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ABSTRACT

An extension to the classical concept of active contour models is proposed. Besides the introduction of a new
technique to couple several contours and treat them as one, the coupling of active contours beyond image domains
is presented. The coupling is realized by a force, that controls the mutual attraction or repulsion of each active
contour, depending on its definition. The coupling across the borders of images acquired by different sources
provides a higher integration of information for each extracted image feature implying an appropriate registration
of the images.
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1. INTRODUCTION

Active contour models, also known as snakes, are
elastic curves defined within the image domain that
move under influence of internal forces coming from
within the curve itself and external forces computed
from the image data. They deform towards image fea
tures satisfying certain smoothness constraints.

Since their introduction by Kass et al. [KWT87], ac
tive contour models have been subject to extensive
research activities as well as to applications in vari
ous fields of computer vision. The classical approach
based on deforming an initial contour towards ob
ject boundaries was extended and improved in many
ways.

Several improvements addressed the problems of ini
tialisation and poor convergence to object boundaries.
In [Coh91] Cohen introduced an inflation force that
pushes the snake towards the edge like a balloon
which is inflated. The initial curve needed no longer
to be close to the solution in order to converge. A
different approach using two interlinked snakes (dual
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snakes) was proposed by Gunn et al. in [GN97]. The
advantage over classical snakes is the higher robust
ness against local minima and a lower sensitivity to
initialisation and parameters. In their paper [CC97]
Cham et al. present the Stereo Coupled Active Con-
tours. They describe a technique for tracking objects
in the two images of a stereo vision system by snakes
which are coupled. The dual snakes and the Stereo
Coupled Active Contours can be considered as a spe
cial case or subset of the coupled snakes concept pro
posed in this paper.

In [XP97] Xu et al. presented the new external force
called the Gradient Vector Flow (GVF), that in ad
dition to the enhancement of robustness against a
weak initial position also improves the convergence
to boundary concavities.

The work by McInerney et al. [MT95] overcame the
topological limitations of the original snake concept.
In their work [GGO00] Giraldi et al. combined the ap
proach of topological changes with the benefits of the
dual snakes idea.

The main fields of active contour applications nowa
days is mainly the segmentation of medical images
as well as areal images and object tracking. Some
examples for the application of active contours to
medical images from different sources are shown in
[SD96][LKS00][CHTH93] and [HCG00]. The sec
ond major field of the application of snakes is the seg
mentation of areal images acquired by airborne and
space borne sensory. Like in medical image segmen
tation the task is to find areas or edges which have no
regular shape in the presence of noise (e.g. speckle in
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SAR1 images)[GR01][Hor99]. In the area of tracking
moving objects there is the recent work of Chen et
al. using a Kalman Filter[CRH02] and work of Mac
Cormick et al. that describes an approach for tracking
multiple objects with a probabilistic exclusion princi
ple in [MB00].

For a more detailed and broader review on active con
tours we refer to [JZDJ98].

2. BACKGROUND

The classical formulation [KWT87] of an active con
tour defines it as a two dimensional, planar curve
v(s) = (x(s),y(s)),s ∈ [0,1] that minimises its energy
by deformation and movement within an image. The
energy results from forces that are derived from the
contour itself and from the image. The words force
and energy are used synonymously. The total energy
Esnake of an active contour v is given by
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where α and β are weighting parameters which con
trol the snake’s tension and rigidity, respectively. The
external energy results from the forces that originate
from the image and any other source, like user in
duced or constraint forces.

3. APPROACH

In times of more complex and also faster sensor sys
tems often more than only intensity data of a scene are
acquired (e.g. infra red or dense range data). In most
automatic or semi automatic recognition schemes the
segmentation is performed separately for all image
data provided by the different sources. Thus the seg
mentation processes do not mutually affect each other
and the integration of collected image features has to
be performed at a higher level instead.

A more suitable approach is to use as much informa
tion as possible about a feature in the segmentation
process. Assuming the images of the different sources
are correctly registered before, it is preferable to per
form the segmentation in all images at the same time,
incorporating all information available. So each ex
tracted feature is now in some way more exactly ag
gregating data from different image sources. In order
to do this a segmentation technique must be used that
works upon a single image domain. This seems to be
a promising approach to extend the concept of active
contours.

3.1 Extending the Classical Snake For-
mulation

We extended the original formulation in two aspects.
First of all we consider a set of n classical active con
tours v1 · · ·vn as an entity that we call coupled active

contour C. The classical snake is a special case of
our definition of the coupled snake. A coupled active
contour is defined as:

C= {v1,v2, · · · ,vn} (2)

consisting of n classical active contours. Furthermore
we introduce a new internal energy Ecoup. It is defined
by the coupling force between the contours within
C. The function dcoup(vi(s),vj(s)) calculates the cou
pling force between the snakes vi and vj at s. The
coupling energy Ecoup for the whole coupled active
contour C is then defined as follows

Ecoup =
 1

0
Dcoup(C,s)ds (3)

where

Dcoup(C,s) =
n

∑
i=1

n

∑
j=1

ξi jdcoup(vi(s),vj(s)) (4)

where ξi j is a weighting factor that defines how much
the position of vj relative to vi influences the energy
minimising process of vi. Since we extended the def
inition of active contours we consider Ecoup as result
ing from an internal force as part of the internal en
ergy term. The central point is now the definition of
the coupling force, that interlinks all active contours
in C. For each pair of contours it is possible to define
its own force function which even must not necessar
ily be symmetric at all. Thus it is possible to define
within the snake concept itself volcanoes and springs
attached to certain points or regions in an image like
mentioned in [SA98]. But more important for vision
tasks is the possibility to use certain features detected
by a snake like an anchor, that guides other snakes to
their assumed destination similar to [SK01].

