
 

   

Ročník 2013   Číslo I 

 

 

 

Application Results Identification Based on Genetic Algorithm in 
Nonlinear Control Design of Magnetic Levitation System 

P.Šuster 1, A. Jadlovská1
,
 

1 
Department of Cybernetics and Artificial Intelligence, Faculty of Electrical Engineering and Informatics , TU 

Košice, 

Letná 9, Košice 

E-mail : peter.suster@tuke.sk, anna.jadlovska@tuke.sk 

 

Abstract: 

In this paper is presented the SISO laboratory model of Magnetic lev itation in terms of mathematic description, 

which allows verifying the d ifferent approaches of identification and control. The nonlinear simulat ion model of 

the Magnetic levitation based on the mathemat ical model of the Magnetic levitation system is described. The 

unknown parameters of the Magnetic levitation model are identifying with using the genetic algorithm or direct  

measurement on the laboratory model and validation the obtained model parameters is performed after the 

identification. In this paper are also presented the control results of Magnetic levitation  simulat ion and laboratory 

model with using the optimal state control with integrator method and the exact feedback linearizat ion 

input/output method.      

 

INTRODUCTION 

In this paper is presented the modeling, identification 

and control algorithm design for Magnetic levitation 

laboratory model, which is located in the Laboratory 

of Cybernetics in the Department of Cybernetics and 

Artificial Intelligence, FEI TU of Kosice. Magnetic 

levitation model is an example of nonlinear, in open 

loop unstable SISO system with fast dynamics. The 

identification of unknown parameters  and control 

algorithm design is very difficult for these properties. 

The problem of the identificat ion of the Magnetic 

levitation model was described in the [1] and [3]. 

However, the proposed identification method, which 

are presented in the [1] for determination of the 

values for various model parameters required the 

specially prepared  experiments and also is necessary 

often to repeat these experiments. In order to simplify 

the process of the identificat ion in this paper is 

proposed the genetic algorithm, which is used to 

identify of the some model parameters of the 

Magnetic levitation. The other model parameters are 

obtained by the direct measurement of the laboratory 

model. Another reason for the identification of these 

model parameters using the genetic algorithm is also 

the existence the Magnetic levitation mathemat ical 

model. The identification of a nonlinear model 

parameters using genetic algorithm is presented in 

[2], [4], [5].          

Some linear and nonlinear approaches were used to 

design control algorithm for Magnetic levitation 

system as a linear state control [6], an adaptive 

control [7] or an exact linearization [8]. In this paper 

are also presented the obtained results of the control 

of the simulat ion and laboratory model of the 

Magnetic levitation using the methods of synthesis - 

optimal state control with integrator method and 

exact feedback linearization input/output method.  

The paper is organized as fo llows. The Magnetic 

levitation laboratory model and its mathemat ical 

model are shown in the first and second part. The 

third part describes the identification process of the 

Magnetic levitation simulation model and validation 

of the obtained parameters. In the last part is 

described the control algorithm design for Magnetic 

levitation model using optimal state control with 

integrator method and exact feedback linearization 

input/output method.  

LABORATORY MODEL OF 

MAGNETIC LEVITATION 

The laboratory model of the Magnetic levitation 

(ML) is shown in the Fig. 1. It consists the education 

model of the Magnetic levitation and the laboratory 

card MF614, which is used for communication with 

the control PC. The essence of the whole system, 

with the proposed control algorithm in  the control 

PC, is to keep levitate the steel ball in  the air in  the 

desire position by using electromagnetic force, which 

is produced from electric current going through the 

coil with soft magnetic core. 
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Fig. 1: CE 152  Magnetic levitation laboratory model  of 

Humusoft 
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The Magnetic lev itation education model is 

composed of the following subsystems: power 

amplified, ball and coil and inductive position sensor. 

The model is connected to the control PC v ia the A/D 

and D/A converters that are located on the laboratory 

card MF614, which is connected to PC v ia the PCI 

interface. The converters are considered as part of the 

model ML in this case (Fig. 2).  
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Fig. 2: The internal structure of the education model of the ML 

 

The input is unified signal uMU , which is transformed  

to signal u by the D/A converter, and it enters  to 

power amplified, which converts it to current i. The 

current i pass through coil and thereby is generated 

electromagnetic force Fm, which acting to the ball in 

the opposite direction as gravitational force Fg. The 

ball will levitate between the coin and the sensor in 

the certain position x in the case, that the balance of 

these forces. The position of the ball x  is converted to 

signal y by the inductive position sensor, which is 

transformed to unified signal yMU by the A/D 

converter.  

