

University of West Bohemia

Faculty of Applied Sciences

Department of Computer Science and Engineering

Master Thesis

Performance optimization
and security

of EEG/ERP portal

Pilsen, 2012 Jindr ich Pergler

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace at University of West Bohemia

https://core.ac.uk/display/295549929?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Origina l zada ní .

Declaration

I hereby declare that this master thesis is completely my own work and that I used only

the cited sources.

Pilsen, 16th May 2012

 Jindr ich Pergler

Abstract

The subject of this paper is the performance optimization and the security of the

EEG/ERP Portal which serves as a repository for data and metadata from EEG research

and which is developed at the Department of Computer Science and Engineering. The

theoretical part of this thesis introduces common patterns of database model

optimization, an overview of object-relational mapping together with the use of the

Hibernate tool, and common issues in the database layer of the web applications. In the

security part most common security threats are mentioned in overall. The practical

part focuses mainly on the performance issues of the database layer of the EEG/ERP

Portal. The results are then summarized and evaluated and recommendations for

further improvements of the data layer and security level are given.

5

Table of contents

Table of contents ... 5

1 Introduction .. 6

2 Theoretical focus ... 7

2.1 EEG/ERP Portal .. 7

2.2 Database design ... 8

2.3 Data tier of application.. 13

2.4 Security of web applications ... 18

3 Database design ... 20

3.1 Normalization check .. 20

3.2 Denormalization .. 22

3.3 Indexes ... 23

3.4 Data generating .. 23

4 Performance of the portal ... 25

4.1 Hibernate Profiler ... 25

4.2 Tracked parameters ... 26

4.3 Paging ... 27

5 Performance tuning ... 28

5.1 Homepage ... 28

5.2 Articles section ... 34

5.3 Experiments section ... 40

5.4 Scenarios section ... 43

5.5 Other parts ... 44

5.6 Performance review ... 46

6 Security of the portal ... 48

6.1 Examined issues... 48

6.2 Review of the security tests .. 52

7 Conclusion .. 53

List of abbreviations .. 54

Bibliography ... 55

A – Pictures of the portal ... 58

B – Example of the controller ... 60

6

1 Introduction

At the Department of Computer Science and Engineering the EEG/ERP Portal is being

developed. This web application on the Java platform serves as a repository for data

from electroencephalography research and allows sharing of the data and related

metadata among various research groups around the world.

The subject of this paper is divided into two parts: the performance, and the security of

the portal. The goal of the first part is to examine the performance of the portal in the

manner of accessing the database, saving and getting the neuroinformatic data and

metadata. Some parts of the web application seem to evince poor performance.

Preliminary analysis shows that the database tier of the application is not used in an

optimal way. Therefore, the main focus is on the database layer represented by the

object-relational mapping tool Hibernate together with underlying database model

represented by tables with relations in Oracle database system. The goal of the second

part is to perform tests related to the security of the web application and to compare

the results to the security status of the portal from the previous year.

The theoretical part of this thesis introduces common patterns of database model

optimization, an overview of object-relational mapping together with the use of the

Hibernate tool, and common issues in the database layer of the web applications. In the

security part most common security threats are mentioned in overall.

The practical part focuses mainly on the performance issues of the data layer of the

EEG/ERP Portal. An amount of data for testing purposes is generated into database and

the investigation of business logic and data handling logic according to particular use

cases is carried out through the web application. The inefficient patterns are described,

the new ones are introduced with respect to pursued parameters and an explanation is

added to each case. The results are then summarized and evaluated. In the security part

some basic tests are performed and recommendations for further adjustments are

given.

7

2 Theoretical focus

2.1 EEG/ERP Portal

The EEG/ERP Portal is a web application designed for storing and sharing the data

from electroencephalographic (EEG) research. Significant part of the research focuses

on event-related potentials (ERP) which are measured with EEG. An event-related

potential is specific measured brain response that is the direct result of a specific

sensory, cognitive, or motor event. [1] Data files of various sizes, types and formats are

the results of the experiments. A scenario describes the procedure of the experiment.

A data file of various types can be attached to the scenario. Additional information

about the experiment, scenario, involved people, or included data files are called

metadata.

Figure 2-1: The homepage of the EEG/ERP Portal

The portal serves as a repository for the experiments, scenarios, data files and

metadata and allows sharing of saved data among the research groups. Access to the

system is restricted by using login credentials and authentication levels are

8

implemented throughout the application. The main user roles are global administrator

and standard user. The global administrator has full access to all parts of the system.

The standard user can only view the information marked as public. Other permissions

are dependent on the membership of the user within the research groups.

2.1.1 Technologies

The application is developed in Java programming language. Several frameworks are

used for the features of the portal. Spring MVC framework is the main core of the

application. MVC stands for Model-View-Controller which is a design pattern for the

three-tiered applications. The Model is represented by the domain object or data

structure, mostly on the database basis. The View is represented by the templates and

defines the user interface. The Controller forms the application logic; it operates with

data from Model and passes them to the View (see Figure 2-2).

Figure 2-2: Schema of MVC architecture

The Model in the EEG/ERP Portal is represented by the Hibernate framework which

connects to the Oracle database. Hibernate is an Object-Relational Mapping (ORM) tool

which means that it works with data in the database and transforms (maps) them to

the objects in Java. These are called POJOs (Plain Old Java Objects) in the text. The main

focus of this work is on working with the Hibernate tool. The Hibernate is further

discussed in Section 2.3.

Spring Security framework is used to manage the authentication and authorization part

of the web application. Spring Social framework enables logging of the users into the

application using Facebook or LinkedIn credentials.

2.2 Database design

Data in relational databases are represented by tables which are interconnected by

relations. For particular situation the data model can be designed in many ways. The

9

database design lifecycle is a way of systematic approach to design a data model in

database (see Figure 2-3).

Figure 2-3: The database design lifecycle [2]

The design starts by defining the requirements for the data to be modelled. On the

requirements basis the logical model is designed and that is transformed to SQL tables

with relations represented by foreign keys and decomposition tables. The

normalization of the model is then recommended to get the correct representation of

the relations. Indexes are applied to specific columns according to requirement and use

case. If special requirements are discovered the denormalization takes place and

controlled data redundancy is introduced into model. At the end of the cycle the

database is implemented and monitored. When additional requirements appear the

lifecycle repeats. [2]

While the logical design is out of the scope of this work the physical design parts are

discussed further in following sections.

10

2.2.1 Normalization

When the relational database model is designed the main objective is to create an

accurate representation of the data, its relationships, and constraints. The relations can

be represented in many ways for the same data. The technique that can help with

representation of the data is called normalization. Normalization is process of series of

tests on the relations to determine whether or not it satisfies the definition of a

particular normal form. [3] Thoughtful design of a conceptual model mostly results in a

database that is either already normalized or can be easily normalized with minor

changes. [2] The aim of the normalization is to reduce redundant data and thereby

reduce the file storage space required.

Anomalies in manipulating with data are often an issue when data redundancy is

present in the database. An update or insertion of duplicated data column can easily

lead to a data inconsistency. Moreover, there might be a problem with the redundant

data which are dependent on the primary key of other data when inserting or deleting.

More on this can be found in [3].

Normalization is often performed as a series of steps. The data model is tested on first

normal form and with each step the level of checked form can be increased. With

increasing level the restrictions are tighter (illustrated in Figure 2-4). To avoid the

mentioned anomalies it is recommended to proceed to at least third normal form. The

definitions of normal forms are explained on relations which mostly correspond with

tables in database.

Figure 2-4: Normal forms

First normal form is a relation in which the intersection of each row and column

contains one and only one value.

First normal form

Second Normal Form

Third Normal Form

11

Second normal form is a relation that is in first normal form and every non-primary-key

attribute is fully functionally dependent on the primary key. Full functional dependency

indicates that if A and B are attributes of a relation, B is fully functionally dependent on

A if B is functionally dependent on A but not on any proper subset of A.

Third normal form is a relation that is in first and second normal form in which no non-

primary-key attribute is transitively dependent on the primary key. Transitive

dependency is a condition where A, B, and C are attributes of a relation such that if

A B and B C, then C is transitively dependent on A via B (provided that A is not

functionally dependent on B or C).

2.2.2 Denormalization

The normalization results in clear data model with minimum data redundancy. The

minimized redundancy saves the storage space and thereby mostly increases the

performance on particular tables. However, when the related data are accessed the

data have to be joined from several tables. When some data are accessed frequently it

may cause performance decrease. Then the denormalization might take place.

Denormalization is a process for reducing the degree of normalization to improve

query processing performance. However, it is recommended to normalize the model

first before denormalizing. The difference between denormalized and unnormalized

model is that the denormalized model had been normalized and then the degree of

normalization was deliberately reduced while unnormalized model has not been

normalized at all and the data redundancy is not under control.

The improvement of a query performance is accomplished by reducing the number of

physical tables and reducing the number of actual joins necessary to derive the answer

to a query. However, denormalization should be considered only when performance is

an issue and the analysis has been made. Consequently, denormalization should be

deployed only when performance issues indicate that it is needed. [3] [4]

Four strategies for denormalizing are most prevalent according to [4]:

 Collapsing tables – two entities with a one-to-one or many-to-many relationship

 Splitting tables – horizontal or vertical splitting

 Adding redundant columns – reference data

 Derived attributes – summary, total, balance

12

2.2.3 Indexes

Database index is a data structure that allows the DBMS to locate particular records in a

file more quickly and thereby speed response to user queries. [3]

Data in the database are stored in data files which contain the logical records. Index

records are stored in index files. An index structure is associated with a particular

search key and contains records consisting of the key value and the address of the

logical record in the file containing the key value.

There are various types of index. The main ones are following:

 Primary index – the data file is sequentially ordered; the indexing field is built

on the ordering key field, which has a unique value for each record.

