{\partial T}{\partial x} \mathrm{~d} x\right)-T=\rho I_{p} \mathrm{~d} x \frac{\partial^{2} \theta}{\partial t^{2}} \tag{7}
\end{equation*}
$$

where I_{p} is polar moment of inertia of cross section and ρ is density of the shaft material. Substituting $T=I_{p} G(\partial \theta / \partial x)$ in Eq. (7) and considering $I_{p} G$ constant, one can obtain

$$
\begin{equation*}
\frac{\partial^{2} \theta(x, t)}{\partial x^{2}}=\frac{1}{c^{2}} \frac{\partial^{2} \theta(x, t)}{\partial t^{2}} \tag{8}
\end{equation*}
$$

where $c^{2}=G / \rho$ and G is shear modulus of the shaft.
a)

b)

Fig. 1. (a) Circular shaft, (b) Internal torsional moment and deformations of a differential segment of the shaft

In Eq. (8), $\theta(x, t)$ can be separated into two functions

$$
\begin{equation*}
\theta(x, t)=\Phi(x) q(t) \tag{9}
\end{equation*}
$$

where $\Phi(x)$ is modal displacement and $q(t)$ is a harmonic function of time. If ω denotes the frequency of $q(t)$ then

$$
\begin{equation*}
\frac{\partial^{2} \theta(x, t)}{\partial t^{2}}=-\omega^{2} \Phi(x) q(t) . \tag{10}
\end{equation*}
$$

By substituting Eq. (9) and (10) into Eq. (8) and eliminating $q(t)$, below differential equation is derived

$$
\begin{equation*}
\frac{\mathrm{d}^{2} \Phi(x)}{\partial x^{2}}+\frac{\omega^{2}}{c^{2}} \Phi(x)=0 \tag{11}
\end{equation*}
$$

This equation could be rewritten in non-dimensional form

$$
\begin{equation*}
\frac{\mathrm{d}^{2} \Phi(X)}{\mathrm{d} X^{2}}-\lambda \Phi(X)=0 \tag{12}
\end{equation*}
$$

in which $X=x / l, \lambda=-l^{2} \omega^{2} / c^{2}$ and l is length of the shaft. The linear operator L in Eq. (12) is defined as $L \Phi=\mathrm{d}^{2} \Phi(X) / \mathrm{d} X^{2}$. Furthermore, angular displacement $\Phi(X)$ can be written as follows:

$$
\begin{equation*}
\Phi(X)=\psi+L^{-1} \lambda \Phi(X) \tag{13}
\end{equation*}
$$

where $L^{-1}=\iint \ldots \mathrm{d} X \mathrm{~d} X$. Assuming $\Phi(X) \approx \sum_{k=0}^{n-1} \varphi_{k}(X)$ and substituting it into Eq. (13) yields

$$
\begin{equation*}
\sum_{k=0}^{n-1} \varphi_{k}(X)=\psi+\lambda L^{-1} \sum_{k=0}^{n-1} \varphi_{k}(X) \tag{14}
\end{equation*}
$$

As mentioned before, ψ is constant of integral such that $L \psi=0$. Also, the first term of left side series is considered equal to $\psi+L^{-1} g$. Since Eq. (12) is a homogenous differential equation, function g does not exist. Therefore,

$$
\begin{equation*}
\varphi_{0}(X)=\psi=\varphi(0)+\varphi^{\prime}(0) X \tag{15}
\end{equation*}
$$

Hence, recursive formulae for equations are obtained as:

$$
\begin{equation*}
\varphi_{k}(X)=\lambda \int_{0}^{X} \int_{0}^{X} \varphi_{k-1}(X) \mathrm{d} X \mathrm{~d} X \quad \text { for } \quad k \geq 1 \tag{16}
\end{equation*}
$$

By substituting $\varphi_{0}(X)$ into above recursive formula as first term, and expanding other terms, $\varphi_{k}(X)$ is obtained

$$
\begin{equation*}
\varphi_{k}(X)=\lambda^{k}\left(\frac{X^{2 k}}{(2 k)!} \Phi(0)+\frac{X^{2 k+1}}{(2 k+1)!} \Phi^{\prime}(0)\right) . \tag{17}
\end{equation*}
$$

After achieving the general term of series, $\Phi(X)$ can be approximated as follows:

$$
\begin{equation*}
\Phi(X)=\sum_{k=0}^{n-1} \lambda^{k}\left(\frac{X^{2 k}}{(2 k)!} \Phi(0)+\frac{X^{2 k+1}}{(2 k+1)!} \Phi^{\prime}(0)\right) \tag{18}
\end{equation*}
$$

By applying boundary conditions at the both ends, a homogenous system of equations with two unknown is obtained. Setting determinant of coefficient matrix equal to zero produces a characteristic equation for natural frequencies.

2.3. Boundary Conditions

In this part four common boundary conditions of shafts are discussed. In reality each end of the shaft could have one of these conditions.

Fixed end

Fixed end condition is shown in Fig. 2. In this condition angular displacement is equal to zero ($\theta=0$).

This condition for the beginning of the shaft could be written as

$$
\begin{equation*}
\theta(0, t)=0 \rightarrow \Phi(0)=0 \tag{19}
\end{equation*}
$$

and similarly, fixed condition at the end of the shaft is written as

$$
\begin{equation*}
\theta(l, t)=0 \rightarrow \Phi(1)=0 . \tag{20}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
\Phi(1)=\sum_{k=0}^{n-1} \lambda^{k}\left(\frac{\Phi(0)}{(2 k)!}+\frac{\Phi^{\prime}(0)}{(2 k+1)!}\right)=0 . \tag{21}
\end{equation*}
$$

Fig. 2. Fixed end boundary conditions

Free end

Free end condition is shown in Fig. 3. In this condition torsional moment is equal to zero ($T=I_{p} G(\partial \theta / \partial x)=0$).

