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Application of patch test in meshless analysis of continuously
non-homogeneous piezoelectric circular plate
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Abstract

Proposed paper presents application of the patch test for meshless analysis of piezoelectric circular plate with
functionally graded material properties. Functionally graded materials (FGM) are the special class of composite
materials with continuous variation of volume fraction of constituents in predominant direction. Patch test analysis
is an important tool in numerical methods for addressing the convergence. Meshless local Petrov-Galerkin (MLPG)
method together with moving least-squares (MLS) approximation scheme is applied in the analysis. No finite
elements are required for approximation or integration of unknown quantities. Circular plate is considered as a
3-D axisymmetric piezoelectric solid. Considering the axial symmetry, the problem is reduced to a 2-dimensinal
one. Displacement and electric potential fields are prescribed on the outer boundaries in order to reach the state of
constant stress field inside the considered plate as required by the patch test and the governing equations. Values
of prescribed mechanical and electrical fields must be determined in order to comply with applied FGM gradation
rule. Convergence study is performed to assess the considered meshless approach and several conclusions are
finally presented.
c© 2013 University of West Bohemia. All rights reserved.
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1. Introduction

Piezoelectric materials have found wide range of applications as sensors and actuators in vari-
ety of advanced engineering systems and structures. Structures which incorporate piezoelectric
or another smart material are usually called adaptive structures. In this way various possibili-
ties of vibration suppression, structural health monitoring and shape control are available [1,8].
Smart materials are characterized by ability of converting energy form one form into another by
response to an external impulse, for piezoelectric materials it is conversion of mechanical en-
ergy to electrical one and opposite. Many piezoelectric structures have plate-like shapes. Such
devices can be found in acoustic ultrasound resonators or certain types of accelerometers and
sensors. Active piezoelectric elements laminated into multilayer composite plates can signifi-
cantly improve its structural properties [7]. Important investigations in the field of piezoelectric
plates were first introduced by Tiersten [19].

Recently also the functionally graded materials (FGMs) [18] have been widely applied in
engineering applications because of their excellent properties. FGMs are multi-component
composite materials in which the volume fraction of the material constituents is continuously
varying in a predominant direction. This feature can be used to tune the selected properties
into desired value. Originally these materials have been introduced to benefit from the ideal
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performance of its constituents, e.g. for thermal shielding applications where high thermal re-
sistance of the ceramics on the one side and mechanical strength of metals on the other side
is utilized. Similarly also piezoelectric parameters can be enhanced if various piezoelectric
ceramic materials are combined.

Design of structures incorporating piezoelectric and functionally graded materials requires
advanced computational techniques for analysis of these materials under various operational
conditions. Development of new computational methods for solving such complex problems
requires tools for checking the quality of computed results. The patch test can be considered as
one of such numerical procedures to address the convergence of the applied method. Conver-
gence, in sense of numerical computing, describes how the results, under specific conditions,
approach the exact solution. The patch test was developed primary for the finite element method
(FEM) however can be used also to other computational methods.

The test, in its original form, is based on selecting a patch (group) of finite elements and
imposing upon it nodal displacements corresponding to any state of constant strain. Rigid body
condition is also satisfied by the patch test if displacement field corresponding to zero strain is
imposed. If the FE model passes the patch test, one can expect that the solution will converge to
exact values as the mesh is refined. The patch test was first introduced by Irons and Razzaque [8]
to examine the soundness of a nonconforming plate element. In this original form, the patch
test was primarily a test for polynomial completeness, i.e. the ability to reproduce exactly a
polynomial of order k [4].

Even though the finite element method has encountered wide acceptance and success on
commercial market, it possess some drawbacks such as locking of elements, stress disconti-
nuity across elements or costly remeshing in large problems with moving boundaries. The
meshless methods, an attractive option to solve these drawbacks were developed in the last
decade. Among many meshless or meshfree methods available the meshless local Petrov-
Galerkin (MLPG) method [2, 3] has received considerable scientific attention. Focusing on
nodes instead of finite elements have certain advantages. High computational demands of
remeshing in large scale problems or possible shear locking of elements appearing in the FEM
can be efficiently eliminated. MLPG was recently applied to broad field of engineering prob-
lems including laminated plates [12], rectangular piezoelectric plates [13] or 3-D axisymmetric
piezoelectric solids [10]. Thermal bending of plates with functionally graded material prop-
erties analyzed by MLPG was presented in [11]. Recently, FGM circular plates were also
analyzed [14] and solutions for composite circular plates with piezoelectric layers were pre-
sented [16, 17]. The patch test of the MLPG solution was performed for the Laplace equation
on the square domain in [3] with successful results. Sladek et al. [15] used the patch test to
examine the accuracy of various meshless interpolations in non-homogeneous media. If the
MLPG method recovers the prescribed exact solution at all interior nodes, then the method
passes the patch test [2].

