
COMPARING RENDERING METHODS FOR JULIA SETS

V. Drakopoulos

Department of Informatics and Telecommunications, Theoretical Informatics

University of Athens, Panepistimioupolis

157 84, Athens

Greece

vasilios@di.uoa.gr http://cgi.di.uoa.gr/~vasilios

ABSTRACT

Sequential rendering methods for the graphical representation of Julia sets are compared. Two

groups of methods are presented. In the �rst, the attractor of the Julia set is rendered and, in the

second, the complement of the attractor is rendered. Examples of images obtained using these

methods are also given.

Keywords: Attractor, Julia set, rendering methods

1 INTRODUCTION

One fascinating aspect of fractals is the beauty

of their graphical representation. This paper is

devoted to a discussion of various fractal aspects

involved in the polynomial pc: C ! C with

pc(z) = z
2 + c; c 2 C : (1)

The dynamics of pc is an enormously rich foun-

tain of fractal structures. Although the fractal

sets generated from the above-mentioned trans-

formation have been discussed extensively in the

literature, as far as we know, no previously pub-

lished work exists that comprises the best known

sequential visualisation methods and whose scope

is the comparison of their performances. In order

to present these methods, we must �rst introduce

some useful terminology.

A periodic orbit or cycle is a set of k � 2 distinct

points fa1; : : : ; akg such that

pc(a1) = a2; : : : ; pc(ak�1) = ak; pc(ak) = a1;

so, in fact, for each j = 1; 2; : : : ; k, z = aj is a

solution of pk
c
(z) = z, where pk

c
(z) = pc(p

k�1
c

(z)).

Hence, a point a is periodic, if pk
c
(a) = a for

some k > 0; it is repelling, indi�erent or attract-

ing depending on whether j(pk
c
)0(a)j is greater

than, equal to or less than one, respectively. If

j(pk
c
)0(a)j = 0, a is termed superattracting. If

k = 1, z is called a �xed point of pc. Naturally, at-

tracting means that points z0 near a will generate

orbits

z0 7! z1 7! z2 7! z3 : : :

zk+1 = pc(zk), k = 0; 1; : : :, which approach a. By

collecting all such points one obtains the basin of

attraction of an attracting �xed point a

Ac(a) = fz 2 C : lim
k!1

p
k

c
(z) = ag: (2)

It is obvious that 1 is an attracting �xed point

of pc. The boundary of Ac(1) is denoted by

@Ac(1) and is called the Julia set of pc. We also

use the symbol Jc = @Ac(1). Other than Ac(1)

and Jc, also to be considered is a third object

Kc = C nAc(1)

= fz 2 C : pk
c
(z) stays bounded for all kg

sometimes called the �lled-in Julia set. Obvi-

ously, we have that

@Kc = Jc = @Ac(1);

i.e., Jc separates competition between orbits be-

ing attracted to1 and orbits remaining bounded

as k !1.

The rest of this paper is organised as follows.

Firstly, after describing briey the most widely

used sequential methods for constructing Julia

sets, we present eÆcient sequential algorithms for

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace at University of West Bohemia

https://core.ac.uk/display/295553217?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

rendering purposes. As examples we give sequen-

tial algorithms in the form of ready-to-use code

to attack the problem of determining the Julia set

by inverse iterating and by examining the nearest

neighbour pixels. Next, we compare all the imple-

mented sequential methods with each other in or-

der to �nd the best balance between speedup and

accuracy. Finally, some conclusions are drawn

along with a discussion of implementational is-

sues.

2 VISUALISATION METHODS

REVISITED

We consider methods representing Julia sets as

they result from iterating the complex quadratic

polynomial (1). The methods for rendering Julia

sets are diagrammatically represented in Fig. 1.