This condition for the beginning of the shaft could be written as

$$
\begin{equation*}
\left.\frac{\mathrm{d} \theta(x, t)}{\mathrm{d} x}\right|_{x=0}=0 \rightarrow \Phi^{\prime}(0)=0 \tag{22}
\end{equation*}
$$

and similarly, free condition at the end of the shaft is written as

$$
\begin{equation*}
\left.\frac{\mathrm{d} \theta(x, t)}{\mathrm{d} x}\right|_{x=l}=\left.0 \rightarrow \frac{\mathrm{~d} \Phi(X)}{\mathrm{d} X}\right|_{X=1}=0 . \tag{23}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
\left.\frac{\mathrm{d} \Phi(X)}{\mathrm{d} X}\right|_{X=1}=\sum_{k=1}^{n-1} \lambda^{k} \frac{\Phi(0)}{(2 k-1)!}+\sum_{k=0}^{n-1} \lambda^{k} \frac{\Phi^{\prime}(0)}{(2 k)!}=0 \tag{24}
\end{equation*}
$$

Fig. 3. Free end boundary conditions

R. Tabassian / Applied and Computational Mechanics 7 (2013) 205-222

Spring support

Spring support condition is shown in Fig. 4. Torsional moment is proportional to angular displacement $\left(T= \pm K_{T} \theta\right)$ in this condition. K_{T} is torsional spring constant.

This condition for the beginning of the shaft could be written as:

$$
\begin{equation*}
\left.I_{p} G \frac{\mathrm{~d} \theta(x, t)}{\mathrm{d} x}\right|_{x=0}=K_{T 0} \theta(0, t) \rightarrow K_{T 0} \Phi(0)-\frac{I_{p} G}{l} \Phi^{\prime}(0)=0 \tag{25}
\end{equation*}
$$

and similarly at the end of the shaft, this condition is written as

$$
\begin{equation*}
\left.I_{p} G \frac{\mathrm{~d} \theta(x, t)}{\mathrm{d} x}\right|_{x=l}=-K_{T 1} \theta(l, t) \rightarrow K_{T 1} \Phi(1)+\left.\frac{I_{p} G}{l} \frac{\mathrm{~d} \Phi(X)}{\mathrm{d} X}\right|_{X=1}=0 \tag{26}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
K_{T 1} \sum_{k=0}^{n-1} \lambda^{k}\left(\frac{\Phi(0)}{(2 k)!}+\frac{\Phi^{\prime}(0)}{(2 k+1)!}\right)+\frac{I_{p} G}{l}\left(\sum_{k=1}^{n-1} \lambda^{k} \frac{\Phi(0)}{(2 k-1)!}+\sum_{k=0}^{n-1} \lambda^{k} \frac{\Phi^{\prime}(0)}{(2 k)!}\right)=0 . \tag{27}
\end{equation*}
$$

Fig. 4. Spring supported conditions

Concentrated Rotary Mass

In some cases a concentrated rotary mass is added to the end of the shaft which produces rotary inertia at this end. Fig. 5 displays a disk with mass moment of inertia $J_{i}(i=0,1)$ added to the ends. Here, moment equilibrium of the disk could be written to obtain equations of this condition

$$
\begin{equation*}
\sum M=J \ddot{\theta} \rightarrow J_{i} \frac{\partial^{2} \theta}{\partial t^{2}}= \pm I_{p} G \frac{\partial \theta}{\partial x} \quad(i=0,1) \tag{28}
\end{equation*}
$$

Fig. 5. Shaft with concentrated rotary mass at ends
Substituting Eqs. (9) and (10) into Eq. (28) and eliminating $q(t)$ yields

$$
\begin{equation*}
-J_{i} \omega^{2} \Phi= \pm \frac{I_{p} G}{l} \frac{\mathrm{~d} \Phi}{\mathrm{~d} X} \quad(i=0,1) \tag{29}
\end{equation*}
$$

This condition for the beginning of the shaft could be written as

$$
\begin{equation*}
J_{0} \omega^{2} \Phi(0)+\frac{I_{p} G}{l} \Phi^{\prime}(0)=0 \tag{30}
\end{equation*}
$$

and similarly, at the end of the shaft it could be obtained as follows:

$$
\begin{equation*}
-J_{1} \omega^{2} \Phi(1)+\left.\frac{I_{p} G}{l} \frac{\mathrm{~d} \Phi(X)}{\mathrm{d} X}\right|_{X=1}=0 \tag{31}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
-J_{1} \omega^{2} \sum_{k=0}^{n-1} \lambda^{k}\left(\frac{\Phi(0)}{(2 k)!}+\frac{\Phi^{\prime}(0)}{(2 k+1)!}\right)+\frac{I_{p} G}{l}\left(\sum_{k=1}^{n-1} \lambda^{k} \frac{\Phi(0)}{(2 k-1)!}+\sum_{k=0}^{n-1} \lambda^{k} \frac{\Phi^{\prime}(0)}{(2 k)!}\right)=0 . \tag{32}
\end{equation*}
$$

As observed so far, all the boundary conditions lead to homogenous equations which contain unknowns $\Phi(0)$ and $\Phi^{\prime}(0)$. Every shaft has one of these boundary conditions at each end. Therefore, a homogenous system of equations with two unknowns has to be solved. For nontrivial solution of equations, the determinant of coefficients matrix must be zero. Doing so gives us the characteristic equation for calculating natural frequencies. Most of coefficients are series in which increasing the order of series truncation (n) leads to increasing the number of achievable natural frequencies and enhancing the accuracy of them, as well. In order to reach desired accuracy, n should be increased until below stated relation is satisfied:

$$
\begin{equation*}
\left|\Omega_{i}^{n}-\Omega_{i}^{n-1}\right| \leq \varepsilon, \tag{33}
\end{equation*}
$$

where Ω_{i}^{n} and Ω_{i}^{n-1} are the i-th estimated eigenvalues corresponding to n and $n-1$ and ε is the order of desired accuracy.