Presented paper is adressing the modified patch test for the functionally graded piezoelectric
circular plate analyzed by the MLPG method. The circular plate can be considered as a 3-D
axisymmetric body with axis of symmetry passing through the center of the plate coinciding
with vertical z-axis. With use of cylindrical coordinates the original 3-D axisymmetric problem
can be reduced to 2-D problem located on the cross-section of the plate as shown in Fig. 1.

The coupled electro-mechanical fields are described by constitutive relations and governing
partial differential equations (PDEs). Nodal points are spread on the analyzed domain without
any restrictions. Small local circular subdomain is introduced around each nodal point. Local
integral equations (LIEs) constructed from governing PDEs are defined over these circular sub-
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a) b)

Fig. 1. Geometry of the circular plate: a) original 3-D problem, b) assumed 2-D geometry

domains. For a simple shape of subdomains e. g. circles, numerical integration of LIEs can be
easily carried out. Moving Least-Squares (MLS) approximation scheme [2,6] is used to approx-
imate the spatial variations of electric and mechanical fields. Since position of nodal points is
not restricted by any finite elements, random distribution of nodes is possible, in general. There
is also no restriction on the shape of analysed domain, however one have to keep in mind that
sufficient ammount of nodes must be applied to adequately capture the geometry and mantain
an accurate approximation of nodal quantities.

An exponential variation of material properties is assumed for the FGM plate. In order
to obtain the state of constant stress satisfying the governing equations the axial displacement
and electric potential must be specified on the outer boundaries in a form that comply well with
prescribed FGM gradation. Compared to homogeneous materials the non-constant strain field is
present, thus the original conditions of the patch test must be modified. The essential boundary
conditions and prescribed mechanical and electrical fields are satisfied by the collocation of
MLS approximation expressions on boundary nodes.Convergence study for increasing number
of nodal points is finally conducted and results are discussed.

2. Governing equations

Piezoelectric materials are characterized by mutual coupling of elastic field and electric field.
Quasi-static approximation of electric field is assumed, thus mechanical and electrical forces are
balanced at any time instant. Governing equations for general piezoelectric body under static
loading are given by the elastostatic equations and the first Maxwell’s equation for the vector of
electric displacements as

σij,j(x) + Xi(x) = 0, (1)
Di,i(x) − R(x) = 0, (2)

where σij , Di, Xi, R are stresses, electric displacements, vector of body forces and volume
density of free charges, respectively. The linear constitutive equations for functionally graded
piezoelectric material can be expressed as

σij(x) = Cijkl(x)εkl(x) − ekij(x)Ek(x), (3)
Di(x) = eikl(x)εkl(x) + hik(x)Ek(x), (4)

where Cijkl(x), ekij(x), hik(x) represent spatially dependent elastic, piezoelectric and dielectric
material coefficients, respectively. The strain tensor εij and electric field vector Ek are related
to elastic displacements ui and electric potential ψ by

εij =
1

2
(ui,j + uj,i), (5)

Ek = −ψ,k. (6)
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Since the considered problem is assumed to be axisymmetric, it can be reduced to 2-D, if cylin-
drical coordinates x = [r, θ, z] are used. All physical quantities are then independent of angular
coordinate θ, thus x becomes x = [r, z]. Finally, for the axisymmetric piezoelectric body we
can rewrite the governing equations (1), (2) into the following cylindrical coordinate form

σrr,r(r, z) + σrz,z(r, z) +
σrr(r, z) − σθθ(r, z)

r
= 0, (7)

σrz,r(r, z) + σzz,z(r, z) +
σrz(r, z)

r
= 0, (8)