For clarity, these methods are subdivided into two

quadratic iteration
z->z*z + c

complement of

geometry
only

geometry
and dynamics

distance
estimator

escape time

continuous

potential
function(level sets)

Julia set

escape time

(filled-in)
(filled-in) Julia set

Figure 1: An overview of the methods for

rendering Julia sets

groups: those for the (�lled-in) Julia sets and

those for the corresponding complements. In a

particular picture both aspects are usually com-

bined. There are three approaches to the last

group, namely methods representing Euclidean

distance from the �lled-in Julia set; repelling

methods, computing the escape time of a point

from Kc and methods using (electrostatic) poten-

tial functions of theKc. The last two methods are

equivalent, the escape time is proportional to the

logarithm of the potential function. For a more

detailed study of Julia sets and the sequential al-

gorithms for rendering them an interesting refer-

ence is [Peitgen88].

2.1 Inverse Iteration Method

In general, it is not obvious at all how to ob-

tain a reasonable picture of Jc, though there is an

immediate algorithm (Inverse Iteration Method -

IIM) obtained from the following characterisation

due to Julia and Fatou: For any c, the equation

pc(z) = z has two �nite solutions u0 6= 1 6= v0 -

the �xed points. If c 6= 1=4, then at least one of

them is a repelling �xed point, say u0. Then one

has

Jc = fz 2 C : pk
c
(z) = u0 for some k 2 Zg:

Note that, in general, pk
c
(z) = u0 has 2

k solutions,

i.e. the total number of iterated preimages of u0
obtained by recursively solving the equation z2+

c = u0 is

n(k) = 2k+1 � 1; k = 0; 1; : : : :

The recursion is nicely represented in a binary

tree as in Fig. 2(a). For the whole tree one needs

0

1 2

3 4

27 28 29 30

5 6

7 8 9 10 11 12 13 14

18171615 19 20 21 22 23 24 25 26

(a)
0

1 2

3 4

5 6

7 8 9 10

11 12

13 14 15 16

17 18

19 20

21 22 23 24

25 26

27 28 29 30

(b)

Figure 2: Binary tree structures

all 2k preimages of the level k in order to compute

level k + 1. If one, however, anticipates that N

iterations suÆce, then there is an obvious way to

label the tree as in Fig. 2(b) (depth-�rst search),

which requires only 2(N � 1) (as compared to

2N�1) units of storage.

Another approach is obtained by choosing one of

the two roots at random at each stage of the re-

cursion for preimages. This amounts to a ran-

dom walk on the tree in Fig. 2(a). Usually the

method will work for almost all initial u0 2 C .

The �rst few preimages will have to be excluded

from the plot. Iterated preimages will approxi-

mate Jc. Formally, this is a typical example for

an iterated function system (IFS) with maps

w1(u) = +
p
u� c and w2(u) = �

p
u� c;

where any set A of points so far computed

yields a larger set w1(A) [w2(A). Barnsley in

[Barnsley93] and Hepting et al. in [Hepting91]

explore this viewpoint in detail.

The IIM is rather fast in providing a �rst impres-

sion of the shape of the Julia set, although for

some parameter choices it takes a very long time

to obtain all the details (Fig. 3(a)). This is why

(a) (b)

(c) (d)

Figure 3: A Julia set obtained by (a) the

IIM, (b) the MIIM, (c) the BSM and (d)

the MBSM

variations of IIM or totally di�erent methods are

necessary. Note that this method belongs to the

second method set of the �rst group (see Fig. 1).

In the case of the IIM the algorithm is:

void Julia::IIMethod(CDC *pDC)

{

int x, y;

int times = 0;

int maxdepth = 15;

Stack<IIMRec> CStack;

IIMRec Data, root;

Data.label = 0;

if (C.Re()==0 && C.Im()==0)

Data.Z = Complex(1,0);

CStack.push(Data);

while (!CStack.isEmpty()){

CStack.pop(Data);

x = round((Data.Z.Re()-Xmin)/dx);

y = round((Data.Z.Im()-Ymin)/dy);

pDC->SetPixel(x,y,RGB(0,0,100));

if (Data.label<maxdepth){

root.Z = sqrtC(Data.Z-C);

root.label = Data.label + 1;

CStack.push(root);

root.Z = (-1)*root.Z;

CStack.push(root);

}

}

}

2.2 Modi�ed Inverse Iteration Method

A detailed mathematical motivation is given in

[Peitgen86], pp. 37{38. The idea of the algorithm

is to make up for the nonuniform distribution of

the complete tree of iterated preimages by select-

ing an appropriate subtree, which advances to a

much larger level of iteration k and forces preim-

ages to hit sparse areas more often.

