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Abstract  

This paper is focused on the solution of simple beam continually supported by elastic (Winkler's) founda-
tion. The foundation contains longitudinal nonlinearity. For the calculation of displacements and bending 
stresses are used analytical procedures (approximate solution in the form of polynomial function) and probabilis-
tic approaches (SBRA method, Monte Carlo Simulation Method, AntHill software). Probabilistic approach in-
cludes influences of variability of load, shape and material of the beam, and variability of modulus of the foun-
dation. Probabilistic approach is used for the reliability expertise of the beam and calculation of safety. 
© 2007 University of West Bohemia. All rights reserved. 
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1. Introduction  

The analysis of bending of beams on an elastic foundation is developed on the assumption 
that the strains are small and the reaction forces qR = qR(x) /Nm-1/ in the foundation are pro-
portional at every point to the deflection v = v(x) /m/  of the beam at that point, etc. (first pro-
posed by E. Winkler, Prague 1867), see fig.1. 
 

Fig. 1. Element of a Beam on Elastic Foundation. 

External loads on the beam also evoke bending moment Mo /Nm/, axial (normal) force 
N /N/ and shearing force T /N/, see fig.1. 
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The general problem is described by ordinary differential equation: 
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where: E /Pa/ is modulus of elasticity in tension of the beam,                                 is the major 
principal second moment of area A /m2/ of the beam cross-section, β /1/ is shear deflection 
constant of the beam, G /Pa/ is modulus of elasticity in torsion of the beam, q /Nm-1/ is dis-
tributed load (intensity of force), m /N/  is distributed couple (intensity of moment),  
α t /deg-1/is coefficient of thermal expansion of the beam, h /m/ is depth of the beam and  
t2 � t1 /deg/ is transversal temperature increasing in the beam. For more information about the 
derivation of eq. (1), see reference [1]. 

In the most situations, the influences of normal force, shear force and temperature can be 
neglected (or the beam is not exposed to them). Hence, from eq. (1) follows: 
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From the Winkler's theory, see [1] or [5], is evident that: 

 ( )xkv×=Rq , (3) 

 ( ) ( )xKxk ×= b , (4) 

where: k(x) /Pa/ is stiffness of the foundation and K(x) /Nm-3/ is modulus of the foundation 
which can be expressed as functions of variable x /m/ (i.e. longitudinal nonlinearity in the 
foundation) and b /m/ is width of the beam. Hence, eq. (2) can be written in the form: 
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2.  Example of General Solution (Derivation) 

Let us consider the short straight beam on elastic nonlinear foundation, see fig.2. The 
beam of length L /m/ with free ends is exposed to one vertical force F /N/, i.e. other loads 
 

Fig. 2. Solved Example of the Beam on Elastic Nonlinear Foundation. 
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q and m are zero. Modulus of the foundation is given by linear function: 
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Hence, in this case differential eq. (5) can be written in the form: 
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The approximate solution can be found in the form of polynomial function of 6th order: 
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where: b0 /m/, : b1 /1/, �, : b6 /m-5/ are unknown constants. 
Equation (8) must satisfy the basic boundary conditions (at the point x = 0: Mo(x = 0) = 0, 

T(x = 0) = 0 and at the point x = L: Mo(x = L) = 0 and T(x = L) = F). 
Force equation of equilibrium can be also satisfied, i.e. equation: 
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where: k0 = K0 b /Pa/ is the stiffness in the foundation at the point x = 0 and k1 =

//Nmb
L
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KK
K is the slope of a given linear function k(x). 

From the above five conditions can be expressed constants b0 and b2, �, b5 as functions of 
two constants b1 and b6.

The last two constants (i.e. b1 and b6) can be derived via variational principles or via satis-
faction of differential equation (7) at chosen points. For more details about it see [2].

The auxiliary constants /m/NA 12 −
−−

, //NB 2
−−

, /m/NC 23 −−
−−

and remaining polynomial con-
stants (b1 and b6) are derived in the Tab.1. 

 

b00 Kk = b
L

b 0L
11

KK
Kk

−
== ( ) 





++−=

−−−−−−

AL1121B840C2 1016 kkkb

( )[ ] ( ) 







++++

=
−−

−−

LL2A3LL6560L15

F
C

10
22

1100
2 kkkkkkJEJE ZTZT

( ) xKKxK 10 +=

( ) ( ) 





++++−=

−−−−
−−

5
10

42
0

22
1101 LAL23L38L9L41180B604800

6

C
kkJEkkkkJEb ZTZT

( )01 3LB kkEJ ZT +=
−−

( ) 3
100 LLA kkk +=

−−

Tab. 1. Solved Example (Auxiliary Constants and Used Polynomial Constants). 

The analytical results (i.e. v, slope of the beam //rad
dx

dv
, Mo and T) are written in tab.2. 
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Tab. 2. Solved Example (Analytical Results of the Beam on Elastic Nonlinear Foundation). 