Dr,r(r, z) + Dz,z(r, z) +
Dr(r, z)

r
= 0, (9)

where volume density of body forces and volume density of free charges are vanishing. The
constitutive equations (3), (4) are rewritten for orthotropic piezoelectric materials in cylindrical
coordinates as

σrr = c11εrr + c12εθθ + c13εzz − e31Ez, (10)
σθθ = c12εrr + c11εθθ + c13εzz − e31Ez, (11)
σzz = c13εrr + c13εθθ + c33εzz − e33Ez, (12)
σrz = c44εrz − e15Er, (13)
Dr = e15εrz + h11Er, (14)
Dz = e31εrr + e31εθθ + e33εzz + h33Ez. (15)

The strain tensor εij is then related to elastic displacements ui as

εrr = ur,r, εθθ =
1

r
ur, εzz = uz,z, εrz = ur,z + uz,r. (16)

Note again that angular strain εθθ is nonzero and independent of angular coordinate.
Governing equations (7)–(9) must be followed by essential and/or natural boundary condi-

tions that are assumed for elastic and electrical fields as

ui(x, t) = ũi(x, t) on Γu, σijnj = T̃i(x, t) on Γt, (17)
ψ(x, t) = ψ̃(x, t) on Γp, Dini = Q̃(x, t) on Γq, (18)

where ni is the unit outward normal vector, Γu, Γt, Γp, Γq are parts of the global boundary Γ
with prescribed displacements ũi, tractions T̃i, electric potential ψ̃ and surface density of electric
induction field flux Q̃ (normal component of electric displacements), respectively.

3. Local integral equations

The MLPG method is based on the local weak form of the governing equations that is written
over local subdomain Ωs. The local subdomain is a small region taken for each node inside the
global domain [2]. The local subdomains could be of any geometrical shape. In this paper the
local subdomains posses circular shape — just for simplicity. The local weak forms of (5)–(7)
can be then written as
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∫
Ωs

σrr,r(r, z)p∗ dΩ +

∫
Ωs

σrz,z(r, z)p∗ dΩ +

∫
Ωs

1

r
[σrr(r, z) − σθθ(r, z)] p∗ dΩ = 0, (19)∫

Ωs

σrz,r(r, z)q∗ dΩ +

∫
Ωs

σzz,z(r, z)q∗ dΩ +

∫
Ωs

1

r
σrz(r, z)q∗ dΩ = 0, (20)∫

Ωs

Dr,r(r, z)w∗ dΩ +

∫
Ωs

Dz,z(r, z)w∗ dΩ +

∫
Ωs

1

r
Dr(r, z)w∗ dΩ = 0, (21)

where p∗(x), q∗(x), w∗(x) are arbitrary test functions. The Heaviside unit step functions are
chosen as test functions for the present problem in the same way as in [17]. The local weak
forms are the starting point for deriving local integral equations (LIEs) with the use of Gauss
divergence theorem∫

∂Ωs

σrr(r, z)nr dΓ +

∫
∂Ωs

σrz(r, z)nz dΓ +

∫
Ωs

1

r
[σrr(r, z) − σθθ(r, z)] dΩ = 0, (22)∫

∂Ωs

σrz(r, z)nr dΓ +

∫
∂Ωs

σzz(r, z)nz dΓ +

∫
Ωs

1

r
σrz(r, z) dΩ = 0, (23)∫

∂Ωs

Dr(r, z)nr dΓ +

∫
∂Ωs

Dz(r, z)nz dΓ +

∫
Ωs

1

r
Dr(r, z) dΩ = 0, (24)

where ∂Ωs represents the boundary of the local subdomain Ωs and nr, nz are the unit outward
normal vectors.

3.1. Meshless discretization

Traditional mesh-based approaches use mesh of finite elements to discretize the solution do-
main, however in the MLPG method the solution domain is discretized solely using nodal points
distributed without any restrictions in mutual position. Special techniques are required to ap-
proximate unknown quantities in terms of nodal values only. The moving least-squares (MLS)
approximation is used in this paper for the approximation of displacements ur, uz and electric
potential field ψ as

ur(r, z) =
n∑

i=1

φi(r, z)ûi
r, (25)

uz(r, z) =

n∑
i=1

φi(r, z)ûi
z, (26)