Put Jc on a square lattice with small mesh size

�. Then for any box B of that mesh, stop using

points from B for the preimage recursion, pro-

vided a certain number Nmax of such points in

B have been used. Optimal choices of B and

Nmax depend very much on Jc and other com-

putergraphical parameters, such as the pixel res-

olution of the given system.

Another variant attempts to estimate the con-

tractiveness of w1 and w2 (see IIM). Given any

point umk
6= u0 on the k-th level of the binary

tree in Fig. 2(a) there is a unique path on the

tree from umk
to u0 which is determined by the

forward iteration of umk
(k times): pk

c
(umk

) = u0:

Now, the idea is to stop using umk
in the preim-

age recursion (i.e. to cut o� the subtree starting

at umk
), provided that the derivative

j(pk
c
)0(umk

)j =
�����
kY
i=1

p
0

c
(umi

)

�����
exceeds some bound D 2 [0; 1), which is the pa-

rameter of the algorithm. Here we have written

umi
= p

k�i

c
(umk

); i = 0; : : : ; k:

Of course, the above derivatives can be cheaply

accumulated in the course of the recursion:

NewDerivative = 2 � OldDerivative � jumi
j:

In the case of the MIIM the algorithm is:

void Julia::MIIMethod(CDC *pDC)

{

int x, y;

long iter = 0;

Stack<MIIMRec> CStack;

MIIMRec Data, root;

Data.label = 0;

Data.Deriv = 1;

if (C.Re()==0 && C.Im()==0)

Data.Z = Complex(1,0);

CStack.push(Data);

while (!CStack.isEmpty()

&& ++iter<SENTINEL){

CStack.pop(Data);

x = round((Data.Z.Re() - Xmin)/dx);

y = round((Data.Z.Im() - Ymin)/dy);

pDC->SetPixel(x,y,RGB(0,0,100));

if (Data.label<MAXDEPTH

&& Data.Deriv<Dbound){

root.Z = sqrtC(Data.Z-C);

root.label = Data.label + 1;

root.Deriv = 2*Data.Deriv

*root.Z.abs();

CStack.push(root);

root.Z = (-1)*root.Z;

CStack.push(root);

}

}

}

2.3 Boundary Scanning Method

The Boundary Scanning Method, or BSM for

short, is even more elementary than IIM. It uses

the de�nition of Kc, Eq. (3), and Ac(1), Eq. (2),

in a straightforward manner.

Similar to MIIM, this method is based on a lat-

tice - let's assume a square lattice of mesh size

�, which could be just the pixel lattice. Choose

Nmax - a large integer - and R - a large number.

Now let q be a typical pixel in the lattice with

vertices vi; i = 1; 2; 3; 4. The algorithm consists

in a labeling procedure for the vi's:

vi is labelled 0; provided vi 2 Ac(1);

vi is labelled 1; provided vi 2 Kc:

Then q is called completely labelled, provided the

vertices of q have labels which are not all the

same. A good approximation of Jc is obtained

by coloring all completely labelled pixels in the

lattice (Fig. 3(c)). Thus it remains to decide

whether vi 2 Ac(1). The answer is yes, provided

that jpk
c
(vi)j > R for some k � Nmax. Otherwise,

it is assumed that vi 2 Kc. Note that BSM be-

longs to the �rst method set of the �rst group (see

Fig. 1). In the case of the BSM the algorithm is:

int Julia::SetLevel

(double x, double y)

{

double SQRx, SQRy, temp;

int iter = 0;

SQRx = x*x;

SQRy = y*y;

for(;(iter<Nmax)