 Clustering index – the data file is sequentially ordered on a non-key field; the

indexing field is built on this non-key field.

 Secondary index – an index which is built on a non-ordering field of the data file.

A file can have at most one primary index or one clustering index, and in addition can

have several secondary indexes.

The setup of indexes on tables needs to be properly discussed for each case as the

indexes may or may not be effective and using indexes everywhere is definitely

counterproductive. However, index should be set up on primary keys and foreign keys.

Primary keys are unique values and single row is commonly selected using primary key

column so the index on primary key column is essential. According to the primary index

mentioned above the data file is ordered by the ordering primary key.

Index on foreign key is definitely useful as single rows or small part of the whole table

is selected using foreign key. Benefits to indexing foreign key columns are following [5]:

 Better join performance – SQL server can more effectively find the rows to join

to when tables are joined on primary/foreign key relationships.

 Better performance on maintaining the relationship on a foreign key – whether

the foreign key relationship is defined with NO ACTION or CASCADE (on

update/delete), the referencing rows must be found to restrict the action or

update the referencing rows as well. In both cases an index on the foreign key

column helps finding the referencing rows.

13

2.2.4 Other database tuning strategies

The discussed methods are the first steps to improve performance. When the traffic

between the database and the application becomes more demanding there are other

strategies for further improvement of the performance. [6]

First step should be revising the application logic and especially data layer of the

application. The denormalization and use of the indexes is interconnected with

application logic and depends on which data is the application working with.

Furthermore, the SQL query optimization should take place as a one of the starting

points.

Then the database layer is recommended to be tuned. That includes maximizing the

concurrency by optimizing the need for locks, latches, buffers, and other resources in

the Oracle code layer.

Next step is optimizing the Oracle memory and thereby reduce the resulting

physical IO. That includes tuning of the buffer cache, work with the data block, shared

memory caches, and sorting and hash memory.

After previous steps are performed the physical disk layer optimization takes place.

In this part the aim is to configure the IO subsystem to provide adequate IO bandwidth

and to evenly distribute the resulting load.

2.3 Data tier of application

2.3.1 Hibernate

Hibernate is an object-relational mapping library for the Java language. The main task

of this library is to map Java classes to database tables. Hibernate provides persistence

for Plain Old Java Objects (POJOs). Mapping can be defined by using XML files or by Java

Annotations. In the first case the POJOs are designed and the mapping is in standalone

XML file. In the second case the annotations are added directly into POJOs file so the

mapping and object definition are at the same place.

Hibernate offers mapping for various kinds of relations including one-to-one, one-to-

many, many-to-one and many-to-many types. The related objects are represented by

class of the related object or by collection of such objects. Hibernate offers many

14

methods for loading and storing the POJOs and related collections. Selection of the

method for particular case can have significant impact on performance of the

application.

While Hibernate can be used as a standalone library the Spring MVC framework offers

great level of integration for this framework. A common approach is to design Data

Access Objects (DAOs) which provide methods for persisting the POJOs.

For retrieving the POJOs from database Hibernate provides two approaches – the

Criteria and the Hibernate Query Language (HQL). In both cases the result is an

internally assembled SQL query. On its behalf the data are loaded from database. The

Criteria represents a programmatic way of specifying the parameters for getting the

data. It uses specific Java classes and enumerations and is not readable very well. The

HQL is a language similar to SQL. The main difference is that the selections are above

the mapped POJOs instead of tables in the database.

2.3.2 Hibernate fetching strategies

Hibernate uses fetching strategies to retrieve associated objects of the queried entity.

These strategies can be defined in the mapping configuration or can be overridden in

particular HQL or Criteria query. Thereby, the performance can be significantly

affected. Following strategies are available [7]:

 Join fetching – the associated collection is retrieved in the same SELECT using

a JOIN operation.

 Select fetching – the associated collection is retrieved in additional SELECT. If the

lazy loading is not explicitly disabled the second select is executed only when

the collection is accessed.

 Subselect fetching – the associated collection is retrieved in additional SELECT

for all entities retrieved in the previous query. If the lazy loading is not

explicitly disabled the second select is executed only when the collection is

accessed.

 Batch fetching – the associated collections are retrieved in a batch; list of

primary or foreign keys is specified in the select. This is an optimization

strategy for select fetching.

15

Fetching strategies are divided according to the situation when the fetching occurs:

 Immediate fetching – a collection is fetched immediately when the base entity is

accessed.

 Lazy collection fetching – a collection is fetched when the collection is accessed.

This is the default settings.

 Extra-lazy collection fetching – a whole collection is not fetched unless

absolutely needed. For particular operations the optimized query is used

instead of fetching the collection.

 Proxy fetching – a single-valued association is fetched when a method other

than the identifier getter is used.

 No-proxy fetching – a single-valued association is fetched when the instance

variable is accessed.

 Lazy attribute fetching – an attribute is fetched when the instance variable is

accessed.

2.3.3 Common issues

Common issue is not using the pagination on the pages which display lists of some

entities. This is not a problem while the number of entities is low. Together with the

increasing number of entities the transferred data gets bigger and it can become a

performance issue. Moreover, it is mostly a user interface issue as well.

Another common approach is to load all columns from the database even when not all

data are necessary. In SQL the pattern SELECT * FROM table is widely used. It is mostly

not an issue until the number of columns in table gets bigger. However, good

application design includes effective use of the data.

2.3.4 Common Hibernate issues

2.3.4.1 Lazy loading

As mentioned earlier, lazy loading is a fetching strategy which fetches the associated

collection when the collection is accessed instead of immediate fetching with owner

object. It is the default behaviour of Hibernate. Disabling the lazy loading on all

interconnected entities would cause the load of the whole database even when single

entity was queried initially. That is one point which should be carefully considered.

16

Better approach is to override the lazy loading in particular HQL query. That can be

done by using join fetch keywords on the specified collection. It causes the collection

to be immediately fetched with the owner entity.

2.3.4.2 N+1 Problem

One of the most frequent performance issues related to lazy loading when using

Hibernate is the N+1 Problem. It is a common pattern when we want to load list of items

from database with associated data in corresponding object. A standalone query is

created for each single object in the list and these queries are individually sent to

database. That is one query for getting the list and then N queries for each item in list. If

we want to work with more associated data, we can get additional N queries for

another collection. This approach is extremely inefficient as the system can generate

hundreds of queries for getting list of items.

The common solution is to specify join fetch on the collection in HQL query.

2.3.4.3 Limiting number of rows in memory

Another common issue is related to paging or any other task in which the number of

items retrieved from database is limited to a certain number and collection associated

with the retrieved entities needs to be fetched as well. In that case all items are loaded

from database and the filtering and limiting is then carried out in memory. This

approach will be explained on an example.

Consider having a Person object mapped to a table PERSON with columns PERSON_ID,

NAME, AGE. A Person can have multiple cars, so the object has a collection of Car

objects. Car is mapped to a table CAR with columns CAR_ID, OWNER_ID, MODEL. If we

want to get the list of Person objects with Cars for each Person, we can use following

HQL query:

from Person p left join fetch p.cars

That will be translated into following SQL query, on whose behalf the data are

retrieved:

SELECT P.PERSON_ID, P.NAME, P.AGE, C.CAR_ID, C.OWNER_ID, C.MODEL FROM PERSON
P LEFT JOIN CAR C ON (P.PERSON_ID = C.OWNER_ID)

In a result of this query multiple rows can be loaded for particular PERSON_ID if such

person has multiple cars as the rows are result of the Cartesian product because of join

17

operation. Hibernate then processes such data and distributes them to according

objects.

If for instance the list of ten objects with collections needs to be loaded, it can’t be

predicted how many rows will be in the result of underlying SQL query. Therefore, the

limit of retrieved rows can’t be applied in SQL query and all items needs to be loaded so

the limit can be applied after processing the data into objects. Thus, setting the limit in

HQL does not need to take effect on the size of loaded data. When this situation comes

Hibernate shows warning: “WARN: firstResult/maxResults specified with collection

fetch; applying in memory!”

2.3.4.4 Getting the size of collection

In some situation the size of collection is needed to be used in the code. With standard

setting of the fetching the whole collection is fetched to be able to evaluate the

length() method on the collection. If the data in collection is not used the fetching is

redundant.

The possible solution is to define the fetching strategy of the collection on extra-lazy

fetching. When the length() method is called while the collection is not initialized only

the appropriate query for getting the required information is generated. This approach

can be used also on other methods on the collections, such as isEmpty(), or

contains(…).

2.3.4.5 Loading of all attributes of the entity

This issue is the extension of getting all the columns in SQL for ORM tools. If entity with

large amount of columns is mapped all the mapped columns are fetched when loading

the entity object. Subsequently, this can be a performance issue when the data get large.

In Hibernate the solution is not simple. The object can be loaded with subset of

attributes according to the constructor using select new ClassName(…) in HQL query.

Another option is using select new map(…) in HQL which returns a list of Map objects

so the values can be accessed by names. Also, simple select column1, column2 from

ClassName can be used. Then the values need to be accessed using the number of the

column in sequence. [7]

18

A special behaviour is used in case of attributes mapped to LOB columns. The data are

loaded lazily as the data itself are accessed. That avoids loading of huge bulk of data

when not obvious the data are really needed.

2.4 Security of web applications

There are many potential security issues in web applications. The most prevalent

threats according to OWASP are briefly presented in this section. The abbreviated

definitions are adopted from [8].

2.4.1 Injection

Injection flaws, such as SQL, OS, and LDAP injection, occur when untrusted data is sent

to an interpreter as part of a command or query. The attacker’s hostile data can trick

the interpreter into executing unintended commands or accessing unauthorized data.