ψ(r, z) =

n∑
i=1

φi(r, z)ψ̂i, (27)

where the nodal values ûi
r, ûi

z, ψ̂i are so called fictitious parameters for the displacements
and electric potential, and φi(r, z) is called the MLS shape function associated with the node
i ∈ {1, 2, . . . , n} and n is the number of nodes whose support domains involve the evaluation
point (r, z). As a weight function, the 4th order spline-type function [2] is used, ensuring C1

continuity in the analyzed domain. In the similar manner also the appropriate derivatives can
be obtained with use of the shape function derivative as

uj,k(r, z) =

n∑
i=1

φi
,k(r, z)ûi

j , ψ,k(r, z) =

n∑
i=1

φi
,k(r, z)ψ̂i, (28)

where φi
,k(r, z) represents the MLS shape function derivative.
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Applying the trial functions given by (25)–(27) for approximation of ur(r, z), uz(r, z),
ψ(r, z) and their derivatives in constitutive relations (10)–(15) and their subsequent insertion
into local integral equations (22)–(24) is leading to the discretized local integral equations in
the form

n∑
i=1

ûi
r

∫
∂Ωs

[
c11(x)nrφ

i
,r(r, z) +

c12(x)
r

nrφ
i(r, z) + c44(x)nzφ

i
,z(r, z)

]
dΓ +

n∑
i=1

ûi
r

∫
Ωs

[
c11(x)

r
φi

,r(r, z) +
c12(x)

r2
φi(r, z) − c11(x)

r2
φi(r, z) − c12(x)

r
φi

,r(r, z)
]

dΩ +

n∑
i=1

ûi
z

∫
∂Ωs

[
c13(x)nrφ

i
,z(r, z) + c44(x)nzφ

i
,r(r, z)

]
dΓ + (29)

n∑
i=1

ψ̂i

∫
∂Ωs

[
e31(x)nrφ

i
,z(r, z) + e15(x)nzφ

i
,r(r, z)

]
dΓ = 0,

n∑
i=1

ûi
r

∫
∂Ωs

[
c44(x)nrφ

i
,z(r, z) +

c13(x)
r

nzφ
i(r, z) + c13(x)nzφ

i
,r(r, z)

]
dΓ +

n∑
i=1

ûi
r

∫
Ωs

c44(x)
r

φi
,z(r, z) dΩ +

n∑
i=1

ûi
z

∫
∂Ωs

[
c33(x)nzφ

i
,z(r, z) + c44(x)nrφ

i
,r(r, z)

]
dΓ +

n∑
i=1

ûi
z

∫
Ωs

c44(x)
r

φi
,r(r, z) dΩ +

n∑
i=1

ψ̂i

∫
Ωs

e15(x)
r

φi
,r(r, z) dΩ + (30)

n∑
i=1

ψ̂i

∫
∂Ωs

[
e15(x)nrφ

i
,r(r, z) + e33(x)nzφ

i
,z(r, z)

]
dΓ = 0,

n∑
i=1

ûi
r

∫
∂Ωs

[
e15(x)nrφ

i
,z(r, z) +

e31(x)
r

nzφ
i(r, z) + e31(x)nzφ

i
,r(r, z)

]
dΓ +

n∑
i=1

ûi
r

∫
Ωs

e15(x)
r

φi
,z(r, z) dΩ +

n∑
i=1

ûi
z

∫
∂Ωs

[
e15(x)nrφ

i
,r(r, z) + e33(x)nzφ

i
,z(r, z)

]
dΓ +

n∑
i=1

ûi
z

∫
Ωs

e15(x)
r

φi
,r(r, z) dΩ −

n∑
i=1

ψ̂i

∫
∂Ωs

[
h11(x)nrφ

i
,r(r, z) + h33(x)nzφ

i
,z(r, z)

]
dΓ − (31)

n∑
i=1

ψ̂i

∫
Ωs

h11(x)
r

φi
,r(r, z) dΩ = 0.