&& (SQRx+SQRy<Rmax);iter++){

temp = SQRx-SQRy+C.Re();

y = 2*x*y+C.Im();

x = temp;

SQRx = x*x;

SQRy = y*y;

}

return iter;

}

int Julia::CompletelyLabelled

(double x, double y)

{

int labelledpixels=0;

if (SetLevel(x,y+dy)==Nmax)

labelledpixels++;

if (SetLevel(x,y-dy)==Nmax)

labelledpixels++;

if (SetLevel(x+dx,y)==Nmax)

labelledpixels++;

if (SetLevel(x-dx,y)==Nmax)

labelledpixels++;

return (labelledpixels<4

&& labelledpixels>0);

}

Rec Julia::PointInSet(int i, int j)

{

int OnBoundary=0;

double x, y;

Rec R;

Complex Z0 = RFP(C);

R.i = round((Z0.Re()-Xmin)/dx);

R.j = round((Z0.Im()-Ymin)/dy);

if (!CompletelyLabelled(R.i, R.j)){

i = 2*MAXROW/3;

y = Ymin;

x = Xmin + i*dx;

for (j=1; j<MAXCOL

&& !OnBoundary; j++){

y += dy;

OnBoundary =

CompletelyLabelled(x,y);

}

R.i = i; R.j = j-1;

}

return R;

}

void Julia::BSMethod(CDC *pDC)

{

double x, y;

x = Xmin;

for(int i=1;i<=MAXCOL;i++){

x+=dx; y=Ymin;

for(int j=1;j<=MAXROW;j++){

y+=dy;

if (CompletelyLabelled(x,y))

pDC->

SetPixel(i,j,RGB(0,0,100));

}

}

}

2.4 Modi�ed Boundary Scanning Method

It is obvious that scanning all pixels of a lattice

will be very time consuming, in particular for pix-

els inside Kc. If Jc is connected, a much more

economical algorithm is obtained in the follow-

ing way. Assume that q0 is a pixel in the lattice

which is completely labelled. Pixel q0 is used as

a seed for a neighbourhood search process: Move

all (immediately) neighbouring pixels of q0 onto

a stack. Then test each pixel in the stack in three

steps:

1. compute labels of vertices of a pixel from the

stack;

2. index whether pixel is completely labelled as

in BSM;

3. if last pixel is completely labelled, push all

those (immediate) neighbours that have not been

tested before onto the stack (Fig. 3(d)).

In the case of the MBSM the algorithm is:

void Julia::MBSMethod(CDC *pDC)

{

Image JSet(MAXCOL, MAXROW);

Stack<Rec> stack;

double X, Y;

Rec Z = PointInSet();

Rec adjZ;

stack.push(Z);

while (!stack.isEmpty()) {

stack.pop(Z);

X = Xmin + Z.i*dx;

Y = Ymin + Z.j*dy;

if (CompletelyLabelled(X,Y)){

pDC->

SetPixel(Z.i,Z.j,RGB(0,0,100));

JSet(Z.i, Z.j)=1;

adjZ.i = Z.i; adjZ.j = Z.j+1;

X = Xmin + adjZ.i*dx;

Y = Ymin + adjZ.j*dy;

if (JSet(adjZ.i,adjZ.j) == 0)

stack.push(adjZ);

adjZ.i = Z.i; adjZ.j = Z.j-1;

X = Xmin + adjZ.i*dx;

Y = Ymin + adjZ.j*dy;

if (JSet(adjZ.i,adjZ.j) == 0)

stack.push(adjZ);

adjZ.i=Z.i+1; adjZ.j=Z.j;

X = Xmin + adjZ.i*dx;

Y = Ymin + adjZ.j*dy;

if (JSet(adjZ.i,adjZ.j) == 0)

stack.push(adjZ);

adjZ.i = Z.i-1; adjZ.j = Z.j;

X = Xmin + adjZ.i*dx;

Y = Ymin + adjZ.j*dy;

if (JSet(adjZ.i,adjZ.j) == 0)

stack.push(adjZ);

adjZ.i = Z.i+1; adjZ.j = Z.j+1;