3. Numerical Study

In order to demonstrate the capability and the efficiency of ADM in solving vibration analysis of shafts, four different specific cases are studied in this part. By applying mentioned relations in previous section, one can obtain the natural frequencies of shaft with various boundary conditions at each end. The procedure is coded as computer program to calculate natural frequencies as accurate as possible. Material properties and geometries of the shaft are kept constant for all cases and only boundary conditions are changed. Table 1 shows material properties and geometries of the shaft.

Table 1. Material properties and geometries of the shaft

Length of the shaft (l)	1000 mm
Radius of cross-section (r)	50 mm
Shear modulus (G)	79.3 GPa
Density (ρ)	$7800 \mathrm{~kg} / \mathrm{m}^{3}$

Non-dimensional parameters of frequency (Ω_{n}), rotary inertia of concentrated mass (S_{0}, S_{1}) and spring constants (R_{0}, R_{1}) are defined:

$$
\begin{gather*}
\Omega_{n}=\omega_{n} \frac{l}{c} \\
S_{0}=\frac{J_{0}}{\rho I_{p} l}, \quad S_{1}=\frac{J_{1}}{\rho I_{p} l}, \\
R_{0}=\frac{K_{T 0} l}{G I_{p}}, \quad R_{1}=\frac{K_{T 1} l}{G I_{p}} . \tag{34}
\end{gather*}
$$

Case I : Fixed-Fixed

As first case, the shaft shown in Fig. 6 is considered. This shaft is completely fixed at both ends. Therefore, Eqs. (19) and (21) should be applied

$$
\left\{\begin{array}{l}
\Phi(0)=0, \tag{35}\\
\sum_{k=1}^{n-1} \lambda^{k} \frac{\Phi(0)}{(2 k-1)!}+\sum_{k=0}^{n-1} \lambda^{k} \frac{\Phi^{\prime}(0)}{(2 k)!}=0 .
\end{array}\right.
$$

Fig. 6. Fixed-Fixed shaft
For non-trivial solution of this system of equations, determinant of coefficient matrix should be set to zero

$$
\left|\begin{array}{cc}
1 & 0 \tag{36}\\
\sum_{k=1}^{n-1} \frac{\lambda^{k}}{(2 k-1)!} & \sum_{k=0}^{n-1} \frac{\lambda^{k}}{(2 k)!}
\end{array}\right|=0
$$

Natural frequencies of the shaft could be achieved by solving Eq. (36). Table 2 presents the frequencies calculated for different values of n (order of series truncation). As observed in this table by increasing n, number of achievable frequencies and also accuracy of them increase and obtained natural frequencies converge to their exact values.

For torsional vibration of Fixed-Fixed shaft there is an analytical solution [5]. The results calculated by using analytical solution are also mentioned in the last row of Table 2 to be compared with results obtained by ADM. As displayed in Table 2 by choosing $n=30$, the first five non-dimensional natural frequencies of the shaft with high order of accuracy are obtained.

After calculating natural frequencies, mode shapes are also achievable. By calculating eigenvectors corresponding to each eigenvalue and substituting in Eq. (18), mode shapes of Fixed-Fixed shaft are obtained. Fig. 7 displays calculated mode shapes for this case.

Fig. 7. The first five normalized mode shapes of Fixed-Fixed shaft

Table 2. Five non-dimensional natural frequencies of the fixed-fixed shaft

n	Ω_{1}	Ω_{2}	Ω_{3}	Ω_{4}	Ω_{5}
2	2.449489743				
3	-				
4	3.078642304				
5	3.148690071	4.963152867			
6	3.141148305	-			
7	3.141613798	5.978351111			
8	3.141591881	6.416050834	7.105718728		
9	3.141592676	6.272546537	-		
10	3.141592653	6.284237155	8.607051935		
11	3.141592654	6.283102591	-		
12	3.141592654	6.283190802	9.32485472		
13	3.141592654	6.283184996	9.442331867	10.98167175	
14	3.141592654	6.283185322	9.422937801		
15	3.141592654	6.283185307	9.424956716	12.12937754	
16	3.141592654	6.283185307	9.424762799		
17	3.141592654	6.283185307	9.424779101	12.54237598	
18	3.141592654	6.283185307	9.424777884	12.56947232	14.65177932
19	3.141592654	6.283185307	9.424777965	12.56604031	-
20	3.141592654	6.283185307	9.424777961	12.56640272	15.52700635
21	3.141592654	6.283185307	9.424777961	12.56636779	15.75303623
22	3.141592654	6.283185307	9.424777961	12.56637084	15.70301848
23	3.141592654	6.283185307	9.424777961	12.56637060	15.70854147
24	3.141592654	6.283185307	9.424777961	12.56637062	15.70790227
25	3.141592654	6.283185307	9.424777961	12.56637061	15.70796921
26	3.141592654	6.283185307	9.424777961	12.56637061	15.70796273
27	3.141592654	6.283185307	9.424777961	12.56637061	15.70796331
28	3.141592654	6.283185307	9.424777961	12.56637061	15.70796326
29	3.141596654	6.283185307	9.424777961	12.56637061	15.70796327
30	3.141592654	6.283185307	9.424777961	12.56637061	15.70796327
Gorman[5]	3.141592654	6.283185307	9.424777961	12.56637061	15.70796327

Case II: Fixed-Concentrated Rotary Mass

In this case as displayed in Fig. 8 a concentrated rotary mass is added to the free end of the shaft.