4. The patch test

If the patch test is applied to a homogeneous piezoelectric material, the linear displacement and
potential field specified on the outer boundary will result into constant mechanical strains and
constant electric field vector and thus also the governing equations (1) and (2) will be satisfied.
However in case of continuously non-homogeneous FGM material imposed linear mechanical
and electrical fields will satisfy condition of constant strain, but governing equations will not be
satisfied and some external load would be required to maintain equilibrium. This is the reason
why the modified patch test that does not require constant strain field is applied in the present
paper. Nonlinear displacement and electric potential field are applied resulting in non-constant
strains; however equilibrium is maintained for the analyzed plate.
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Properties of functionally graded materials can be specified during their manufacturing pro-
cess according the specific requirements of the design application. In the problem considered
here the exponential variation of material properties in z direction is specified as

P (z) = P (0)eδz/h, (32)

where P is graded material property, P (0) is material property at the bottom of the plate, h is the
height of the plate and δ is a gradation constant. Change of the gradation constant is resulting
to the change of graded material property along the thickness of the plate.

Considering the variation of material properties (27), the axial displacement uz and electric
potential ψ can be specified on the outer boundaries of the plate as

uz = uz0 + Ae−δz/h, ψ = ψ0 + Be−δz/h, (33)

where uz0, ψ0, A are arbitrarily chosen constants, while the constant B can be determined after
inserting (33) into the governing equations with vanishing the radial displacement ur = 0.

Then the constant B is specified as

B = −c
(0)
13

e
(0)
31

A. (34)

Applying the relations (32)–(34) in the constitutive equation (10) for the radial stress gives

σrr = c
(0)
11 eδz/h0 + c

(0)
12 eδz/h 0

r
+ c

(0)
13 eδz/h

(
−Aδ

h

)
e−δz/h + e

(0)
31 eδz/h

(
c
(0)
13

e
(0)
31

Aδ

h

)
e−δz/h =

= −c
(0)
13

(
Aδ

h

)
+ c

(0)
13

(
Aδ

h

)
= 0. (35)

In the same way we obtain the expressions of remaining constitutive equations (11)–(15) as

σθθ = σrz = Dr = 0, (36)

σzz =

(
−c

(0)
33 + e

(0)
33

c
(0)
13

e
(0)
31

)
Aδ

h
= const., (37)

Dz = −
(

e
(0)
33 + h

(0)
33

c
(0)
13

e
(0)
31

)
Aδ

h
= const. (38)

Recall that in homogeneous media, the constant values of the secondary fields (stresses and
electric displacements) and the constant values of the gradients of the primary fields (elastic
displacements and the electric potential) are obeyed simultaneously. Now in FGM case, the
use of the exponential variation for the prescribed axial displacement field and electric potential
field (33) leads to exponential (non-constant) variation of axial strain and axial electric field
vector

Ez = −ψ,z =
c
(0)
13

e
(0)
31

Aδ

h
e−δz/h, εzz = uz,z = −Aδ

h
e−δz/h. (39)

This clearly denies the constant strain conditions. Nevertheless, the stresses as well as electric
displacements are constant like in the case of patch test for homogeneous media. Moreover, the
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considered fields represent the exact solution of the governing equations and can be employed
in the patch test involving FGM.

The patch test is suitable for testing new computational methods because it directly offers
an “exact” benchmark solution that can be utilized for the error estimation and convergence
analysis. Equivalently the expression (33) can be considered as the exact solution to the plate
subjected to applied tension

T̃z(z = 0) =

(
c
(0)
33 − e

(0)
33

c
(0)
13

e
(0)
31

)
Aδ

h
, (40)

T̃z(z = h) =

(
−c

(0)
33 + e

(0)
33

c
(0)
13

e
(0)
31

)
Aδ

h
, (41)

T̃r(r, z) = 0 (42)

and prescribed potential field on the outer boundary

ψ(r, z) = ψo −
c
(0)
13

e
(0)
31

Ae−δz/h. (43)

In the MLPG solution, the collocation approach can be used to impose essential boundary
conditions directly using the MLS approximations (25)–(27) for primary field variables directly.
In the present paper these approximations are applied to specify the expression (33) on the
boundary nodes.