The proposed experiments for identification of the 

parameters of the simulation model and also 

verification of the designed control algorithms for the 

Magnetic levitation laboratory model are done in the 

programming language Matlab/Simulink using the 

Real Time Toolbox.[9]   

MATHEMATICAL MODEL OF 

MAGNETIC LEVITATION 

The each subsystems are described by the differential 

and linear equations respective.   

The mathemat ical model of the ball and coil 

subsystem is described by the second order nonlinear 

differential equation  
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where:  i(t)  -  electric current [A] 

 x(t)   -  ball position [m] 

 mk   -  mass of ball [kg] 

        k c   -  coil constant [A/V] 

         x0   -  coil o ffset [m] 

         g   -  grav ity constant [m/s
-2

] 

 kfv   -  damping constant [N/m.s] 

 Ffv -  damping force [N]  

 Fm -  electromagnetic force [N] 

 Fg -  grav itational force  [N] 

 Fa -  accelerating force [N] 

 

Position of the ball in the magnetic field is controlled 

by electric current i(t), which is generated from the 

power amplified. The power amplified is designed as 

a source of constant current, and its time constant is 

neglected with respect to system dynamics. The 

power amplified subsystem can be described by the 

following linear equation: 

 

)()( tukti i  (2) 

 

where:  u(t)  -  input voltage [V] 

 ki   -  gain o f power amplified [A/V] 

The inductive position sensor is used to determine the 

ball position, which is approximated by a linear 

equation 

 

0)()( ytxkty x  (3) 

 

where:  y(t)   -  sensor output voltage [V] 

 x(t)   -  ball position [m] 

         k x    -  sensor gain [V/m] 

         y0    -  sensor offset [V] 

 

The D/A converter transform the digital unified 

signal uMU from PC to  analog voltage signal u and 

conversely the A/D converter transform analog 

voltage signal y to unified dig ital signal yMU, which is 

then processed in the PC. The behavior of the D/A 

and A/D converter can be described by the linear 

equations: 

 

D/A converter: 

0)()( utuktu MUDA  (4) 

A/D converter: 

0)()( MUADMU ytykty  (5) 

 

where:  u(t)   - D/A converter output voltage [V] 

 uMU(t) - D/A converter input voltage [MU] 

         kDA  - D/A converter gain [V/MU] 

         u0    - D/A converter offset [V] 

         yMU(t) - A/D converter output voltage  

    [MU] 

 y(t)  - A/D converter input voltage [V] 

         kAD  - A/D converter gain [MU/V] 

 yMU0 - A/D converter offset [MU] 
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Based on equations (1) to (5), which describe 

mathematical model of the Magnetic levitation 

system was programmed simulat ion scheme of the 

Magnetic levitation nonlinear model in the 

Matlab/Simulink language.(Fig. 3). 
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Fig. 3: The simulation scheme of the Magnetic levitation 

model 

 

The ball and coil subsystem was extended about 

LIMITY block, because of model constants have to 

vary according the ball position. [1] 

IDETIFICATION OF 

MATHEMATICAL MODEL 

PARAMETERS 

In this part is given identificat ion of the mathemat ical 

model parameters of ML (Fig.3).  

The proposed simulation model of ML has 10 

parameters, of which 6 parameters (kDA, u0, kAD, yMU0, 

k x, y0) are determined by direct measurement or 

experiments on the real model and other 4 parameters 

(k i, k c, x0, kfv) are identified using a genetic algorithm. 

Subsystem parameters of the D/A and the A/D 

converters, which provide connection between model 

and control PC are directly obtained from technical 

parameters of the MF614 laboratory card. The D/A 

converter transform d igital signal in the machine unit 

in the range of 5,0;0MUu MU to voltage signal 

10;0u V and therefore D/A converter gain        

kDA = 20 V/MU and offset u0 = 0V. Similarly, the 

A/D converter, which transform voltage signal in the 

range of 5;0y V to machine unit  signal 

1;0MUy  MU, where then A/D converter gain   

kAD = 0,2 MU/V and offset yMU0 = 0 MU. 