Fig. 8. Fixed-Free shaft with concentrated rotary mass at free end
Concentrated mass rotary inertia at the end of the shaft is $S_{1}=1$. Applying boundary conditions for this shaft leads to below homogenous system of equations

$$
\left\{\begin{array}{l}
\Phi(0)=0 \tag{37}\\
J_{1} \omega^{2} \sum_{k=0}^{n-1} \lambda^{k}\left(\frac{\Phi(0)}{(2 k)!}+\frac{\Phi^{\prime}(0)}{(2 k+1)!}\right)+\frac{I_{p} G}{l}\left(\sum_{k=1}^{n-1} \lambda^{k} \frac{\Phi(0)}{(2 k-1)!}+\sum_{k=0}^{n-1} \lambda^{k} \frac{\Phi^{\prime}(0)}{(2 k)!}\right)=0
\end{array}\right.
$$

Non-trivial solution of this system of equations is obtained by setting the determinant of coefficient matrix to zero

$$
\left|\begin{array}{cc}
1 & 0 \tag{38}\\
\sum_{k=1}^{n-1} \frac{I_{p} G}{l} \frac{\lambda^{k}}{(2 k-1)!}+\sum_{k=0}^{n-1} \frac{J_{1} \omega^{2} \lambda^{k}}{(2 k)!} & \sum_{k=1}^{n-1} \frac{I_{p} G}{l} \frac{\lambda^{k}}{(2 k)!}+\sum_{k=0}^{n-1} \frac{J_{1} \omega^{2} \lambda^{k}}{(2 k+1)!}
\end{array}\right|=0 .
$$

The first five natural frequencies and the corresponding mode shapes calculated for this case are presented in Table 3 and Fig. 9 respectively. As observed in Table 3 by choosing $n=25$, proper order of accuracy is achieved for the natural frequencies. In this case effects of rotary inertia of concentrated mass on natural frequencies of the shaft are also studied. Table 4 shows frequencies calculated for different values of rotary mass. It could be seen that by increasing rotary inertia at the end of the shaft, natural frequencies decrease.

Table 3. Five non-dimensional natural frequencies of Fixed-Free shaft with concentrated rotary mass at free end ($S_{1}=1$)

n	Ω_{1}	Ω_{2}	Ω_{3}	Ω_{4}	Ω_{5}
2	0.851517928	2.876615584			
3	0.860573158	-			
4	0.860330327	3.394367058			
5	0.860333616	3.426817116	5.203408673		
6	0.860335589	3.425737707	-		
7	0.860335589	3.425599900	6.159194051		
8	0.860333589	3.425619779	6.546823759	7.290816112	
9	0.860333589	3.425618396	6.428419631	-	
10	0.860333589	3.425618462	6.438134110	8.736254249	
11	0.860333589	3.425618459	6.437235888	-	
12	0.860333589	3.425618459	6.437302052	9.434569641	
13	0.860333589	3.425618459	6.437297977	9.545654697	11.08463488
14	0.860333589	3.425618459	6.437298188	9.527635393	-
15	0.860333589	3.425618459	6.437298179	9.529497610	12.21696700
16	0.860333589	3.425618459	6.437298179	9.529320727	-
17	0.860333589	3.425618459	6.437298179	9.529335421	12.62212231
18	0.860333589	3.425618459	6.437298179	9.529334338	12.64826509
19	0.860333589	3.425618459	6.437298179	9.529334409	12.64497124
20	0.860333589	3.425618459	6.437298179	9.529334405	12.64531781
21	0.860333589	3.425618459	6.437298179	9.529334405	12.64528454
22	0.860333589	3.425618459	6.437298179	9.529334405	12.64528744
23	0.860333589	3.425618459	6.437298179	9.529334405	12.64528721
24	0.860333589	3.425618459	6.437298179	9.529334405	12.64528722
25	0.860333589	3.425618459	6.437298179	9.529334405	12.64528722
Gorman[5]	0.860333589	3.425618459	6.437298179	9.529334405	12.64528722

Case III: Spring Support at Both Ends

Fig. 10 shows a shaft which is constrained by torsional springs at both ends. Torsional spring constants for constrains are $R_{0}=R_{1}=10$. Eqs. (25) and (27) should be applied for boundary conditions:

$$
\left\{\begin{array}{l}
K_{T 0} \Phi(0)-\frac{I_{p} G}{l} \Phi^{\prime}(0)=0, \tag{39}\\
K_{T 1} \sum_{k=0}^{n-1} \lambda^{k}\left(\frac{\Phi(0)}{(2 k)!}+\frac{\Phi^{\prime}(0)}{(2 k+1)!}\right)+\frac{I_{p} G}{l}\left(\sum_{k=1}^{n-1} \lambda^{k} \frac{\Phi(0)}{(2 k-1)!}+\sum_{k=0}^{n-1} \lambda^{k} \frac{\Phi^{\prime}(0)}{(2 k)!}\right)=0 .
\end{array}\right.
$$

Fig. 9. The first five mode shapes of Fixed-Free shaft with concentrated rotary mass at free end

Table 4. Non-dimensional natural frequencies for different values of rotary mass

S_{1}	Ω_{1}	Ω_{2}	Ω_{3}	Ω_{4}	Ω_{5}
0.01	1.555245129	4.665765142	7.776374078	10.88713010	13.99808974
0.02	1.540005942	4.620245731	7.701159370	10.78316424	13.86663336
0.05	1.496128952	4.491480046	7.495412093	10.51166997	13.54197680
0.1	1.428870011	4.305801413	7.228109772	10.20026259	13.21418568
0.2	1.313837716	4.033567790	6.909595795	9.892752565	12.93522128
0.5	1.076873986	3.643597167	6.578333733	9.629560343	12.72229877
1	0.860333589	3.425618459	6.437298179	9.529334405	12.64528722
2	0.653271187	3.292310021	6.361620392	9.477485705	12.60601344
5	0.432840720	3.203935001	6.314846121	9.445947898	12.58226467
10	0.311052848	3.173097177	6.299059360	9.435375976	12.57432316
20	0.221760394	3.157427009	6.291132834	9.430080093	12.57034821
50	0.140951676	3.147945917	6.286366784	9.426899546	12.56796196
100	0.099833639	3.144772523	6.284776452	9.425838874	12.56716634