2.4.2 Cross-Site Scripting (XSS)

XSS flaws occur whenever an application takes untrusted data and sends it to a web

browser without proper validation and escaping. XSS allows attackers to execute

scripts in the victim’s browser which can hijack user sessions, deface web sites, or

redirect the user to malicious sites.

2.4.3 Broken Authentication and Session Management

Application functions related to authentication and session management are often not

implemented correctly, allowing attackers to compromise passwords, keys, session

tokens, or exploit other implementation flaws to assume other users’ identities.

2.4.4 Insecure Direct Object References

A direct object reference occurs when a developer exposes a reference to an internal

implementation object, such as a file, directory, or database key. Without an access

control check or other protection, attackers can manipulate these references to access

unauthorized data.

2.4.5 Cross-Site Request Forgery (CSRF)

A CSRF attack forces a logged-on victim’s browser to send a forged HTTP request,

including the victim’s session cookie and any other automatically included

19

authentication information, to a vulnerable web application. This allows the attacker to

force the victim’s browser to generate requests the vulnerable application thinks are

legitimate requests from the victim.

2.4.6 Security Misconfiguration

Good security requires having a secure configuration defined and deployed for the

application, frameworks, application server, web server, database server, and platform.

All these settings should be defined, implemented, and maintained as many are not

shipped with secure defaults. This includes keeping all software up to date, including all

code libraries used by the application.

2.4.7 Insecure Cryptographic Storage

Many web applications do not properly protect sensitive data, such as credit cards,

SSNs, and authentication credentials, with appropriate encryption or hashing.

Attackers may steal or modify such weakly protected data to conduct identity theft,

credit card fraud, or other crimes.

2.4.8 Failure to Restrict URL Access

Many web applications check URL access rights before rendering protected links and

buttons. However, applications need to perform similar access control checks each time

these pages are accessed, or attackers will be able to forge URLs to access these hidden

pages anyway.

2.4.9 Insufficient Transport Layer Protection

Applications frequently fail to authenticate, encrypt, and protect the confidentiality and

integrity of sensitive network traffic. When they do, they sometimes support weak

algorithms, use expired or invalid certificates, or do not use them correctly.

2.4.10 Unvalidated Redirects and Forwards

Web applications frequently redirect and forward users to other pages and websites,

and use untrusted data to determine the destination pages. Without proper validation,

attackers can redirect victims to phishing or malware sites, or use forwards to access

unauthorized pages.

20

3 Database design

The database model behind the web application contains 60 tables which are

connected by relations. The tables can be divided into several categories:

 core tables, which have many relations to other tables and are most prone to

performance issues; these are PERSON, EXPERIMENT, SCENARIO, RESEARCH_GROUP,

ARTICLE, and ARTICLES_COMMENTS;

 tables with information and relations, which are similar to core tables, also

contain several columns and relations, but these are accessed not so often and

therefore are not of a big performance concern; for instance HISTORY or

RESERVATION;

 data lists, which contain mostly parameters used in other tables and mostly

contain row identifier and information of title or description character; for

instance HARDWARE, FILE_METADATA_PARAM_DEF, or DISEASE;

 relation only tables, which are the decomposition tables of M:N relations and

contain only two columns as a primary key;

 relation tables with attributes, which contain mostly two columns as a primary

key and a column with additional data; for instance

RESEARCH_GROUP_MEMBERSHIP;

 XML definition tables for scenarios, which have specific characteristics related to

XML scheme definition and therefore they are not part of the evaluation in this

work.

3.1 Normalization check

The database model was checked for the level of normal form of individual tables. All

tables comply with Third normal form. Only the table PERSON can be discussed

because of USERNAME column.

Users log into the application via user name so there might me temptation to designate

the password, name and other fields to be functionally dependent on user name value

21

instead of person identifier. The password, name and other fields would be then

transitively dependent on primary key which would violate Third normal form and

pass the Second normal form only. The correct table design would mean that the fields

dependent on username would be moved to a separated table and connected via user

name. Or the user name, password, name and other values can be declared as

dependent on primary key and user name can be considered as a value of person which

enables user to log into the application.

As this is only formal issue it does not need to be further solved. All other tables comply

with third normal form which is good starting point for operating with data in database

model.

Table 3-1: Table normalization check

Table name Number of columns Normal form level

ANALYSIS 5 3NF

ARTEFACT 3 3NF

ARTEFACT_REMOVING_METHOD 4 3NF

ARTICLES 6 3NF

ARTICLES_COMMENTS 6 3NF

DATA_FILE 7 3NF

DIGITIZATION 4 3NF

DISEASE 3 3NF

EDUCATION_LEVEL 3 3NF

ELECTRODE_CONF 4 3NF

ELECTRODE_FIX 4 3NF

ELECTRODE_LOCATION 7 3NF

ELECTRODE_SYSTEM 4 3NF

ELECTRODE_TYPE 4 3NF

EXPERIMENT 15 3NF

EXPERIMENT_OPT_PARAM_DEF 4 3NF

EXPERIMENT_OPT_PARAM_VAL 3 (2PK1) 3NF

FILE_METADATA_PARAM_DEF 4 3NF

FILE_METADATA_PARAM_VAL 3 (2PK1) 3NF

GROUP_PERMISSION_REQUEST 5 3NF

HARDWARE 5 3NF

HISTORY 6 3NF

PERSON 18 2NF or 3NF

1 Two columns form the primary key.
2 As mentioned earlier, first request after initializing the web application shows limited amount
of articles, next requests don’t have limit for displayed articles.
3 As the administrator user can view any article the paging is carried out on all articles in

22

PERSON_OPT_PARAM_DEF 4 3NF

PERSON_OPT_PARAM_VAL 3 3NF

PHARMACEUTICAL 3 3NF

PROJECT_TYPE 3 3NF

RESEARCH_GROUP 4 3NF

RESEARCH_GROUP_MEMBERSHIP 3 3NF

RESERVATION 6 3NF

SCENARIO 9 3NF

SERVICE_RESULT 6 3NF

SOFTWARE 4 3NF

STIMULUS 2 3NF

STIMULUS_REL 3 (2PK1) 3NF

STIMULUS_TYPE 3 3NF

SUBJECT_GROUP 3 3NF

WEATHER 4 3NF

Table 3-2: Relation only tables

Table name Number of columns

ARTEFACT_REMOVING_METHODS_REL 2PK

ARTICLES_GROUP_SUBSCRIBTIONS 2PK

ARTICLES_SUBSCRIBTIONS 2PK

COEXPERIMENTER_REL 2PK

DISEASE_REL 2PK

ELECTRODE_LOCATION_REL 2PK

EXPERIMENT_OPT_PARAM_GROUP_REL 2PK

FILE_METADATA_PARAM_GROUP_REL 2PK

HARDWARE_GROUP_REL 2PK

HARDWARE_USAGE_REL 2PK

PERSON_OPT_PARAM_GROUP_REL 2PK

PHARMACEUTICAL_REL 2PK

PROJECT_TYPE_REL 2PK

SOFTWARE_REL 2PK

WEATHER_GROUP_REL 2PK

3.2 Denormalization

The data model is normalized at third normal form. That is perfect starting point for

great data representation and thereby the data management anomalies are avoided. If

the performance issues occur the denormalization can take place. However, to advance

to such task the specific situation needs to be properly tested and the designed

database upgrade needs to be verified for the performance improvement. Therefore,

23

the denormalization is discussed in the particular sections where this approach might

be beneficial.

3.3 Indexes

According to the recommendations the indexes are used on primary and foreign keys.

Further use of indexes needs to be preceded by analysis of the particular situation with

regard to used query for fetching of the data from database. Potential applying of

indexes is discussed in particular cases in Section 5.

3.4 Data generating

A small amount of more or less useful data has been inserted into the developer schema

of the database during the development process. In some parts a slow response time

can be noticed even with quite small data load, especially when developing on the

computer which connects to the database via Internet instead of local school network.

To examine the application more data are needed in the database than it is currently

present in the development database. Therefore, for the testing purposes separated

schema was created and new data were generated into this schema.

Several software generators for the Oracle database have been tried out. Most of them

are licenced and offer a trial version which is restricted usually in the number of

generated rows. Some of the programs offer great functionality. However, the

restriction for the number of generated rows (mostly about 50 rows) is enough for not

being able to use these tools in freeware, not mentioning that paid licence is not

affordable. For instance EMS Data Generator or Datanamic Data Generator for Oracle

belongs among such programs.

Therefore, the freely distributed library and tool called DbMonster is used. The tool is

programmed in Java language and source code is available. It contains several types of

generators for the columns and with the source code additional generators can be

created. In the database model there are specific cases when the bundled generators

are not sufficient so the DbMonsterPlus tool was created as an extension of the

DbMonster source codes with own generators added.

24

The generating of the data is defined in XML file. Tables are set and generators are

associated for each column. The program is able to solve the dependencies defined by

foreign key associations and thereby is able to fill in the tables in correct order.

Generated data were set with regard to individual columns. The generated data consist

of randomly generated word concatenations in case of strings. Dates are generated

randomly within specified range as well as numbers. The quality of generated data is

not that big when compared to real data. However, it is not possible to insert hundreds

or thousands of real data samples manually into application. For the testing purposes of

data layer of the application is the quality of generated data satisfying. In special cases

the generated data were manually altered to better suit the tested phenomenon.

25

4 Performance of the portal

Many changes in the database and the program code were made since the application

was founded. In some situations the slow response time could be noticed even without

specialized tools. That has led to the performance testing of the developed portal. For

this purpose the profiling tool for Hibernate called Hibernate Profiler is used.

4.1 Hibernate Profiler

Hibernate Profiler is a tool for monitoring and profiling the queries and sessions

created by Hibernate. It provides several views on gathered data. The overview of user

interface is on Figure 2-1.