The accuracy of the derived results (tab. 2) was also checked by ANSYS software. How-
ever, the derived results fits very well for short beams (i.e. for the situations when the length 
of the beam L ≤ 2 m). For longer beams must be used higher approximation, i.e. function: 
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3. Probability Analysis of the Beam 

Deterministic approach (i.e. all inputs are constant) is the elder but simple way how to get 
the solution of mechanical systems. However, the deterministic approach cannot trully in-
cludes variability of all inputs. 

But this example is solved via probabilistic approach (i.e. all inputs are given by bounded 
(truncated) histograms) which is the modern and new trend of the solution of mechanical sys-
tems. 

 

Fig. 3. Histogram of Input Parameter /m/b . Fig. 4. Histogram of Input Parameter /m/h .

Probability analysis (see [7] and [8]) of the presented beam (see fig.2) includes 
 influences of variability of �I� shape (b = 0.09 ± 9 × 10-4 /m/, h = 0.2 ± 2 × 10-3 /m/, 
JZT = 2.16 × 10-5 ± 6.5 × 10-7 /m4/), material: (E = 1.8 × 1011 ± 9 × 109 /Pa/, yield stress 

/MPa/10361.162
587.77

345.43e
11
+

−×=R ), load ( /N/2.157324F
1.168773

2.75524

+

−
= ) and modulus of the foun-

K. Frydrýšek / Applied and Computational Mechanics 1 (2007) 445 - 452

448



K. Frydrý�ek / Applied and Computational Mechanics X (YYYY) 123-456 

dation: (K0 = 1.125 × 1011 ± 3.375 × 1010 /Nm-3/, KL = 1.125 × 1011 ± 3.375 × 1010 /Nm-3/), 
see fig.4 to 10 (i.e. inputs for AntHill software, Simulation-Based Reliability Assessment 
(SBRA) Method). 
 

Fig. 5. Histogram of Input Parameter //m4
ZTJ . Fig. 6. Histogram of Input Parameter /Pa/E .

Fig. 7. Histogram of Input Parameter /MPa/eR . Fig. 8. Histogram of Input Parameter /N/F .

Fig. 9. Histogram of Input Parameter //Nm 3
0

−K . Fig. 10. Histogram of Input Parameter //Nm 3
L

−K .

The values of results parameters (i.e. stiffness of the foundation k(x), displacement v(x), 
maximal displacement vMAX = v(x = L), bending stress σ(x) and maximal bending stress 
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MAX ==≈= σσ ) were calculated for 6105× simulations by 

Monte Carlo Method. Results are plotted by histograms in the following Figures 11 to 14 and 
Tab.3. 
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Fig. 11. 2D Histogram and its Sections    Fig. 12. 2D Histogram and its Sections 
 for Output Parameter )(xkk = . for Output Parameter )(xvv = .

Fig. 13. 2D Histogram and its Section    Fig. 14. Histograms of Output Parameters: 
 for Output Parameter )(xσσ = . a) )m0.9L(MAX === xvv ,

b) )m63.0(MAX ≈= xσσ .
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Output Variables: Minimum: Median: Maximum: See Figures: 

( ) /Pa/xk 701718088 1012476677 1326315441 11 

/mm/MAXv 11075.3 −× 11062.8 −× 2.31 12 and 14a) 
/MPa/MAXσ 39.31 79.74 173.57 13 and 14b) 

Tab. 3. Solved Example (Results of AntHill Software). 

Hence, from the presented results is evident that maximal displacement is at the right end 
of the beam (i.e. at the point x = L = 0.9 m) and maximal stress is at the point x ≈ 0.63 m. 

Probability analysis can be also used for reliability expertise of the beam (AntHill soft-
ware, SBRA Method). Hence, the function of safety FS (reliability factor) is defined by: 

 MAXe σ−= RFS , (9) 

see also fig.15 and 16. Hence, it is evident that the safe situation occurs when FS > 0 (i.e. 
yield stress Re is greater than maximal bending stress σMAX). 
 

Fig. 15. Histogram of Output Parameters /MPa/SF .

Fig. 16. 2D Histogram of Output Parameters For Calculation of SF .

The above function of safety FS was analyzed by Anthill software. Hence, the probability 
that FS ≤ 0 is 9.3571 × 10-4 (i.e. the yield stress and plastic deformations will be reached with 
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a probability of 9.3571 × 10-4). In other words, 9.3571 × 10-4 ≈ 0.094% of all states will result 
in yielding. 

4. Conclusion 

General solution for the chosen beam on nonlinear elastic foundation was derived in the 
form of polynomial function of 6th order. Derived results were used for probabilistic analysis 
(SBRA method, Monte Carlo Simulation Method, Anthill software). 

Finally, the probability that the plastic deformations occurs in the beam is 0.094%. Figure 
16 shows distribution of yield stress versus maximal bending stresses and calculation of sa-
fety, which is 99.906%. 

Another examples of the applications of SBRA method are shown in references [2] and 
[3], [4], [6], [7] and [8]. 

Another examples of the solutions of the beams on nonlinear elastic foundation are shown 
in references [2] and [5]. 
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