For identification of the inductive position sensor 

parameters was designed experiment, in which was 

measured output signal yMU of model. The inductive 

position sensor is approximated by the linear 

function, it was sufficient to measure output signal 

values in the both of the limits of the ball position and 

then calculate corresponding sensor output voltage by 

equation (6), which  was created by the substituting 

equation (3) into equation (5).  

0ykxkky ADxADMU  (6) 

The measured and calculated values for the 

identification of the sensor parameters are listed in 

Tab.1. 

 
Tab. 1: Measured and calculated values  

i xi [m] yMUi [-] yi [V] 

1 0 0,0034 0,017 

2 0,005 0,9375 4,6705 

 

Based on the values listed in Tab. 1, it is possible to 

calculate sensor gain and offset values: 

017,010 yy V (7) 

7,930
005,0

017,06705,4

12

12

xx

yy
kx V/m (8) 

The parameters of the ball and coil subsystem, mass 

of ball mk = 8,27e-3 kg and gravity constant g = 9,81 

m/s
-2

. [1] 

Genetic algorithm identification of parameters of 

model  

The parameters k c - coil constant, x0 - coil offset, kfv - 

damping constant for ball and coil subsystem and k i - 

gain of power amplified for power amplified 

subsystem,  which could not directly measure on the 

laboratory model, were identified using a genetic 

algorithm (GA). The identification structure for 

parameter estimation using GA is on the Fig. 4. at the 

beginning, the estimated parameters from GA are set 

in the simulation model, which are placed in the 

string θi, where i = 1,...,M, where M denotes number 

of the strings in the one generation. The same signal 

is coming on  the real model input and simulation 

model and then is compared output of the real model 

y(k) and output of the simulat ion model ŷ(k). The k  

denotes the time instant k  = jT, where T is constant 

sample period, j = 1,...N and N is total number of the 

samples. Subsequently, based on the equation (9) and 

from generated errors ej is determined performance 

index Ji for θi string.  

N

j

ji eJ

1

 (9) 

In this paper, GA is used to minimize the 

performance index Ji. For each i -th string in  the one 

generation is then calculated its fitness function, 

which has the following shape: 

i
i

J
fitness

1
 (10) 

The all string θi are compared to each other according 

to their fitness function fitnessi, and are selected the 

strings to the new generation, while a genetic 

crossover and mutation operations are performed 



 

   

 

 

over some of string. Thus, the new generation of the 

strings is obtained, and it must be added, that the 

selection of the new generation has  higher probability 

"survive" the most successful strings, but any 

probability have also the less successful strings. This 

whole process is then repeated until required number 

of repetitions is fulfilled or tolerance between 

simulation and real model is in the desired accuracy 

(Fig. 4). [2], [10]       

             

 
 

Fig. 4: Identification structure using genetic algorithm 

 

The identification of the model parameters using GA 

was used the proposed program module for GA  in the 

Matlab/Simulink language. The input parameters for 

program module are:   

 number of strings in the one generation : 50 

 number of gens in the one string : [k i, k c, x0, kfv ] 

 type of selection  : roulette wheel 

 type of crossover : one point 

 crossover probability : 0,8 

 mutation probability : 0,1 

 range of parameters for 1. generation 

max ;min : k i 0,5 ; 0,2 , k c 6-2,5e ; 6-1e  

x0 0,009 ; 0,007 , k fv 0,06 ; 0,01  

 type of completion : number of generations - 100 

The results of GA, after condition was fulfilled, are 

the following values for individual parameters: k i = 

0,3122 A/V, k c = 1,0175e-6 A/V, x0 = 0,0075 m, k fv = 

0,0838 N/m.s. The input signal used for identification 

is on the Fig. 5 and evolution process of the fitness 

function is shown in the Fig. 6.   
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Fig. 5: Input signal for identification of ML model parameters 

using GA 
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Fig. 6: Evolution process of the fitness  

 

The resulting parameters of the simulation model, 

which are used in  the simulat ion, are shown in  the 

Tab. 2: blue - d irect measurement, red - genetic 

algorithm, green - unidentified parameters  

 
Tab. 2: Parameters of simulation model ML 

parameter value dimension 

kDA 20 V/MU 

u0 0 V 

kAD 0,02 MU/V 

yMU0 0 MU 

k x 390,1 V/m 

y0 0,017 V 

ki 0,3122 A/V 

k c 1,0175e-6 A/V 

x0 0,0075 M 

kfv 0,0838 N/m.s 

mk 8,27*e-3 Kg 

g 9,81 m/s
-2

 

Validation of ML model parameters  

The validation  of the identified parameters was tested 

in the open loop with changed input signal and also in 

the feedback structure using a discrete PID controller. 