In the top left corner the Hibernate sessions are monitored. For each session the

processing time, the number of executed queries, and requested URL are displayed. For

selected session the individual SQL statements are shown in the top right column. Short

version of the query is displayed in the list together with returned row count and

duration of the query processing. On the second tab the entities loaded during the

session can be studied. The third tab summarizes the session usage information. The

bottom right corner displays full query generated by Hibernate, alert notifications for

particular query and a stack trace of the Java classes so the origin of the query call can

be easily found. The bottom left corner displays statistics about the session factory use.

With the Hibernate executable package the JAR package is included. Hibernate Profiler

is available for use with standalone Hibernate in application as well as with Hibernate

coupled with Spring framework. For the Profiler to work three simple steps need to be

carried out [9]:

1. The JAR package has to be included in the project.

2. A listener has to be set into web.xml.

3. A bean has to be set up in bean configuration file for Spring MVC.

26

Figure 4-1: Preview of the Hibernate Profiler tool

When running the project on localhost the Hibernate Profiler is then able to get the

information on the queries and the session and session factory statistics from

Hibernate.

Hibernate Profiler is licenced by a Hibernating Rhinos company and a proper licence

file is needed to run the program. The company offers an evaluating licence for 30 days

on demand. After proposing a request a company representative granted a free licence

for 90 days for the purpose of this work. I hereby would like to thank to Mr Oren Eini

from Hibernating Rhinos for providing the Hibernate Profiler extended licence.

4.2 Tracked parameters

Two main indicators were designated as the tracked parameters. The first parameter is

the processing time. Important is the processing time of the web request. In many

cases the query processing duration is followed as well. The second parameter is the

number of generated queries for a session.

Moreover, the additional auxiliary parameters are tracked for better understanding of

what is happening in the inner logic of Hibernate. The Profiler provides alerts for the

most common issues which can help to find the performance inefficiencies. The number

of fetched entities hints the counts of objects loaded and displayed into webpage.

27

While the tracked parameters show the trend of performance improvement the values

have to be discussed together with the particular situation and the code alterations

rather than to be understood as absolute values without context.

Furthermore, the application was tested at the computer which connects to database

using Internet connection. The parameters of the used connection are on high standard.

The average download speed oscillates around 24 Mbps, the average upload speed

fluctuates around 1.5 Mbps and the average response time is around 16 milliseconds

both to the Internet and to the database server. The response time influences the

processing time of queries and sessions. Both the testing and production servers access

the database server via local network and can use the bandwidth of 100 Mbps and the

response time shorter than a millisecond. Therefore, the response time reflects in

longer processing time on the tested computer which is actually an advantage in a way.

The performance inefficiencies of Hibernate can be more easily revealed and improved.

The measured times in Section 5 are the result of minimum 10 repeats of the discussed

operation so the value is significant for the results.

4.3 Paging

A paging feature is missing throughout the web application. The Spring MVC

framework does not provide any bundled classes for easy use of the paging. Therefore

the auxiliary class Paginator was created as a helper for implementing the paging on

selected pages. It takes itemCount, itemsPerPage, and optional baseUrl as constructor

parameters. The actualPage is set via setter method. The output of the getLinks()

method of the class is the HTML code representing a page selector with buttons

navigating to the previous, next, first and last page.

28

5 Performance tuning

The process of profiling of the web application is carried out by going through from the

first available pages to the deep ones. Some parts of the text can be divided by specific

issue rather than strictly by particular pages. The upcoming subsections of this section

are presented in a repeating concept. First, the discussed part is analysed and the

inefficient code is revealed. Second, the code is commented and explained to be able to

apply a solution. Third, the solution is designed, explained and implemented. Fourth

the review of the tracked values is presented.

5.1 Homepage

5.1.1 User not logged in

This page is the first one to be shown to the user. As all the content of the EEG/ERP

portal is available to the logged users, only static basic information is displayed at the

homepage as well as form to log in and link to the registration page. Therefore when

the user is not logged in, no information is needed to be retrieved from database. Only

the check of logged user is performed and that can be done without connecting to

database. The Person object is loaded from database even when it is obvious that no

result will be returned. This is actually not a serious performance issue at all. The

unnecessary query was, however, removed. Now the database connection is not needed

at all for the request and response time was reduced from 0.206 seconds to 0.006

seconds.

5.1.2 User logged in

5.1.2.1 Issues

After user logs in, the feature of home page is to display overview of some main parts

which are related to logged user. This includes showing several newly added articles,

user’s experiments and experiments which the user is involved in, user’s scenarios and

his member groups.

29

There is huge performance problem in retrieving of the list of articles and minor

performance issue in retrieving of the list of research groups. Other data for this page,

that means both lists of experiments and list of scenarios, are loaded correctly using

well designed queries.

The list of the research group is retrieved using query with left join fetch to apply the

condition of getting the groups which the user is member of. Limit for the loaded item

is set (to amount of five), combination with left join fetch however causes loading of all

items and then the amount of results is processed in memory of the application server

instead of database server. To solve this, the left join fetch construction needs to be

removed. In this case the condition can be rewritten using subselect. Following query is

built as a result:

from ResearchGroup researchGroup where researchGroupId in (select
rgm.id.researchGroupId from ResearchGroupMembership rgm where
id.personId = :personId) order by researchGroup.title

For articles to show there are two operations which generate inappropriate amount of

queries. First, for each article the user’s membership to article’s group is checked. That

is done by iterating the related research groups in Article object which causes lazy

loading of all research groups. This operation is performed for all fetched items, which

in this case means for all items in the table since all articles are requested so they can

be checked for the correct permission level before the granted ones are displayed.

Second, the comment count is displayed for each article. The count is retrieved by the

length() function of article comments collection in Article object. According to the

mapping configuration even when we need to know the size of the collection only

Hibernate triggers lazy loading of all comments for each queried article. Since the

length() method is called in view for displayed articles only, this would not need to be

big performance problem.

There is however also mistaken implementation of the limit of displayed articles. Local

variable is used for such purpose. This variable is decreased when an article granted to

be displayed is found. When the value equals zero we stop checking other articles and

display the granted articles. The variable is however initialized once for the website

lifetime and not for each web request so this works for the first request only. In next

requests the value of the variable is decreased into negative values and it never equals

30

zero again. Therefore all articles from database are shown in the page and all

comments are lazily loaded from database.

5.1.2.2 Solution #1

First part of solution is to filter out the articles which can be viewed by the logged user.

Two main scenarios are important for this task – whether or whether not the logged

user is global administrator. That is distinguished by the Authority property of Person

object. If the value is equal to “ROLE_ADMIN”, the user can view whatever article from

the database. Otherwise appropriate articles need to be filtered out before displaying.

For these two scenarios two Hibernate queries were created; the query for global

administrator is simplified version of the other query without further conditions.

The query for non-administrator users is following:

select new map(a.articleId as articleId, a.title as title, a.time as time,
r.researchGroupId as researchGroupId, r.title as researchGroupTitle,
a.articleComments.size as commentCount)from Article a left join
a.researchGroup r where a.researchGroup.researchGroupId is null or
a.researchGroup.researchGroupId in (select rm.id.researchGroupId from
ResearchGroupMembership rm where rm.id.personId = :personId) order by a.time
desc

The query for global administrator is following:

select new map(a.articleId as articleId, a.title as title, a.time as time,
r.researchGroupId as researchGroupId, r.title as researchGroupTitle,
a.articleComments.size as commentCount)from Article a left join
a.researchGroup r order by a.time desc

Now more information about creating of the query for non-administrator follows. First,

the condition for filtering the displayed articles needs to be assembled. User can view

public articles and articles of the research groups which the user is member of.

Therefore the articles with null research group are specified in the first part of the

query condition. The second part of the condition specifies the appropriate groups by

getting the research group IDs the user is member of. That needs to be done by

subquery as we cannot access the particular collections of the queried entities in HQL.

Important part of the query is the left join of a research group. As we want to get

also the articles with null research group the left join includes these articles into

results. If we don’t specify left join in this case and specify simple join or no join at all,

we don’t get any articles with null research group (and the first part of the condition

would be irrelevant). Also important is to select the title of the research group by

31

referencing the research group which is joined and not the research group of the article

(that means specifying r.title instead of a.researchGroup.title). When the other

approach is used Hibernate adds another research group (which is not left joined) into

final generated SQL query and that causes the same result as not specifying the left join

– no articles with null research group are selected.

Getting the comment count for each article has been changed as well. HQL offers getting

size of collection using size property on the collection. This part of HQL query is then

generated into SQL using subselect over corresponding table and the aggregation

function count(…). In our case the part of query a.articleComments.size as

commentCount is translated into following SQL fragment:

(select count(articlecom2_.ARTICLE_ID)
 from JPERGLER.ARTICLES_COMMENTS articlecom2_
 where article0_.ARTICLE_ID = articlecom2_.ARTICLE_ID) as col_5_0_

It is however not possible to map the size of collection to the properties of POJO object

and therefore select new map(…) query is used. The result of the query is of type

List<Map> instead of List<Article>, then. As the retrieved data serve for the single

purpose of being sent to view and displayed, using map instead of POJO object doesn’t

cause any difficulties.

The newest available articles are to be displayed so data are sorted by article time in

descending order. The count of retrieved items is limited to few items (at actual version

the count of all items on homepage is five).

5.1.2.3 Solution #2

The situation might now look amazing – only columns needed are selected and all data

are retrieved using single query. There is however hidden performance issue in

mentioned solution yet. The a.articleComments.size part of the query translated into

count(…) SQL subquery means that the subquery is internally executed for each row

which is included in the result set of the query. That is quite obvious; there is no other

way to get the article comment count for particular articles than to query for the count

of the comments with specified article id.