Fig. 10. Shaft with torsional springs at both ends

Non-trivial solution is obtained setting the determinant of coefficient to zero

$$
\left|\begin{array}{cc}
K_{T 0} & -\frac{I_{p} G}{l} \tag{40}\\
\sum_{k=1}^{n-1} \frac{I_{p} G}{l} \frac{\lambda^{k}}{(2 k-1)!}+\sum_{k=0}^{n-1} \frac{K_{T 1} \lambda^{k}}{(2 k)!} & \sum_{k=1}^{n-1} \frac{I_{p} G}{l} \frac{\lambda^{k}}{(2 k)!}+\sum_{k=0}^{n-1} \frac{K_{T 1} \lambda^{k}}{(2 k+1)!}
\end{array}\right|=0 .
$$

Solving Eq. (40) leads to natural frequencies of the shaft which are presented in Table 5. In the last row of Table 5, the results obtained by Rao's [17] for this case are presented to be compared with ADM results. As observed, by increasing the value of n, obtained natural frequencies are converging to constant values and choosing appropriate n provides proper agreement with Rao results. Corresponding mode shape are achieved replacing eigenvectors in Eq. (18). The mode shapes obtained for spring supported shaft are illustrated in Fig. 11.

Table 5. Five non-dimensional natural frequencies of the shaft with symmetric spring supports

n	Ω_{1}	Ω_{2}	Ω_{3}	Ω_{4}	Ω_{5}
2	2.082630404				
3	-				
4	2.590311893				
5	2.631043158	4.375761700			
6	2.627496687	-			
7	2.627682451	5.165133582			
8	2.627675224	5.335597438	6.583034180		
9	2.627675438	5.304839307	-		
10	2.627675433	5.307519740	7.690710327		
11	2.627675433	5.307312380	-		
12	2.627675433	5.307325461	8.050383722		
13	2.627675433	5.307324769	8.068997608	10.12952065	
14	2.627675433	5.307324800	8.066968923	-	
15	2.627675433	5.307324799	8.067148604	10.82149045	
16	2.627675433	5.307324799	8.067134691	10.92320330	12.45176864
17	2.627675433	5.307324799	8.067135634	10.90717484	-
18	2.627675433	5.307324799	8.067135578	10.90885918	13.50413752
19	2.627675433	5.307324799	8.067135581	10.90869416	13.96873004
20	2.627675433	5.307324799	8.067135581	10.90870857	13.80693814
21	2.627675433	5.307324799	8.067135581	10.90870743	13.82066181
22	2.627675433	5.307324799	8.067135581	10.90870751	13.81903829
23	2.627675433	5.307324799	8.067135581	10.90870751	13.81920626
24	2.627675433	5.307324799	8.067135581	10.90870751	13.81919031
25	2.627675433	5.307324799	8.067135581	10.90870751	13.81919169
26	2.627675433	5.307324799	8.067135581	10.90870751	13.81919158
27	2.627675433	5.307324799	8.067135581	10.90870751	13.81919159
28	2.627675433	5.307324799	8.067135581	10.90870751	13.81919159
Rao[17]	2.627675	5.307324	8.067135	10.90871	13.81919

Fig. 11. The first five mode shapes of the shaft with symmetric spring supports
In this case effects of rotational springs on natural frequencies of the shaft are also investigated. Table 6 contains the results obtained for a shaft supported by symmetric springs. It could be observed that by increasing spring constant at the ends natural frequencies approach to the
natural frequencies of fixed-fixed shaft (Case I). Table 7 shows the results obtained for a shaft with asymmetric spring supports, i.e. when the spring constant at the beginning is increased, the spring constant at the end of the shaft is reduced. As observed in Table 7, the increase of the spring constant at the left end causes that natural frequencies of the shaft approach to the natural frequencies of Fixed-Free shaft [5].

Table 6. Effects of rotary springs on natural frequencies of the shaft with symmetric spring supports ($R_{0}=R_{1}=R$)

R	Ω_{1}	Ω_{2}	Ω_{3}	Ω_{4}	Ω_{5}
10^{-5}	0.004472132	3.141599020	6.283188490	9.42478008	12.56637221
5×10^{-5}	0.009999958	3.141624484	6.283201223	9.42478857	12.56637857
10^{-4}	0.014142018	3.141656314	6.283217138	9.42479918	12.56638653
5×10^{-4}	0.031621459	3.141910931	6.283344458	9.42488406	12.56645019
10^{-3}	0.044717633	3.142229144	6.283503601	9.42499016	12.56652977
5×10^{-3}	0.099958352	3.144772531	6.284776453	9.42583887	12.56716634
10^{-2}	0.141303613	3.147945981	6.286366792	9.42689955	12.56796196
5×10^{-2}	0.314916173	3.173104919	6.299060357	9.43537627	12.57432329
10^{-1}	0.443520788	3.203994477	6.314854018	9.44595026	12.58226567
5×10^{-1}	0.960188874	3.431014305	6.438197151	9.52961783	12.64540952
10^{0}	1.306542374	3.673194406	6.584620043	9.63168464	12.72324078
5×10^{0}	2.284453710	4.761288969	7.463676172	10.3266110	13.28624150
10^{1}	2.627675433	5.307324799	8.067135581	10.9087075	13.81919159
5×10^{1}	3.020903234	6.042646001	9.066034201	12.0918097	15.12062598
10^{2}	3.080011884	6.160138033	9.240491463	12.3211827	15.40231874
5×10^{2}	3.129076511	6.258153998	9.387233438	12.5163158	15.64540207
10^{3}	3.135322030	6.270644183	9.405966582	12.5412894	15.67661261
5×10^{3}	3.140336519	6.280673039	9.421009561	12.5613461	15.70168262
10^{4}	3.140964461	6.281928922	9.422893383	12.5638578	15.70482231
5×10^{4}	3.141466995	6.282933990	9.424400985	12.5658680	15.70733497
10^{5}	3.141529823	6.283059646	9.424589469	12.5661193	15.70764911
Fixed-Fixed	3.141592654	6.283185307	9.424777961	12.5663706	15.70796327