X = Xmin + adjZ.i*dx;

Y = Ymin + adjZ.j*dy;

if (JSet(adjZ.i,adjZ.j) == 0)

stack.push(adjZ);

adjZ.i = Z.i+1; adjZ.j = Z.j-1;

X = Xmin + adjZ.i*dx;

Y = Ymin + adjZ.j*dy;

if (JSet(adjZ.i,adjZ.j) == 0)

stack.push(adjZ);

adjZ.i = Z.i-1; adjZ.j = Z.j-1;

X = Xmin + adjZ.i*dx;

Y = Ymin + adjZ.j*dy;

if (JSet(adjZ.i,adjZ.j) == 0)

stack.push(adjZ);

adjZ.i=Z.i-1; adjZ.j=Z.j+1;

X = Xmin + adjZ.i*dx;

Y = Ymin + adjZ.j*dy;

if (JSet(adjZ.i,adjZ.j) == 0)

stack.push(adjZ);

}

}

}

2.5 Level Set Method

The Level Set Method, or LSM for short, also

called the Escape Time Method, is just a very

powerful variant of BSM that causes Jc to stand

out against a spectrum of colour bands approach-

ing from without or within (see [Hoggar92]). We

�x a square lattice of pixels, choose a large integer

Nmax (iteration resolution) and an arbitrary set

T (target set) containing 1, so that Kc � C n T .
For example, T = fz 2 C : jzj � 1="g, " small, is

a disk around 1. Now we assign for each pixel

(a) (b)

(c) (d)

Figure 4: A Julia set obtained by (a) the

LSM, (b) the LSM but showing the border

of the encirclements, (c) the CPM and (d)

the DEM

q from the lattice an integer label lc(q;T) in the

following way:

lc(q;T) =

8>><
>>:

k; provided p
i

c
(q) =2 T and

p
k

c
(q) 2 T for 0 � i < k

and k � Nmax

0; otherwise.

The interpretation of a nonzero lc(q;T) is ob-

vious: q escapes to 1 and lc(q;T) is the \es-

cape time", measured in the number of iterations,

needed to hit the target set T around1. The col-

lection of points of a �xed label, say k, constitutes

a level set (Fig. 4(a),(b)).

2.6 Continuous Potential Method

The Continuous Potential Method, or CPM for

short, allows to represent the potential of Kc as

a smooth parameterised surface

potc: C nKc ! C � R;

which is approximately given by

potc(z0) =

�
z0;

log jznj
2n

�
;

where zk = z
2
k�1

+c, k = 1; 2; : : : ; n, n = lc(z0;T)

and T = fz 2 C : jzj � 1="g for small "

(Fig. 4(c)). Note that the level curves of potc
are circle-like far outside.

2.7 Distance Estimator Method

The Distance Estimator Method, or DEM for

short, usually applies for z near Kc (connected);

see Fig. 4(d). Let c be �xed. Choose Nmax and

R = 1=", where T = fz 2 C : jzj � 1="g for

small " is the target set around 1. For each z0

we will determine a label l(z0) from f0;�1; 2g (0
for z0 2 Kc, f+1;�1g for z0 close to Kc, 2 for z0
not close to Kc): Compute

zk+1 = z
2
k
+ c; k = 0; 1; 2; : : :

until either jzk+1j � R or k = Nmax. In the

second case we set l(z0) = 0. In the other case

we have jznj � R with n = k + 1 = lc(z0;T) and

z0 is still candidate for a point close to Kc. Thus

we try to estimate its distance having saved the

orbit fz0; z1; : : : ; zng:

z
0

k+1 = 2zkz
0

k
; z

0

0 = 1; k = 0; 1; : : : ; n� 1: (3)

If in the course of the iteration of Eq. (3) we get

an overow, i.e. if

jz0
k+1j � OV ERFLOW

for some k, then z0 should be very close to Kc,

thus we label z0 by �1. If no overow occured,

then we estimate the distance of z0 from Kc by

d(z0;Kc) = 2
jznj
jz0
n
j log jznj

and set

l(c) =

�
1; if d(z0;Kc) < DELTA

2; otherwise.