The problem is that at the SQL server the application of limit works the way that all

rows which meet the conditions of query are returned and then the appropriate limits

are applied. In the specified case the subquery for comment counts is performed for

32

each row in table and then only five items are filtered from the results. That makes

quite a difference in performance – the query for five items is processed for about 2.5

seconds. After comparing this time to the time of processing of the query without

subselect (around 0.2 seconds) it is obvious that almost all the time of processing is

spent at the SQL server for the subqueries for all the rows. So the processing time

depends on the number of articles in the table and not really on the specified limit size.

According to this using the a.articleComments.size is actually quite heavy

performance mistake which would be probably not noticeable without analysing the

produced SQL query.

Therefore the retrieving of comment count needs to be changed. The undeniable fact is

that the number of comments has to be counted individually for each article row. One

possibility is to select data using the designed HQL query without comment count,

individually query the items for comment count and add the value to the result maps.

That might bring better effectiveness, however, at a cost of immoderate complicating of

the program code. Another solution is therefore used which incorporates returning

back to fetching whole mapped objects and letting the comment count to be achieved

via length() method on collection using extra lazy loading (see fetching strategies in

Section 2.3.2). When extra lazy loading is set up on the collection in mapping

configuration, individual queries for the count are generated, but this time via

count(COMMENT_ID) selection instead of filling up the collections with data. Following

query is then used; the results are discussed in next section:

from Article a left join fetch a.researchGroup r where
a.researchGroup.researchGroupId is null or a.researchGroup.researchGroupId in
(select rm.id.researchGroupId from ResearchGroupMembership rm where
rm.id.personId = :personId) order by a.time desc

5.1.2.4 Performance review

The main differences in performance of homepage for logged user are shown in Table

5-1 and Table 5-2. Number of queries has been rapidly decreased as well as processing

time needed for displaying the page. The main reason for such poor performance was

badly implemented limit of number of displayed articles. There is however no

comparison with limited number of items fetched by original query as there were

several issues to achieve that so the whole query was rewritten together with limit.

33

Table 5-1: Performance comparation of homepage request

 Number of queries for

request

Processing time of

request

First request before changes2 27 9.194 s

Admin request before changes 1102 66.593 s

User request before changes 219 14.833 s

Admin request for solution #1 7 3.273 s

User request for solution #1 7 0.457 s

Admin request for solution #2 11 0.553 s

User request for solution #2 11 0.502 s

Table 5-2: Comparation of getting article list on homepage

 Processing time

of queries for

articles

Number of

loaded entities

for article list

Number of

articles displayed

in view

First request before changes 8298 ms 1114 10 of 1000

Admin request before changes 65031 ms 11098 1000 of 1000

User request before changes 14828 ms 3189 12 of 1000

Admin request for solution #1 2693 ms 5 5 of 1000

User request for solution #1 131 ms 5 5 of 1000

Admin request for solution #2 185 ms 5 5 of 1000

User request for solution #2 181 ms 5 5 of 1000

The results show that the loading is significantly quicker when using solution #2 than

with the solution #1. The expensive query with getting the comments counts via

subqueries would not be a big problem with only a few articles in database. With

increasing count of articles in table the query would take more and more time for

processing. The time needed for getting the articles for non-admin user is slightly

bigger when comparing solution #2 to #1. As the profiling was carried out on

connection with 16 ms latency to the database server, both values are perfectly

2 As mentioned earlier, first request after initializing the web application shows limited amount
of articles, next requests don’t have limit for displayed articles.

34

acceptable. Estimated processing time on the production server is about 80 ms or

lower.

5.2 Articles section

5.2.1 Article list

This page shows all articles in database without comments, however with comment

count as well as information about articles which are loaded from related tables.

Several issues are involved in poor performance of this page:

 All articles from database are displayed and no pagination is used.

 The comment count is retrieved via length() function of the collection which in

current setup forces all collections with comments to be filled up with data via

lazy loading.

 For each article the author name is displayed and therefore related Person

objects are also lazily loaded from database.

 The correct user permission for displaying the articles is checked. This is

carried out after loading all articles from database. Then the articles are

iterated and via related collections of ResearchGroupMembership the

permissions are checked. Therefore the ResearchGroup and the

ResearchGroupMembership items are lazily loaded from database.

Also, the articles are checked for whether they can be edited or deleted by logged user.

That is performed using related Person objects which are loaded anyway so it takes no

additional costs.

First part of the solution is to query only for the articles which can be viewed by the

logged user. As in Section 5.1.2.2 the query is divided into two cases – whether or

whether not the logged user is the global administrator. For the first case all articles

can be retrieved. For the second case the query conditions are added; these are adopted

from the previously created query for the homepage. Then, the information from

related objects shall be loaded avoiding individual lazy loading. The same approach of

selecting new map(…) as at homepage is used together with selecting the comment

collection size within a single query. Third, the pagination is added to the list of the

35

articles. Selecting of count of articles for pagination needs to be divided into the two

mentioned cases as well.

As a result following query for the non-global administrator was built:

select new map(a.articleId as articleId, a.title as title, a.time as time,
r.researchGroupId as researchGroupId, r.title as researchGroupTitle,
a.articleComments.size as commentCount, p.givenname||' '||p.surname as
authorName, p.personId as ownerId, substring(a.text, 1, 500) as textPreview)
from Article a left join a.researchGroup r left join a.person p where
a.researchGroup.researchGroupId is null or a.researchGroup.researchGroupId in
(select rm.id.researchGroupId from ResearchGroupMembership rm where
rm.id.personId = :personId) order by a.time desc

And following query for the administrator:

select new map(a.articleId as articleId, a.title as title, a.time as time,
r.researchGroupId as researchGroupId, r.title as researchGroupTitle,
a.articleComments.size as commentCount, p.givenname||' '||p.surname as
authorName, p.personId as ownerId, substring(a.text, 1, 500) as textPreview)
from Article a left join a.researchGroup r left join a.person p

Again, the approach of using new map(…) is used to limit the amount of data transferred

from database to apllication. In the article list the text preview (first 500 characters of

the article text) is displayed. So the substring(…) function is used with intention to

transfer smaller amount of data. Also, the a.articleComments.size is included in the

query. This is, however, performance problem, as the Section 5.1.2.2 already revealed.

There is a reason why to mention the created query which will be rewritten anyway.

It is the substring(…) function, which, as already said, is used with intention to reduce

the amount of transferred data. That actually works, but despite the expectation the

processing of this part of query takes in some cases more time than using the whole

Clob value (assuming that the real article content definitely won’t be of size of

hundreds of kilobytes). The processing time of the administrator query takes 3019 ms

with substring(…) function and 2843 ms without it. The expensive subquery reflects in

the processing time, but as this should be the same in both cases, the substring(…)

function takes more time in this case. The query will be rewritten because of getting of

the comment count, this is however quite interesting information.

The retrieving of data for article list is changed the same way as the retrieving of

articles for homepage was. The comment count is obtained by length() method of the

collection with extra lazy fetching. Therefore whole objects are loaded in HQL query.

Following query is then used:

36

from Article a left join fetch a.researchGroup r join fetch a.person p where
a.researchGroup.researchGroupId is null or a.researchGroup.researchGroupId in
(select rm.id.researchGroupId from ResearchGroupMembership rm where
rm.id.personId = :personId) order by a.time desc

While all data for specified objects are loaded, it is still huge performance upgrade since

no redundant entities are loaded when compared to previous approach. The Table 5-3

summarizes the results.

Table 5-3: Performance review of article list page

 Number of queries

for request

Processing

time of request

Number of displayed

articles

Admin request before

changes

1741 82.081 s 1000 of 10003

User request before

changes

271 16.974 s 31 of 31 eligible4

(1000 loaded from database)

Admin request after

changes

13 0.723 s 10 of 10003

User request after

changes

13 0.593 s 10 of 31eligible4

5.2.2 Article detail

5.2.2.1 Issues

The page shows article detail and comments related to the article in a tree structure.

Several issues are involved in loading of the necessary data from the database:

 The main performance issue is in the way of getting the article comments. As

the comments are displayed in tree structure, the HQL query selects only the

comments with no parent which are passed to the view to be displayed. Within

the view the subview is called for the children comments of particular

comment. The children are then lazily loaded for each examined comment.

3 As the administrator user can view any article the paging is carried out on all articles in
database. The count of the articles is 1000 at the moment of tuning of the application.
4 The non-administrator user can view only articles with some restrictions; therefore the paging
is carried out on articles with appropriate relations to user. For the particular case there are
31 articles which the user is eligible to view.

37

Thus, the count of generated queries increases with each new comment. More

on querying the comments with no parent will be discussed later in this section.

 Each comment has a person as an author and this information is printed with

the comments as well. The related Person objects are however also lazily

loaded for the individual comments so this is another source of huge amount of

queries.

 The link for subscribing/unsubscribing is displayed. For this link the

information whether the user is already subscribed is needed. For this purpose

the collection of subscriptions is loaded for the logged person and the method

contains(…) is used for getting the subscription information, which however

triggers loading of the whole collection in current setup. This is not a big issue,

but better approach can be easily implemented.

 The research group information for the article is lazily loaded. This is not a big

issue, but the additional query can be easily avoided.

The tree structure of comments is represented by children collection of the comments

as well as the parent attribute referencing the parent comment. In database the tree

structure is represented by PARENT_ID column referencing the parent COMMENT_ID.

When the PARENT_ID value is null the comment does not have any parent comment and

is one of the base level comments (there is no single root comment for the article). Also,

ARTICLE_ID denotes the identifier of article which the comment is related to.

While querying for the base level comments seems to be logical first step, there is

problem with explicit fetching of the child comments. Current approach leans upon lazy

loading of the related collections and does not care about the amount of generated

queries. As the depth of the tree is not limited it is not possible to build a query which

loads all necessary entities using the children collection – it would need to load

children of root comments and children of children and children of children of children

and so on. The initial query is following:

from ArticleComment as comment where comment.article.id = :id and
comment.parent is null order by time desc

5.2.2.2 Modifications

To enhance the structured comment loading an attribute of Hibernate is used.