Table 7. Effects of rotary springs on natural frequencies of the shaft with asymmetric spring supports

R_{0}	R_{1}	Ω_{1}	Ω_{2}	Ω_{3}	Ω_{4}	Ω_{5}
10^{0}	10^{0}	1.306542374	3.673194406	6.584620043	9.631684636	12.72324078
5×10^{0}	0.5×10^{0}	1.573559191	4.140869227	6.976567722	9.941048936	12.97277072
10^{1}	10^{-1}	1.489910837	4.327111118	7.241068370	10.20959960	13.22148334
5×10^{1}	0.5×10^{-1}	1.571194942	4.630832566	7.707522144	10.78771219	13.87017248
10^{2}	10^{-2}	1.561585403	4.667886271	7.777647159	10.88803955	13.99879714
5×10^{2}	0.5×10^{-2}	1.570837666	4.704044085	7.838942874	10.97408526	14.10931018
10^{3}	10^{-3}	1.56863463	4.707893531	7.846262981	10.98468108	14.12311557
5×10^{3}	0.5×10^{-3}	1.570800476	4.711552792	7.852474814	10.99342109	14.13437545
10^{4}	10^{-4}	1.570702922	4.711939009	7.853209047	10.99448394	14.13576044
5×10^{4}	0.5×10^{-4}	1.570796742	4.712305345	7.853830924	10.99535893	14.13688774
10^{5}	10^{-5}	1.570786985	4.712343979	7.853904368	10.99546524	14.13702628
5×10^{5}	0.5×10^{-5}	1.570796368	4.712380617	7.853966563	10.99555275	14.13713902
10^{6}	10^{-6}	1.570795393	4.712384480	7.853973907	10.99556338	14.13715287
Fixed-Free $[5]$	1.570796327	4.712388980	7.853981634	10.99557429	14.13716694	

Case IV: Generally Constrained

The shaft shown in Fig. 12 is considered as the last study. In this case, shaft is constrained by concentrated rotary masses and rotary springs at both ends. Rotary inertia and spring constants are considered as $S_{0}=S_{1}=1$ and $R_{0}=R_{1}=1$. Boundary conditions of this shaft are assumed as the combination of the third and the fourth type of boundary conditions explained previously.

At $x=0$

$$
\begin{align*}
\left.I_{p} G \frac{\partial \theta(x, t)}{\partial x}\right|_{x=0}= & K_{T 0} \theta(0, t)+\left.J_{0} \frac{\partial \theta(x, t)}{\partial t}\right|_{x=0} \\
& \rightarrow\left(-K_{T 0}+J_{0} \omega^{2}\right) \Phi(0)+\frac{I_{p} G}{l} \Phi^{\prime}(0)=0 . \tag{41}
\end{align*}
$$

At $x=l$

$$
\begin{align*}
\left.I_{p} G \frac{\partial \theta(x, t)}{\partial x}\right|_{x=l}= & -\left(K_{T 1} \theta(l, t)+\left.J_{1} \frac{\partial \theta(x, t)}{\partial t}\right|_{x=l}\right) \\
& \rightarrow\left(K_{T 1}-J_{1} \omega^{2}\right) \Phi(0)+\frac{I_{p} G}{l} \Phi^{\prime}(0)=0 \tag{42}
\end{align*}
$$

Fig. 12. Generally constrained shaft
Introducing Eq. (18) into Eq. (43) one can obtain
$\left\{\begin{array}{l}\left(J_{0} \omega^{2}-K_{T 0}\right) \Phi(0)+\frac{I_{p} G}{l} \Phi^{\prime}(0)=0, \\ \left(K_{T 1}-J_{1} \omega^{2}\right) \sum_{k=0}^{n-1} \lambda^{k}\left(\frac{\Phi(0)}{(2 k)!}+\frac{\Phi^{\prime}(0)}{(2 k+1)!}\right)+\frac{I_{p} G}{l}\left(\sum_{k=1}^{n-1} \lambda^{k} \frac{\Phi(0)}{(2 k-1)!}+\sum_{k=0}^{n-1} \lambda^{k} \frac{\Phi^{\prime}(0)}{(2 k)!}\right)=0 .\end{array}\right.$
Setting the determinant of coefficient matrix to zero gives us natural frequencies as presented in Table 8. Similarly to the previous cases, the mode shapes for this generally constrained shaft are also obtained and shown in Fig. 13