The results are time responses of the ball position of 

the simulation and real model. The t ime response of 

the simulation and real model in the open loop with 

new input signal (Fig. 7) is shown in the Fig. 8.  
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Fig. 7: Input signal for testing of identified parameters of ML 

model 
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Fig. 8: Validation of simulation model of ML in the open loop 

- ouput time responses  

For testing of identified parameters of ML model in 

the feedback structure (Fig. 9) was used with the 

discrete PID controller, whose transfer function is in 

the shape 

s
d

s
ipdPID
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z
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KKG
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where z is the operator Z - transformation, Kp is 

proportional gain of controller, Ki - integral gain of 

controller, Kd - derivative gain of controller and Ts is 

sampling period. The each gain of the discrete PID 

controller was designed by experiment [1] and have 

the following values : Kp = 1, Ki = 10, Kd = 0,03, Ts = 

0,002s. 
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Fig. 9: Simulation scheme of feedback structure using discrete 

PID control for simulation and real model of ML 

The following figures are shown the time responses, 

for testing of the identified parameters in the 

feedback structure. 
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Fig. 10:  Validation of simulation model of ML in the feedback 

structure - input time responses  
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Fig. 11:  Validation of  simulation model of ML in feedback 

structure - output time responses 

 

The resulting time responses, either in the open loop 

(Fig. 7, Fig. 8) o r in the feedback structure (Fig. 10, 

Fig. 11) show, that the simulation model with 

identified parameters tracks the behavior of the real 

model with sufficient accuracy, of which show the 

possibility of further use of simulat ion model of ML 

in the control structures using linear and nonlinear 

synthesis method. The control algorithms obtained in 

this manner can be used directly for control of the 

real model, which reduce time of control design and 

also decreasing probability of some fau lt of the real 

model.  

CONTROL DESIGN OF ML MODEL 

BASED ON LINEAR/NONLINEAR 

METHOD OF SYNTHESIS 

In this part of the paper is described the basic 

principle or a brief description of a control 

algorithms, which has been proposed and verified on 

the simulation model and then on the ML laboratory 

model. The optimal state control with integrator 

method and exact feedback linearization input/output 

method are presented for control algorithm design for 

Magnetic levitation model with the purpose of 

tracking the reference trajectories.  

The both of used methods assume a model written in 

the state space form in the shape:    
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where 
nRtx )(  is state vector, u(t) is control input, 

y(t) is system output,  f(x(t)) and h(x(t)) are smooth 

nonlinear function. Therefore, based on equations (1) 

to (5) was created nonlinear state space form, which 

describes the dynamics of the ML laboratory model, 

in the shape : 
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where state vector is  x(t) = (x1(t), x2(t)) = (x(t), (t)), 

input u(t) = uMU(t) and output y(t) = yMU(t). For better 

overview, further will not write dependence of 

variables on the time t.  

Linear method of synthesis - optimal state control 

with integrator  

The discrete state space form of the linear system is 

used for discrete optimal state control with integrator 

design (LQI control) in the shape 

)()(
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kCxky
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where is necessary propose control in the shape  

)()()()( kxkxKkxKku iLQILQILQI  (15) 

which minimizes the functional form 
M
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Where M is integer, KLQI is gain vector, QLQI, RLQI are 

weighting matrices and the output of integrator xi(k) 

is calculated by equation 

))()(()()1( kykwTkxkx sii  (17) 

where Ts is sampling period. The control structure for 

using optimal state control with integrator is in  the 

Fig. 12. [11]  

 
 

Fig. 12: The control structure for using LQI control 

 

The transformation of the nonlinear equations (13) 

into Taylor series around the chosen operating point 

x10 = 0,0025m, x20 = 0, uMU0 = 0,2261MU was 

obtained the state space form of the linear model, 

which approximates the dynamics of the ML 

laboratory model. The Matlab  function c2d() was 

used for obtain the discrete state space form (14), 

when sampling period was Ts = 0,002s.  