Hibernate uses built-in entity manager to manage loaded entities from database. If it

finds an entity which has been already loaded (the check is done using the identifier of

38

the entity), it does not generate query to load it again and couples the already loaded

entity into the particular point.

Following query is used in the solution, the explanation comes after:

select distinct c from ArticleComment c left join fetch c.children join fetch
c.person where c.article.id = :id order by c.time desc

First important part is the left join fetch c.children which loads all the comments

with their children comments. While this might seem to be fetching redundant data

compared to the previous approach, this is significant as the entity manager gets the

information about the connection between comments and their children. As all

comments for the article are retrieved instead of root comments only, the entity

manager does not need to lazily load any other entities – it already has all the

information to print out the whole comment tree no matter how deep the tree is.

Only the root comments have to be passed to the view, however. After getting all the

comments only the root comments are programmatically filtered and those are passed

to the view. This might seem also counterproductive, especially after solutions applied

in previous situations where the programmatic part was usually replaced by more

effective HQL query. In this case the approach is however more effective as many

generated queries are actually avoided.

Then, the author name is needed, so join fetch c.person is added to the query to

avoid another lazy loading.

To avoid the fetching of whole subscription collection the extra lazy loading is set up in

mapping configuration for this collection. Hibernate then generates only simple query

which immediately returns needed information:

select 1 from ARTICLES_SUBSCRIBTIONS where ARTICLE_ID = ? and PERSON_ID = ?

Also, getting the research group for the article is included as a join in the query for the

article.

The performance review is showed later in this section in Table 5-5.

5.2.2.3 Denormalizing the author name

The information of comment author is retrieved from related Person object. While only

the givenname and surname columns are needed for this information to be shown, there

39

is an idea of denormalizing these two columns into single value in ARTICLES_COMMENTS

table to save the inner join and to transfer smaller amount of data. The comment is

created and the author is not changed then. This allows to ensure the value is up to date

while avoiding the insert and update anomalies.

Within the ARTICLES_COMMENTS the AUTHOR_NAME column is created. This value is

updated via trigger in database when new comment is created or when the person

name is changed so it is up to date all the time. The newly created row is mapped onto

attribute in ArticleComment object. With this new setup the page is then profiled again.

The results however show that this change brought minimum difference in processing

of the SQL query. According to explained plan of the query the additional inner join is

not very expensive operation and even the amount of transferred data does not

indicate any changes in processing time of the query. As Table 5-4 shows, the profiled

time gets even worse after denormalizing; this difference is however not of any

significance because of the variance in measured time (the values are an average of

multiple values).

Denormalizing of the author name does not bring any speed up and is therefore not

appropriate.

Table 5-4: Performance review of denormalizing the author name

 Duration of the

query

Returned row

count

Number of

comments

The query before denormalizing 1353 ms 385 300

The query after denormalizing 1416 ms 385 300

5.2.2.4 Performance review

The change in retrieving the comments makes big difference in processing of the page

and decreases significantly the number of queries from dynamical count of

approximately 2𝑁 + 3 queries (where 𝑁 is number of comments for article) to static

count of 4 queries.

40

Table 5-5: Performance review of the article detail page

 Number of queries

for request

Processing time of

request

Request before changes 452 14.981 s

Request with retrieving comments with no

parent only

345 12.562 s

Requests with retrieving all comments and

programmatic filtering

4 1.739 s

5.3 Experiments section

5.3.1 Experiment list

The page displays list of all experiments in the database with respect to which

experiments can be viewed by the logged user. There are following issues in retrieving

data for this page:

 There is no paging. Therefore, all experiments from database are loaded. This

affects also loading of related entities which are mentioned in other issues.

 Experiments don’t have their own title. The title of used scenario is displayed

instead. This means that related scenario entity is loaded for each displayed

experiment. The scenarios are loaded within join in single query with

experiments so lazy loading is avoided in this case.

 Also related person entity has to be loaded for each experiment because overall

information about the subject person is displayed. In this case the lazy loading

takes place and therefore new query is executed for each experiment entity,

which produces huge amount of queries together with loading all experiments

from database.

 Information about whether the data files can be processed via built-in

computing services is checked. If positive, the link to processing page is

displayed. The test is done by getting the data files of the experiment and

checking the files for specific file extensions. That causes lazy loading of data

files for each experiment as well.

Within the DataFile object the file content property is mapped to the file content.

While the profiler shows that the column is present in the SQL query when getting

41

DataFile object, the file content is actually not loaded with the other data from the

table. The property is mapped as blob type which is lazily loaded by default. The

content is then loaded when the property is directly accessed so there is no

performance concern when loading the whole DataFile object and there is no need of

file content.

Although the profiling is carried out on computer with bigger response time than on

the testing server where nightly build is available, quite slowed down response is

noticeable even on the testing server when accessing the experiment list of about two

hundred items. That indicates poor performance, too.

First step to the solution is implementing of the paging, of course. Even with lazy

loading of related objects the response time and query number both rapidly decrease.

Then, the HQL query was rewritten so the associated data are loaded with join instead

of lazy loading. Also, the appropriate conditions reflecting the permissions are

implemented. In this case three joins are used in HQL which results in four joins in SQL

– the join to ResearchGroupMembership needs to be joined through ResearchGroup

object. This join produces multiple Experiments, so distinct objects needs to be

selected.

select distinct e from Experiment e join fetch e.scenario s join fetch
e.personBySubjectPersonId p left join
e.researchGroup.researchGroupMemberships m where e.privateExperiment = false
or m.person.personId = :personId order by e.startTime desc

The data file collection of experiment is used. The collection however cannot be loaded

with left join fetch in single query as the scenario and person, because paging is used

and the left join fetch would lead to limiting the object count in memory instead of SQL

server. After examining the purpose of data file collection use (which is checking the

data file names) no other way of getting the needed information was found to be

suitable but the lazy loading of the collections. To avoid generating query for each

experiment the batch loading was set up on the collection in mapping of Experiment

class. [10] The value was set to twenty, which together with twenty experiments per

page means just a single query for getting the collections.

42

Table 5-6: Experiment list performance comparison

 Number of queries

for request

Processing time of

request

Request before changes

(1000 items)

1482 51.102 s

Request after implementing paging

(20 items per page)

43 1.787 s

Request after resolving other issues

(20 items per page)

5 0.579 s

As the Table 5-6 shows, after resolving the issues the request is around three times

faster and number of queries is reduced to minimum. From previous twenty queries for

getting the data files which took around 800 ms now the same data are retrieved using

single query which takes about 160 ms. The values of the request for 1000 items is

showed for illustration.

5.3.2 Experiment detail

The page displays experiment detail with data from many associated entities. As it is

a single entity which then loads associated data the N+1 Problem is not an issue

directly. The default configuration of all the associated entities is set up on lazy so all

the data are loaded within separate queries. However, the N+1 Problem is present in

the loading of the ExperimentOptParamDef object associated with the

ExperimentOptParamVal objects which are associated with the root Experiment object.

Therefore the associated ExperimentOptParamDef collection lazy setting has been

removed and the fetch strategy has been set to join. Now whenever the parameter

values are loaded the associated parameter definitions are fetched immediately as well.

While the value without the parameter is not useful setting the immediate join fetching

directly to the mapping definition is not an issue. To decrease the load from database

the loading of the experiment has been left joined with data files for the experiment

because this collection evinces the biggest demands. Left joining of all the collections

(that means data files, scenarios and optional parameter values together with optional

parameter definitions) is definitely not a good approach as this would lead to

a Cartesian product of the fifth grade. Considering ten items in each collection that

would generate a query on which behalf a thousand of rows would return from the

database.

43

Table 5-7: Performance review of the experiment detail

 Number of queries

for request

Processing time of

request

Request before changes 22 1.289 s

Request after changes 11 0.782 s

With the performed alterations the number of queries decreased on half with ten items

in every collection. The processing time has been shortened at almost half of the time

as well. This page actually is not a big issue. However, it shows that even in this case an

improvement can be done.

5.4 Scenarios section

5.4.1 Scenario list

This page shows the list of scenarios. The issues on this page are following:

 No pagination is used. Therefore, all data from database are loaded.

 Each scenario is checked for whether the logged user has the permission to

display the scenario. That is carried out by iterating the memberships of the

research groups of the scenario which causes lazy loading of huge amount of

research group memberships.

 For each scenario the ScenarioType entities are lazily loaded which causes

N+1 Problem.

The solution is to use paginations first. The next step is to remove the iteration through

the collection of scenarios and substitute the check for permission by defining the

appropriate conditions in the HQL query. The third issue can be resolved using join

fetch on the ScenarioType collection.

44

Table 5-8: Performance review of the scenario list page

 Number of queries

for request

Processing time of

request

Request before changes

(100 items)

231 9.584 s

Request before changes

(20 items per page)

58 3.067 s

Request after changes

(20 items per page)

3 0.861 s

A significant performance improvement is obvious from the Table 5-8. The count of

queries has been decreased from 58 queries to 3 while retrieving the same data from

database. Furthermore, the processing time has been improved as well.

5.5 Other parts

5.5.1 Scenario search

The page loaded list of all scenarios and people from database for no further purpose.

With 1000 people and 100 scenarios in database the displaying of the form for search

took 3.436 s. After removing the redundant lines of code the form is displayed in

0.007 s.

5.5.2 Experiment search

The situation is similar to the scenario search page. This page loaded redundant list of

scenarios and hardware. The processing time of the page has been decreased from

1.163 s to 0.008 s.

5.5.3 List of research groups

The loading of necessary data is loaded correctly. The only issue is not using the

pagination which has been implemented in this page. The processing time has been

decreased from 1.645 s to 0.766 s.