Fig. 13. The first five mode shapes of generally constrained shaft

Table 8. Five non-dimensional natural frequencies of generally constrained shaft

n	Ω_{1}	Ω_{2}	Ω_{3}	Ω_{4}	Ω_{5}
2	0.793619736	1.634378870	3.270928527		
3	0.809185553	1.589227829	-		
4	0.808667320	1.599093153	3.698242421		
5	0.808675143	1.598370798	3.706180184	5.437343359	
6	0.808675073	1.598399011	3.707946648	-	
7	0.808675073	1.598398314	3.707693808	6.338181866	
8	0.808675073	1.598398326	3.707706498	6.681862007	7.470417128
9	0.808675073	1.598398326	3.707706568	6.583946495	-
10	0.808675073	1.598398326	3.707706516	6.591960166	8.864845819
11	0.808675073	1.598398326	3.707706520	6.591257104	-
12	0.808675073	1.598398326	3.707706520	6.591305822	9.544059542
13	0.808675073	1.598398326	3.707706520	6.591303047	9.649040503
14	0.808675073	1.598398326	3.707706520	6.591303177	9.632307301
15	0.808675073	1.598398326	3.707706520	6.591303172	9.634023590
16	0.808675073	1.598398326	3.707706520	6.591303172	9.633862407
17	0.808675073	1.598398326	3.707706520	6.591303172	9.633875635
18	0.808675073	1.598398326	3.707706520	6.591303172	9.633874673
19	0.808675073	1.598398326	3.707706520	6.591303172	9.633874736
20	0.808675073	1.598398326	3.707706520	6.591303172	9.633874732
21	0.808675073	1.598398326	3.707706520	6.591303172	9.633874732
Rao [17]	0.808675000	1.598398000	3.707706000	6.591303000	9.633881000

Table 9. Effects of constraining elements on natural frequencies of symmetric shaft ($S_{0}=S_{1}=S$ and $R_{0}=R_{1}=R$)

S	R	Ω_{1}	Ω_{2}	Ω_{3}	Ω_{4}	Ω_{5}
	0.01	0.129024761	2.633663390	5.309868383	8.068475539	10.90947486
	0.1	0.405894299	2.686702614	5.332783174	8.080573095	10.91640266
0.1	1	1.219177805	3.147512538	5.562954151	8.205151964	10.98783109
	10	2.598133469	5.081849252	7.386277179	9.591338725	11.89510802
	100	3.079434356	6.155403267	9.223825855	12.27917458	15.31309883
	0.01	0.099979161	1.724903497	4.05832025	6.851449522	9.826438758
	0.1	0.315567184	1.762544655	4.065614364	6.853368829	9.827140902
0.5	1	0.978635977	2.099863563	4.142011418	6.873157684	9.834286651
	10	2.462292525	4.024484452	5.151849044	7.145651403	9.920423910
	100	3.077016670	6.132420568	9.115391499	11.81922967	13.59094630
	0.01	0.081642095	1.309790315	3.673524697	6.584685577	9.631706320
	0.1	0.257958997	1.338660707	3.676510505	6.585276544	9.631901674
1	1	0.808675073	1.598398326	3.70770652	6.591303172	9.633874732
	10	2.267870949	3.158142749	4.169543095	6.665644662	9.655761080
	100	3.073730117	6.090170862	8.724369604	9.883854288	10.69866663
	0.01	0.042639850	0.623658691	3.264011152	6.346197450	9.467024543
	0.1	0.134830671	0.637465266	3.264210361	6.346225330	9.467032989
5	1	0.426103068	0.761880222	3.266235894	6.346505473	9.467117638
	10	1.337404751	1.522996552	3.290426251	6.349447028	9.467982974
	100	3.029713914	4.399942998	4.586972882	6.404900879	9.479045146

$$
\left|\begin{array}{cc}
J_{0} \omega^{2}-K_{T 0} & \frac{I_{p} G}{l} \tag{44}\\
\left(K_{T 1}-J_{1} \omega^{2}\right) \sum_{k=0}^{n-1} \frac{\lambda^{k}}{(2 k)!}+\frac{I_{p} G}{l} \sum_{k=1}^{n-1} \frac{\lambda^{k}}{(2 k-1)!} & \sum_{k=0}^{n-1} \lambda^{k}\left(\frac{\left(K_{T 1}-J_{1} \omega^{2}\right)}{(2 k+1)!}+\frac{I_{p} G}{l} \frac{1}{(2 k)!}\right)
\end{array}\right|=0 .
$$

In this case the effects of constraining elements (rotary springs and rotary mass) on natural frequencies of the shaft are also studied. Table 9 contains the results obtained for symmetric shaft. It is observed that by increasing spring constants at the ends, natural frequencies increase. But increasing the rotary inertia at the ends of the shaft leads to decreasing natural frequencies.

Table 10 shows the results obtained for asymmetric shaft. In this case, the values of rotary inertia at the ends are considered reverse of each other. It is also true about the spring constant. As displayed in Table 10 for certain values of rotary inertia, the natural frequencies of the shaft decrease with increasing constant R. On the other hand, for certain values of spring constants, the natural frequencies of the shaft increase with increasing constant S.

Table 10. Effects of constraining elements on natural frequencies of asymmetric shaft ($S=S_{0}=1 / S_{1}$ and $\left.R=R_{0}=1 / R_{1}\right)$