The Matlab function lqi() was used for actual control 

algorithm design. If the input into function lqi() are 

matrices of the discrete state space form (14) and the 

weighting matrices in the shape QLQI = [0 0 0;0 0 0;0 

0 1000], RLQI = 10, then the result from function are 

gain vector KLQI and the feedback loop roots  root_uro 

in the shape   

i

iuroroot

KLQI

0445,09247,0

0445,09247,0

855,0

_

6479,8

5599,1

2398,129

 (18) 

The discrete Kalman estimator was used for the 

estimate of the ML simulation and laboratory model 

states, which is necessary to know for optimal state 

control. The discrete Kalman estimator was proposed 

using the Matlab function kalman(). The input into 

function kalman() are matrices of the discrete state 

space form (14) and the weighting matrices Qest, Rest 

and output of function is estimator gain vector L and 

estimator roots. For the proposal of the estimator 

were chosen the weighting matrices Qest = 100000 

and Rest = 0,01 and then estimator gain vector L has 

the following values:   

2511,5

0159,0
L  (19) 

 

The control structure for testing the proposed optimal 

state control with integrator to control the ML 

simulation and laboratory model with purpose of to 

ensure the desired position of ball in the magnetic 

field of the coil is in the Fig. 13.   

 
Fig. 13:  Simulation scheme of  control structure with LQI 

control for ML simulation/laboratory model 

 

The time responses of the inputs and resulting outputs 

of tracking of reference trajectories with using the 

proposed method of the linear synthesis are in the 

Fig. 14 (a, b) and Fig. 15 (a, b ).  
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a) control input 
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b) model output 
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Fig. 14:  T ime responses of the ML simulation and laboratory 

model with using LQI control  

 
a) control input 
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b) model output 
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Fig. 15: Time responses of the ML simulation and laboratory 

model with using LQI control 

 

 

 

Nonlinear method of synthesis  – Exact feedback 

linearization input/output method 

The exact feedback linearizat ion input/output method 

is one of the structural nonlinear methods of the 

synthesis. This method based on the idea to 

compensate nonlinearit ies in the system (12) by 

adding nonlinear transformation (input and state) thus 

that the resulting system will be as a linear to respect 

to a new input v and output y and can be described by 

a linear state space form in the shape  

zCy

vBzAz

EL

ELEL
 (20) 

 

Then, for this linear model (20) is possible to propose 

the control algorithm using a suitable linear method 

of synthesis (Fig. 16). 

  

 
 

Fig. 16:  Control structure for exact feedback linearization 
input/output method 

 

The princip le of the exact feedback linearization 

input/output method is based on repeatedly derivative 

of the output y of the nonlinear state space form (12) 

until a dependence on the input signal u. The number 

of derivation indicates a relative order of the system 

r. If relat ive order r equal the order of system n, then 

the transformation of system (12) is completed and is 

possible to define a state transformat ion z = z(x) in the 

shape    
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If the substitution y
r
 = v, the input transformation u =  

u(x,v) has the following shape   

)(
1

vu  (22) 

where α, β are nonlinear function. The detailed 

description of the exact feedback linearization 

input/output method can be found in [12], [13]. 

The nonlinear state space form of the ML laboratory 

model (13) used for the applying of the exact 

feedback linearizat ion input/output method was 

rewritten for better overview and has the following 

shape   
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where 
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The next step is derivative of the system output y 

until dependence on the input signal u, and then is 

possible to define the state and input transformat ion. 