45

5.5.4 List of people

The loading of the entities is performed by one simple query. The only issue is not using

the pagination which has been implemented in this page. The processing time has been

decreased from 3.076 s to 0.727 s.

5.5.5 Other sections of the web

The sections where no significant performance issues have been found are presented in

Table 5-9. In some cases minor changes have been introduced. However, the

improvement is not measurable as the variance of the measured values is too big to

consider these values to be relevant.

Table 5-9: Review of other sections

 Processing time

experiments/services-result.html 0.756 s

articles/add-article.html 0.744 s

groups/edit-group-role.html 0,931 s

groups/book-room.html 0.789 s

groups/book-room-view.html (internal) 0.850 s

groups/book-room-ajax.html (internal) 0.825 s

groups/create-group.html 0.564 s

people/add-person.html 0.734 s

people/search.html 0.008 s

lists/hardware-definitions/list.html 1.052 s

lists/hardware-definitions/add.html 0.822 s

lists/person-optional-parameters/list.html 1.033 s

lists/person-optional-parameters/add.html 0.926 s

lists/experiment-optional-parameters/list.html 0.888 s

lists/experiment-optional-parameters/add.html 0.872 s

lists/file-metadata-definitions/list.html 0.962 s

lists/file-metadata-definitions/add.html 0.836 s

lists/weather-definitions/list.html 1.023 s

lists/weather-definitions/add.html 0.890 s

history/daily-history.html 0.946 s

my-account/overview.html 0.830 s

46

my-account/change-password.html 0.712 s

connect.html 0.796 s

my-account/change-default-group.html 0.761 s

5.6 Performance review

The most inefficient parts of the application were examined, the origins of the

performance issues were found and solutions were designed according to the tracked

values. The evaluations were performed on data generated into database with the

generator tool. In some parts of the application the amount of data revealed significant

inefficiencies. Most of them were caused by not using the pagination. Even after

resolving this issue some parts still suffered on other issues related to ORM.

Some of the values have to be compared with regard to the fact that as in one case the

pagination has been already present in the other case the pagination has not been

implemented yet because of some difficulties in the programming code. However, it is

important that in the previous state the pagination was not present and implementing

the pagination takes great part in the optimization as well. If the data grew quickly the

performance would decrease without the implementation of the pagination. Therefore

the comparison of the data at the starting point with the data at the finishing point is

relevant.

The Table 5-10 and Table 5-11 summarize the most important inefficiencies and the

change of tracked parameters from starting point to the end point.

Table 5-10: The overall performance review – processing time

 Processing time of request
Before/after

ratio
Before

optimization

After

optimization

home.html 66.593 s 0.553 s 120

articles/list.html 82.081 s 0.723 s 114

articles/detail.html 14.981 s 1.739 s 7.6

experiments/list.html 51.102 s 0.579 s 88

experiments/detail.html 1.289 s 0.782 s 1,6

scenarios/list.html 9.584 s 0.861 s 11,3

47

Table 5-11: The overall performance review – number of queries

 Number of queries for request
Before/after

ratio
Before

optimization

After

optimization

home.html 1102 11 100

articles/list.html 1741 13 134

articles/detail.html 452 4 113

experiments/list.html 1482 5 296

experiments/detail.html 22 11 2

scenarios/list.html 231 3 77

It should be pointed out once again that the absolute values are directly not very well

comparable because of the differences among the particular situations. It is however a

huge shift in some cases.

48

6 Security of the portal

As a complementary goal of this work is to examine the security of the portal and

compare the security status to the last year situation which is summarized in the paper

[11] of Jir í Vlas imsky . The scope of this work is limited and therefore the examinations

were performed in selected areas only. For other areas the recommendation are given

for further development and testing.

6.1 Examined issues

6.1.1 Injection

The HQL queries are used throughout the project to get data from database. No native

SQL queries are used at the time of the investigation of the project. Therefore no HQL

injection is possible if the appropriate methods for passing the dynamic values to the

query are used.

In the project DAO object are designed to be used for working with database data.

Former approach is using hibernate template and methods find(…) or

findByNamedParam(…). This approach is deprecated in current release of Hibernate and

method session.createQuery(…) with specific methods for getting the data (like

list(), uniqueResult() and other) are encouraged to be used. The parameters are

inserted via setParameter(…) method. When these techniques are followed the

injection is not possible.

There were however found several cases in the project when the values for the query

were inserted via simple concatenation of the query and the values. This is not safe and

such lines of code were corrected so the latter of the mentioned approaches is used.

The exception is in methods for getting the search results which are quite complicated.

These were not upgraded and are encouraged to be investigated yet.

49

6.1.2 Cross-Site Scripting (XSS)

To examine the system for all possible flaws for this kind of attack it is a large area that

goes beyond the scope of this work. Basic check for the Stored XSS Attack was

performed. The JSP views were checked for the correct output of the values from the

database.

Table 6-1: List of possible XSS threatening values printed in JSP views

Request URL Vulnerable values

home.html research group title
scenario title

registration.html education level title
articles/detail.html?articleId=$ article title
experiments/add-experiment.html scenario title

hardware title
weather title

experiments/choose-metadata.html?id=$ file name
metadata value
metadata parameter name
metadata parameter type

experiments/data/detail.html?fileId=$ metadata definition
metadata value

experiments/detail.html?experimentId=$ weather title
environment note
scenario title
hardware title
hardware type
parameter definition title
parameter value
file name
file description

groups/add-member.html?groupId=$ group title
groups/list-of-members.html?groupId=$ group title
history/daily-history.html
history/weekly-history.html
history/monthly-history.html

file name

my-account/overview.html user name
given name
surname

people/add-optional-
parameter?personId=$

parameter definition title

people/add-person.html education level title
people/detail.html?personId=$ given name

surname
email
phone number
note
parameter definition title
parameter value

50

In many cases the value was printed by simple using of the variable like ${value}

which leads to printing the value as it is. When the JSTL tag

<c:out value=”${value}”/> is used the HTML entities are used for the value and

therefore it is not possible to run the script. Table 6-1 summarizes found vulnerabilities

of such type; these have been corrected and are no longer a threat.

6.1.3 Broken Authentication and Session Management

According to [11], there are several issues which have not been improved since last

year. The password strength politics is not enforced in any way. A registering user is

able to set a password with no restriction in used characters or minimum length of the

password. The limit for invalid login attempts is not applied as a protection from brute-

force password cracking attack. Also the login credentials are sent in plain text format

via HTTP connection. Therefore the communication is susceptible to monitoring and

the login information can be stolen.

The minimum length of 6 characters has been enforced in the application for new

registrations and password change. More thoughtful password policy is strongly

recommended to be discussed.

The password saving method was altered since last year by another member of the

developing team. Former plain MD5 hash function used for obfuscating the saved

passwords was replaced by more sophisticated algorithm. The BCrypt library was

introduced into project and SHA hashing with advanced dynamic salt is now used for

saving passwords.

6.1.4 Insecure Direct Object References

There are many potential points where such type of breach can be accomplished. Some

of them were fixed in previous year by Jir í Vlas imsky in his work [11].

The examination of the system on such type of attack requires extensive testing of the

individual requests throughout the whole application which is out of the scope of this

work. Therefore no tests were performed within this work. However, it is

recommended to carry out such tests as the probability of data leak is quite high.

51

6.1.5 Cross-Site Request Forgery (CSRF)

Prevalence of this type of attack is widespread. The solution is however quite

complicated. Three conditions need to be met to secure the web application against

such vulnerability. These are further described in [11]. However, using this solution

brings complications to both end users and developers. Therefore there are no steps

implemented in this area and the solution in this part is recommended to be wisely

discussed.

6.1.6 Security Misconfiguration

In this area the simple HTTP protocol use without encrypting is criticized in [11] and

the SSL protocol is encouraged to be introduced to the web application. Furthermore,

not using HttpOnly Cookies is mentioned.

Both these issues were solved by another member of the developing team. The

certificate from the University of West Bohemia certificate authority was obtained and

encrypted SSL communication has been introduced to the production server. The http-

only directive was defined in Spring framework configuration files to ensure cookies

are not accessible via JavaScript.

6.1.7 Insecure Cryptographic Storage

Since last year the password saving method has been changed as mentioned in

Section 0. The user name was deprecated and the role of the login credential is adopted

by e-mail which is guaranteed to be unique for each new user.

In this area the subject to discuss is saving of sensitive information. The aim is to

encrypt the data in database so they are not readable when the potential intruder gains

direct access into database. Oracle provides a package dbms_crypto for encrypting and

decrypting the data using symmetric key. The main task is the key management which

defines the level of security. The keys can be stored in the operating system, in the

database, or the keys can be managed by their owners. The encryption of the data

provides higher level of safety of sensitive data. However, with that the data are also

more prone to be lost in case of software or hardware failure. Then the encrypted data

can get corrupted and decryption of the data may not be possible.

This is an extensive area which has to be thoroughly discussed before implementing

a solution. More information on this can be found in [12].

52

6.1.8 Failure to Restrict URL Access

All pages of the portal are accessible only with valid credentials. The only exceptions

are the homepage with login form and the registration page. Moreover, the

authorization directives are encouraged by the Spring Security framework in various

sections of the application to distinguish the permission levels. The application is

secured in this area.

6.1.9 Insufficient Transport Layer Protection

As mentioned above the SSL communication has been introduced on the production

server since last year. For the encryption the certificate from the certificate authority of

University of West Bohemia is used. The security of the configuration and

communication is encouraged to be tested using the OWASP Application Security

Verification Standards.

6.1.10 Unvalidated Redirects and Forwards

As stated in [11] the application does not use any redirects or forwards outside of the

scope of the application except Facebook and LinkedIn authentication providers which

are considered to be trustworthy. The application is therefore not prone to such type of

attack.