5. Numerical example

The patch test is performed on the circular plate with radius r0 = 0.3 m and thickness h =
0.03 m. PZT-4 piezoelectric material is considered as bottom material with properties taken
from [17]. The considered rectangular geometry is discretized with nodal points only and no
restrictions are set for the mutual position of nodes. Vanishing radial displacement and expo-
nentially varying axial displacement is prescribed on the boundary nodes according to (33). The
input constants are chosen as uz0 = 0.03 m, ψ0 = 5 × 107 V, A = 0.01 together with grading
exponent δ = 0.693 1. Using this exponent is leading to material properties increased two times
at the top of the plate, since according to (32) one gets

P (z = h) = P (0)e0.693 1h
h = 2P (0). (44)

Five nodal distributions were selected as 3×3, 5×5, 9×5, 11×7 and 15×7 corresponding to
total 9, 25, 45, 77 and 105 nodes, respectively. For each nodal distribution the radius of support
domain is chosen to cover all nodal points in order to avoid the sensitivity of the model to this
parameter. The radius of support domain [2] is an important parameter for MLS approximation.
It determines the number of nodes n that are used for approximation of unknown quantities in
(25)–(28).

Numerical results for the axial displacement field uz(r, z) and electric potential field ψ(r, z)
are shown in Fig. 2 for the case with 11 × 7 nodal distribution. According to (35)–(37), the
resulting radial stress and shear stress must vanish while axial stress should be constant. Results
for these stresses evaluated at nodes located in the middle of the plate shown in Fig. 3 confirm
this statement.
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Fig. 2. Resulting axial displacement (left) and electric potential distribution (right)

Fig. 3. Stress distribution taken at the middle of the plate (z = h/2)

Using the exact benchmark solution, one can compute relative errors of the numerical anal-
ysis. Relative errors are computed for axial displacements. The relative error for every node is
specified in percentage as

e = 100
|unum

z − uexact
z |

|uexact
z | [%], (45)

where unum
z represents computed value of axial displacement and uexact

z represents “exact” so-
lution as obtained by straightforward use of (33). Fig. 4 shows the distribution of relative error
for 11 × 7 nodal distribution.

As can be seen in Fig. 4, relative error is much higher for the interior nodes compared to
nodes on the boundary. The axial displacement on the boundary nodes is specified by the MLS
approximation of (33) while for the interior nodes the results are obtained from the discretized
LIE (30). The numerical integration of domain integrals in LIEs is probably causing the errors.
Spline-type weight functions used in MLS approximation may generate complicated shape over
the local subdomain Ωs, which may be difficult to integrate. Breitkopf et al. [5] proposed custom
integration scheme to integrate MLS shape functions correctly. However in the present paper,
the standard Gauss integration scheme is chosen, since the error is in the acceptable level.
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Fig. 4. Relative nodal error distribution over discretized plate

It may be convenient to specify other type of error estimation that would tackle the error of
the numerical solution from the global viewpoint. Averaged percentage error [15] was intro-
duced for this reason as

AE = 100
‖unum

z − uexact
z ‖

‖uexact
z ‖ [%], (46)

where the norm is given as ‖∗‖ =
(∑Nt

a=1 [∗ (xa)]2
) 1

2
and Nt is the total number of nodes

used in the analysis. Using this error estimate the convergence of the method for varying nodal
densities can be determined as shown in Fig. 5. Both the axial displacement and the electric
potential convergence are analyzed. Results show that the axial displacement is reaching better
accuracy than the electric potential; however the convergence rate for both quantities is almost
the same. The convergence curve for the axial displacement also indicates the increase of
accuracy with increasing the number of nodes in z-axis direction, since the material gradation
is in the same direction.

Fig. 5. Averaged relative error distribution and convergence rate
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6. Conclusion

The patch test is an important tool used in development of new numerical computational tech-
niques. In the present paper the patch test is used to examine convergence of meshless solution
for functionally graded piezoelectric circular plate. The employed meshless MLPG method is
a truly meshless method since no elements are required neither for approximation nor for inte-
gration of unknowns. The MLS approximation is applied to approximation of unknown elastic
as well as electric quantities.

The patch test analysis of material with constant material properties requires constant strain
field (produced by applied linear displacement field) to maintain the equilibrium, this is how-
ever not the case for continuously non-homogeneous material. Non-linear distribution of dis-
placement and electrical fields were derived as the exact solution of the governing equations
involving the exponential material gradation rule. The numerical example showed that the de-
veloped formulation passed the patch test with positive convergence for increased number of
nodes.

The patch test was presented as a simple tool for verification of new computer codes since
the data are easy to prepare and the exact benchmark results are instantly applicable for deter-
mination of accuracy and convergence of numerical results.
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