3 COMPARATIVE RESULTS

We compared the above mentioned algorithms by

evaluating two of their basic characteristics: the

speed with which they compute the correspond-

ing Julia set and the eÆciency with which they

display it to the computer screen. The complex

number used in all cases was the \diÆcult" value

c = �0:48176� 0:53165 {.

Table 1 presents the sequential runtime measured

for each of the seven methods (IIM, MIIM, BSM,

MBSM, LSM, CPM, DEM) for the computation

of the Julia set. A �rst observation from these re-

sults concerns the increase of the runtimes, while

increasing the resolution (Res row) of the images.

A second observation concerns the low runtime

obtained for the BSM and MBSM methods; the

latter is obviously an improvement of the former.

The IIM and the MIIM are the fastest methods,

but, of course, it depends upon the number of

MethodnRes R1 R2 R3

IIM 2 6 10

MIIM 1 6 12

BSM 3 18 44

MBSM 3 10 18

LSM 1 7 16

CPM 1 7 15

DEM 4 20 52

Table 1: Total runtime of some methods

used for constructing the Julia set; R1 =

320�200, R2 = 640�480, R3 = 1024�768

Algorithm EÆciency

IIM ??

MIIM ? ? ? ? ??

BSM ? ? ??

MBSM ? ? ? ? ?

LSM ? ? ?

CPM ? ? ?

DEM ? ? ? ? ? ? ?

Table 2: EÆciency of some methods used

for constructing the Julia set

points that lie on the attractor. If we want a very

accurate picture of the attractor, we are obliged

to give a large number of points and the MIIM can

become extremely slow. The DEM is the slowest

method with a slight di�erence from the BSM. Of

course the result is worth such a delay!

Table 2 presents the eÆciency measured for each

of the seven methods (IIM, MIIM, BSM, MBSM,

LSM, CPM, DEM) for the computation of the Ju-

lia set. When we speak about eÆciency we mean

the quality of the resultant picture, i.e. how ac-

curate the graphical representation of the fractal

set is. The more eÆcient method is the DEM;

for that, it is the slowest. Nevertheless, in some

cases the MIIM is better than the DEM. SuÆ-

ciently satisfactory results are obtained also with

the LSM or the CPM.

4 CONCLUSIONS

The current implementation of the algorithms

mentioned before is written in Microsoft Visual

C++ 6.0. Time results are given in CPU seconds

on a Pentium MMX PC with a 200 MHz CPU

clock running Windows 98.

As can be easily extracted from the comparison

analysis of the preceding section, the MIIM is

the best method (over all measures) for render-

ing Julia sets. It is well known that DEM is one

of the more accurate methods to obtain the best

quality pictures of these fractal sets. The second

best method is the MBSM and then following,

in order, the CPM, IIM, LSM and BSM. If one

wants to render only the Julia set Jc (and not the

�lled-in Kc), the MBSM must be chosen. Hence,

depending on the sought-after fractal set, a com-

promise between runtime and accuracy must be

made.

REFERENCES

[Barnsley93] Barnsley, M. F.: Fractals every-

where, 2nd ed., Academic Press Profes-

sional, 1993.

[Hepting91] Hepting, D., Prusinkiewicz, P. and

Saupe, D.: Rendering methods for iterated

function systems, in Peitgen, H.{O., Hen-

riques, J. M. and Penedo, L. F. (eds), Frac-

tals in the fundamental and applied sci-

ences, North-Holland, pp. 183{224, 1991.

[Hoggar92] Hoggar, S. G.: Mathematics for com-

puter graphics, Cambridge Univ. Press,

1992.

[Peitgen86] Peitgen, H.{O. and Richter, P. H.:

The beauty of fractals, Springer-Verlag,

1986.

[Peitgen88] Peitgen, H.{O. and Saupe, D. (eds):

The science of fractal images, Springer-

Verlag, 1988.