6.2 Review of the security tests

Many security issues have been improved since last year. There are, however, still some

security flaws which should be properly tested and fixed. The examinations on Insecure

Direct Object References are encouraged to be performed. Quite extensive topic is the

encryption of sensitive data in the part Insecure Cryptographic Storage.

Hints and directions for thorough examination of the web applications can be found in

the OWASP Testing Guide [13] and especially in the OWASP ASVS Project [14] which

covers detailed testing and fixing procedures and provides hints for securing the web

application in various security levels.

53

7 Conclusion

The main goal of this master thesis was to examine and improve the performance of

data layer of the EEG/ERP Portal and to design and implement the solutions as well as

evaluate the results. The secondary goal was testing of security of the portal.

The structure of this paper corresponds with the thesis assignment. In the performance

area the adjustment possibilities were examined with regard to the most critical issue

in the application which is the inefficiency of the data layer of the application. In the

security field the tests were performed in selected areas and system fixes were

implemented where possible. Recommendations for further testing and security

related updates were given in Section 6.2.

When working with data using the Hibernate tool excessively inefficient procedures

were found in many cases. The issues found had to be addressed individually and an

appropriate solution had to be designed and implemented. The processing time of web

request and the number of queries needed for the particular web request were

designated as the pursued parameters. All modifications to the application were aimed

to improve these performance parameters. As a significant result the improvement of

article list page can be considered. The processing time has been decreased from 82 to

0.7 seconds and the query count for the request has been decreased from 1741 to

13 queries. Detailed review with more explanation can be found in Section 5.6.

Most cases of inefficiency and misspending of resources found within the application

were caused by lack of understanding of inner working of the ORM tool and the

database layer. For each case listed in this thesis a detailed description of problem is

given as well as possible cause or origin, followed by comments on applied fixes and

lessons learned from the case.

54

List of abbreviations

ASVS OWASP Application Security Verification Standard Project

BLOB Binary Large Object

CLOB Character Large Object

CSRF Cross-Site Request Forgery

DAO Data Access Object

DBMS............ Database Management System

DOM Document Object Model

EEG................ Electroencephalography

ERP Even-related Potential

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

HQL Hibernate Query Language

IO Input/Output

JAR................. Java Archive

JSTL JavaServer Pages Standard Tag Library

LOB Large Object

MD5 Type of Message-Digest Algorithm

MVC Model-View-Controller

NF Normal Form (1NF – First Normal Form, 2NF – Second Normal Form…)

ORM Object-relational Mapping

OWASP The Open Web Application Security Project

POJO Plain Old Java Object

SHA Secure Hash Algorithm

SQL Structured Query Language

SSL Secure Sockets Layer

SSN Social Security Number

URL Unified Resource Locator

XML Extensible Markup Language

XSS Cross-Site Scripting

55

Bibliography

1. Sanei, Saeid and Chambers, J. A. EEG Signal Processing. Chichester : John Wiley &

Sons, Ltd, 2007. ISBN 13978-0-470-02581-9.

2. Teorey, Toby, et al. Database modeling and design, Fifth Edition: Logical Design. s.l. :

Morgan Kaufmann Publishers, 2001. ISBN 978-0-12-382020-4.

3. Connolly, Thomas M. and Begg, Carolyn E. Database Systems: A Practical Approach

to Design, Implementation and Management. s.l. : Pearson Education Limited, 2004.

4. Sanders, G. Lawrence and Seungkyoon, Shin. Denormalization Effects on

Performance of RDBMS. s.l. : IEEE, 2001. ISBN 0-7695-0981-9.

5. Tripp, Kimberly L. When did SQL Server stop putting indexes on Foreign Key

columns? SQL skills. [Online] [Citace: 2. 5 2012.]

http://sqlskills.com/BLOGS/KIMBERLY/post/When-did-SQL-Server-stop-putting-

indexes-on-Foreign-Key-columns.aspx.

6. Harrison, Guy. Oracle Performance Survival Guide: A Systematic Approach to

Database Optimization. Michigan : Pearson Education, Inc., 2009. ISBN 978-

0137011957.

7. Hibernate Reference Documentation. Hibernate - Relational Persistence for Idiomati

Java. [Online] [Cited: 2 April 2012.]

http://docs.jboss.org/hibernate/core/3.6/reference/en-US/html/.

8. OWASP Top 10 – 2010. OWASP Top Ten Project. [Online] 2010. [Cited: 28 April 2012.]

http://owasptop10.googlecode.com/files/OWASP%20Top%2010%20-%202010.pdf.

9. Getting Started. The Hibernate Profiler. [Online] Hibernating Rhinos. [Cited: 15

January 2012.] http://hibernateprofiler.com/Learn.

56

10. Lupu, Eyal. Hibernate - Tuning Queries Using Paging, Batch Size, and Fetch Joins.

Javalobby – The heart of the Java developer community. [Online] [Cited: 29 April 2012.]

http://java.dzone.com/articles/hibernate-tuning-queries-using.

11. Vlašimský, Jiří. Systém oprávnění v EEG/ERP portálu. Plzen : Za padoc eska

univerzita v Plzni, 2011.

12. Nanda, Arup. Security: Encrypt Your Data Assets. Oracle. [Online] [Cited: 2 May

2012.] http://www.oracle.com/technetwork/issue-archive/2005/05-jan/o15security-

097078.html.

13. OWASP Testing Guide. OWASP Testing Project. [Online] 2008. [Cited: 28 April 2012.]

http://www.owasp.org/images/5/56/OWASP_Testing_Guide_v3.pdf.

14. OWASP Application Security Verification Standard Project. OWASP. [Online] 2009.

[Cited: 28 April 2012.]

http://www.owasp.org/images/4/4e/OWASP_ASVS_2009_Web_App_Std_Release.pdf.

57

Appendices

58

A – Pictures of the portal

The illustrative pictures of the EEG/ERP Portal are presented with the data from the

generator tool.

59

60

B – Example of the controller

Article list

Controller Before changes:

public ModelAndView list(HttpServletRequest request,
 HttpServletResponse response) {
 ModelAndView mav = new ModelAndView("articles/list");
 setPermissionsToView(mav);
 Person loggedUser = personDao.getLoggedPerson();
 log.debug("Logged user from database is: " +
 loggedUser.getPersonId());
 List<Article> articleList = articleDao.getAllArticles();
 int groupId;
 for (Article item : articleList) {
 item.setUserMemberOfGroup(canView(loggedUser, item));
 item.setUserIsOwnerOrAdmin(canEdit(loggedUser, item));
 }
 mav.addObject("articleList", articleList);
 mav.addObject("articleListTitle", "pageTitle.allArticles");
 return mav;
 }

After implementing the changes:

 public ModelAndView list(HttpServletRequest request,
 HttpServletResponse response) {
 ModelAndView mav = new ModelAndView("articles/list");
 setPermissionsToView(mav);
 Person loggedUser = personDao.getLoggedPerson();
 log.debug("Logged user from database is: " +
 loggedUser.getPersonId());
 Paginator paginator = new Paginator(
 articleDao.getArticleCountForPerson(loggedUser),
 ARTICLES_PER_PAGE, "list.html?page=%1$d");
 String pageString = request.getParameter("page");
 int page = 1;
 if (pageString != null) {
 page = Integer.parseInt(pageString);
 }
 paginator.setActualPage(page);
 mav.addObject("paginator", paginator.getLinks());
 List articleList = articleDao.getArticlesForList(loggedUser,
 paginator.getFirstItemIndex(), ARTICLES_PER_PAGE);
 mav.addObject("articleList", articleList);
 mav.addObject("articleListTitle", "pageTitle.allArticles");
 mav.addObject("userIsGlobalAdmin",
 loggedUser.getAuthority().equals("ROLE_ADMIN"));
 mav.addObject("loggedUserId", loggedUser.getPersonId());
 return mav;
 }

61

Methods from SimpleArticleDao for getting the article list after implementation of

changes:

 @Override
 public List getArticlesForList(Person person, int min, int count) {
 String query;
 List articles = null;

 if (person.getAuthority().equals("ROLE_ADMIN")) {
 // We can simply load the newest articles
 query = "from Article a left join fetch a.researchGroup r " +
 " join fetch a.person p " +
 "order by a.time desc";
 articles = getSession().createQuery(query).
 setFirstResult(min).setMaxResults(count).list();
 } else {
 // We need to load only articles which can be viewed by the
 // logged user.
 // That is, we need to load only public articles or articles from
 // the groups the logged user is member of.
 query = "from Article a left join fetch a.researchGroup r " +
 " join fetch a.person p " +
 "where " +
 "a.researchGroup.researchGroupId is null or " +
 "a.researchGroup.researchGroupId in " +
 "(select rm.id.researchGroupId from " +
 "ResearchGroupMembership rm where "
 " rm.id.personId = :personId) " +
 "order by a.time desc";
 articles = getSession().createQuery(query).
 setFirstResult(min).setMaxResults(count).
 setParameter("personId", person.getPersonId()).list();
 }

 return articles;
 }

 @Override
 public int getArticleCountForPerson(Person person) {
 if (person.getAuthority().equals("ROLE_ADMIN")) {
 return ((Long) getSession().
 createQuery("select count(*) from Article").
 uniqueResult()).intValue();
 }
 String query = "select count(*) from Article a " +
 " left join a.person p where " +
 "a.researchGroup.researchGroupId is null or " +
 "a.researchGroup.researchGroupId in " +
 "(select rm.id.researchGroupId from " +
 " ResearchGroupMembership rm where rm.id.personId = :personId)";
 return ((Long) getSession().createQuery(query).
 setParameter("personId", person.getPersonId()).
 uniqueResult()).intValue();
 }