S	R	Ω_{1}	Ω_{2}	Ω_{3}	Ω_{4}	Ω_{5}
0.1	1	0.029652592	1.896667610	4.489986380	7.317278810	10.24798079
	2	0.026152016	2.181044171	4.673189102	7.413421858	10.29946177
	5	0.024612950	2.600365446	5.142114709	7.728773053	10.47719055
	10	0.024322762	2.841954501	5.599107760	8.228107822	10.83620475
	100	0.024214367	3.110383811	6.218681166	9.323087575	12.42059758
0.5	1	0.066248190	1.494648846	3.705783061	6.591570862	9.634148690
	2	0.058440110	1.790577029	3.776796030	6.605388629	9.638611339
	5	0.055009470	2.340314399	4.046146476	6.653975606	9.653137785
	10	0.054363676	2.731717161	4.593670479	6.766873847	9.681881975
	100	0.054123601	3.109868160	6.206930223	9.264214999	12.13527862
1	1	0.093557196	1.209762638	3.449785796	6.441842420	9.531085592
	2	0.082568277	1.468544527	3.475353387	6.445663561	9.532252611
	5	0.077745028	2.013272451	3.574145780	6.458242426	9.535909139
	10	0.076839203	2.530651855	3.830079762	6.483762899	9.542574442
	100	0.076504580	3.109074636	6.184322062	8.987945241	10.36896374
5	1	0.203757518	0.626812532	3.214109687	6.319624160	9.449092270
	2	0.182081844	0.757316830	3.215339284	6.319782254	9.449139349
	5	0.172689534	1.061338263	3.219355251	6.320270289	9.449283090
	10	0.170982734	1.430525860	3.227231812	6.321118809	9.449527433
	100	0.170396524	3.091912856	4.494970135	6.350207540	9.455120609
10	1	0.263075602	0.491144462	3.191700677	6.308384728	9.441595640
	2	0.247879358	0.562969164	3.191959672	6.308417857	9.441605498
	5	0.241147240	0.769956058	3.192900164	6.308534865	9.441640130
	10	0.240056243	1.034296495	3.194645408	6.308739469	9.441700025
	100	0.239795916	2.944060849	3.386024762	6.313612630	9.442914827

4. Conclusion

In this study a new approach called Adomian Decomposition Method was employed to solve torsional vibration problems of shafts. Obtained results indicate that present analysis is completely accurate, and provides a unified and systematic procedure which is simple and more straightforward than other methods. Other approximate approaches such as Rayleigh-Ritz method or Galerkin method may also be applicable to such cases. However, it may be difficult to determine higher natural frequencies and mode shapes on account of not choosing complete and correct admissible functions. In particular, the Adomian method provides immediate and visible symbolic terms of analytic solutions, as well as numerical solutions of the differential equations without linearisation or discretisation. Using ADM, the governing differential equation becomes a recursive algebraic equation and boundary conditions become simple algebraic frequency equations which are suitable for symbolic computation. Moreover, after some simple algebraic operations on these frequency equations, any i th natural frequency and the closed form series solution of any i th mode shape can be obtained. The most brilliant aspect of this method is that arbitrary order of accuracy is achievable by choosing proper truncation value for series. Parametric study of various cases showed that increasing the spring constants at the ends of the constrained shafts, the natural frequencies increase and that increasing the rotary inertia at the ends of the shaft leads to decreasing natural frequencies.

References

[1] Bernasconi, O., Solution for torsional vibrations of stepped shafts using singularity functions, International Journal of Mechanical Science 28 (1) (1986) 31-39.
[2] Zajaczkowski, J., Torsional vibration of shafts coupled by mechanisms, Journal of Sound and Vibration 116 (2) (1987) 221-237.
[3] Rao, M. A., Srinivas, J., Raju, V. B. V., Kumar, K. V. S. S., Coupled torsional-lateral vibration analysis of geared shaft systems using mode synthesis, Journal of Sound and Vibration 261 (2) (2003) 359-364.
[4] Chen, D. W., An exact solution for free torsional vibration of a uniform circular shaft carrying multiple concentrated elements, Journal of Sound and Vibration 291 (3-5) (2006) 627-643.
[5] Gorman, D. J., Free Vibration Analysis of Beams and Shafts, Wiley, New York, 1975.
[6] Wu, J. S., Chen, C. H., Tortional vibration analysis of gear-branched systems by finite element method, Journal of Sound and vibration 240 (1) (2001) 159-182.
[7] Adomian, G., A review of the decomposition method in applied mathematics, Journal of Mathematical Analysis and Applications 135 (2) (1988) 501-544.
[8] Adomian, G., A review of the decomposition method and some recent results for nonlinear equation, Mathematical and Computer Modeling 13 (7) (1990) 17-43.
[9] Adomian, G., SolvingFrontier problems of Physics: The decomposition method. Kluwer Academic Publishers, 1994.
[10] Adomian, G., Rach, R., Modified decomposition solution of linear and nonlinear boundary-value problems, Nonlinear Analysis Theory Methods \& Applications 23 (5) (1994) 615-619.
[11] Wazwaz, A. M., A reliable modification of Adomian decomposition method, Applied Mathematics and Computation 102 (1) (1999) 77-86.
[12] Wazwaz, A. M., El-Seyed, S. M., A new modification of the Adomian decomposition method for linear and nonlinear operators, Applied Mathematics and Computation 122 (3) (2001) 393-405.
[13] Babolian, E., Biazar, J., Solution of nonlinear equations by modified Adomian decomposition method, Applied Mathematics and Computation 132 (1) (2002) 167-172.
[14] Pamuk, S., An application for linear and nonlinear heat equations by Adomian decomposition method, Applied Mathematics and Computation 163 (1) (2005) 89-96.
[15] Lai, H. Y., Hsu, J. C., Chen, C. K., An innovative eigenvalue problem solver for free vibration of Euler-Bernoulli beam by using the Adomian decomposition method, Computers and Mathematics with Applications 56 (12) (2008) 3204-3 220.
[16] Farshidianfar, A., Tabassian, R., Khoee, O. K., Noei, S. J., Solving Free Vibration of Stepped Beam by Using the Adomian Decomposition Method, Proceedings of the ASME 2020 10th Biennial Conference on Engineering Systems Design and Analysis, Istanbul, ASME, 2010, 263-270.
[17] Rao, C. K., Torsional frequencies and mode shapes of generally constrained shafts and piping, Journal of sound and vibration 125 (1) (1988) 111-121.

[^0]: *Corresponding author. Tel.: +98 93521252 71, e-mail: rassoul.tabassian@gmail.com.