The proposed program module for exact feedback 

linearization input/output algorithm was used for 

determine the required transformation in the 

Matlab/Simulink language [14]. After application the 

program module for ML model (23), the state and 

input transformation have the following shape 
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After application of the state transformation (24) and 

input transformat ion (25) is possible rewrite the 

nonlinear model (23) into the following linear form 

(20) in the shape 
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Based on the state space form (26), which was 

transformed into the discrete form by the Matlab 

function c2d() with sampling period Ts = 0,002s, was 

designed the discrete control algorithm using the 

optimal state control with integral in the shape 

)()()()( kzkzKkzKkv iELEL  (27) 

If the weighting matrices QEL = [28 0 0;0 0,01 0;0 0 

5500], REL = 5e-7, then the gain vector KEL and 

feedback loop roots  root_uro have the following 

shape 
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The discrete Kalman estimator (19) was used for the 

estimate of the ML simulation and laboratory model 

states. The control structure for testing the proposed 

control using exact feedback linearization 

input/output method to control the ML simulation and 

laboratory model with purpose of to ensure the 

desired position of ball in the magnetic field of the 

coil is in the Fig. 17. 
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Fig. 17: Simulation scheme of  control structure for  exact 

feedback linearization input/output method for 
ML simulation and laboratory model 

 

The resulting time responses of the tracking the 

reference trajectories with using the proposed 

nonlinear synthesis are in the Fig.18(a, b) and Fig.19 

(a, b).   
a) control input 
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b) model output 
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Fig. 18: Time responses of the ML simulation and laboratory 

model with using exact feedback linearization 
input/output method – square trajectory     

 
a) control input 
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b) model output 
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Fig. 19: Time responses of the ML simulation and laboratory 

model with using exact  feedback linearization 
input/output method – sinus trajectory     

EVALUATION OF OBTAINED 

CONTROL RESULTS  

For evaluation of results of the proposed control 

algorithms for control ML simulation and laboratory 

model was used the IAE criterion (Integral of 

Absolute value of Error), which is defined by the sum 

of errors in the shape   
M

k

keS

1

)(  (29) 

The resulting values of the chosen criterion of ML 

simulation and laboratory model for control 

algorithms (exact linearizat ion method, optimal state 

control with integrator) are shown in the Tab. 3 and 

Tab. 4. 

 
Tab. 3: IAE criterion – square trajectory    

square trajectory simulation ML laboratory ML 

Exact 

linearization 
317,4156 325,1815 

LQI 200,1723 212,9896 

 

Tab. 4: IAE criterion – sinus trajectory   

sinus 

 trajectory 
simulation ML laboratory ML 

exact 

linearization 
322,5194 313,5943 

LQI 207,0827 217,7103 

 

From the resulting values from Tab. 3 and Tab. 4 and 

also from the resulting time responses (Fig. 14, Fig. 

15, Fig. 18, Fig. 19) show, that the proposed optimal 

state control with integrator to ensure better tracking 

the reference trajectories with limits 7,0;3,0 MU. 

The time responses are on the Fig. 20, which were 

obtained of control of the ML laboratory model with 

using the proposed control algorithms (exact 

linearization method, optimal state control with 

integrator, PSD velocity algorithm) with purpose of 

tracking the square trajectory reference with 

increased range 88,0;08,0 MU.     

Tab. 5: IAE criterion with increased range – square trajectory 

laboratory ML square trajectory 

exact linearization 261,9644 

LQI control 329,1399 

PSD  333,4730 

 

In the Tab. 5 are shown the resulting values of the 

chosen criterion for ML laboratory model, for control 

algorithms (exact linearizat ion method, optimal state 

control with integrator, PSD velocity algorithm.) and 

defined reference square trajectory with increased 

range.  
a) exact linearization 
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b) LQI control 
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c) PSD velocity algorithm 
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Fig. 20: Time responses of the ML laboratory model with using 

the proposed control algorithms - a) exact 
linearization, b) LQI control, c) PSD velocity 
algorithm. 



 

   

 

 

From the resulting values from Tab. 5 and also from 

the resulting time responses (Fig. 20 a, b, c) show, 

that the proposed control algorithm with using exact 

feedback linearization input/output method to ensure 

tracking the defined reference trajectories in the both 

limits.    

Therefore, it can be said, that the proposed control 

with using the exact feedback linearization 

input/output method has better results in the whole 

operating range of the laboratory model of Magnetic 

levitation.  

The further research will focus on the control 

algorithm design using nonlinear methods, where will 

be used the obtained simulation model o f the 

Magnetic levitation and also the obtained knowledge 

from identification by genetic algorithm will be used 

for modeling and identification of nonlinear model.   
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