To reduce the computational complexity we rely on
some restrictions of the definition of the coupling
force respectively the function dcoup in our imple
mentation. This is no general limitation to the con
cept but only to our application. First, each classical
contour in C has the same number of control points.
Second, each control point of contour i is only inter
linked to control points of the other contours with the
same index. These restrictions are useful with focus
on real time applications but of course not necessary
if enough computational power is available.

It follows a short illustration of the concept by some
standard setups. With n = 1 (only one active contour
in C) we have the classical active contour. Rising the
number of classical contours inC up to two and defin
ing the function dcoup in a symmetric manner as the
Euclidian distance (or another meaningful metric or a
even more complex distance measure) leads to a be
haviour like described in [GN97].

Since this force is symmetric there is no need to dis
tinguish between vi and vj. The next example shows
an unsymmetric definition for d. We want v1 to push
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away v2 while v2 has no effect on v1. We define dcoup
as follows:

dcoup(vi(s),vj(s)) =

{

0 if i= 1, j = 2
1
dmax

if i= 2, j = 1
(5)

with

dmax = max((xi(s)− x j(s)),(yi(s)− y j(s))) (6)

The more classical contours are contained in C the
more complex the definition of dcoup can become.

3.2 Coupling Beyond One Image Do-
main

Due to the extension of the classical active contour
the coupled active contour concept enables us to let
all single active contours in C interact within one im
age domain. Further it is also possible to let each sin
gle active contour in C move exclusively in its own
image, like proposed in [CC97].

For that reason the formulation for classical snakes
has to be extended by the indication of the image in
which it operates. Thus, the above definition of vi
turns into

v(s) = (x(s),y(s), ι),s ∈ [0,1], ι ∈ I (7)

where I is the set of all images from different image
sources of the scene.

The main point is that after the images have been ac
quired by different sensor systems and a proper reg
istration is performed, each segmentation result ob
tained by a coupled active contour will represent a
higher amount of information for each extracted fea
ture. This intrinsic integration of more data into one
feature during its detection is a great advantage over
the conventional separation of detection and integra
tion, because it directly influences the segmentation
process to be more accurate and results in higher ac
curacy.

4. EXPERIMENTAL RESULTS

In our application a special sensor system is used
(laser range camera [SFR99] by ASTRIUM Euro-
pean Space Systems Company) which provides pixel-
synchronous dense range images as well as intensity
images as shown in Figure 1 and Figure 2. If the dif
ferent image sources provide different image formats
(e.g. width and height) adequate trimming or interpo
lation has to be deployed.

The main advantage of this sensor system is to di
rectly get metric range data which enables us to deter
mine the spatial position and orientation of recognised
objects for manipulation. On the other hand the main
drawback is the poor quality of the range data that
includes a very high amount of noise (see Figure 2).
Concerning the noise we have to perform some filter
ing before we can segment the images. For this scene

it appeared reasonable to use a median filter with a
15× 15 operator window. The drawback is that we
lose a high amount of range information so that the
spatial relation of the extracted features is inconsis
tent in many cases.

Figure 1: Intensity image of the scene

In our system we especially investigate active con
tours which are interlinked beyond image domains
(intensity and range). For that purpose we concen
trate on a coupled contour that consists of only two
interlinked classical contours.

Figure 2: Range image of the scene

For the initial position of the active contours which
is a crucial point we use a semi automatic method.
After edge detection and simple automatic evaluation
(edge length and strength) for both images (range and
intensity) is performed the system proposes some can
didates to the user. Since this choosing algorithm is
fairly conservative, regarding the total number of re
sults, some of the well suited candidates are unfortu
nately discarded. These candidates can be accepted or
rejected. For all accepted candidates a segmentation
process by coupled active contours is triggered. Due
to the already accomplished edge detection the initial
position of the two snakes in C is pretty good.

On average it takes about ten energy optimising iter
ations to reach the final configuration for a coupled



active contour with about 30 control points each and
a 5×5 search window. One iteration takes below one
millisecond on a PC with a 1200MHz Pentium II pro
cessor.

Figure 3 shows segmentation results. Because of the
median filtering the range data is not very accurate
anymore, so the estimation of the spatial position of
some features is limited. For that kind of filtered im
ages it appeared to be necessary for the snake to con
sist of about 50 control points. For the elliptical sur
face of the barbell in the foreground the assumption
is met. The estimated radius is about two millimetres
inaccurate. The calculated plane where the arc lies
in has a deviation of about 5◦. The position and ori
entation of all other features is more or less incorrect
and not suitable to form a consistent hypothesis of the
object’s pose.

5. SUMMERY, CONCLUSIONS,
AND FUTURE WORK

The above described extensions on active contours
gain the benefits of a more compact formulation of ba
sic concepts like springs and volcanoes, which can be
formulated as part of the coupled active contour. Fur
thermore it is now possible to integrate information
from different image sources into one feature to in
crease the accuracy. Compared to an approach where
only the calculation of the image energy for a single
snake is performed in several images the coupled ac
tive contours provide an individual set of parameters
for each snake in each image. In addition it is possi
ble to formulate some of the earlier extensions in the
area of active contours with coupled active contours.
Particularly, the classical snake is a special case of a
coupled active contour.

One major drawback is if there are several or at least
only two different image sources in at least one stage
of the whole process some kind of image registra
tion/sensor fusion has to be performed. Another dis
advantage is the missing ability of coupled active con
tours in changing their topology.

There are a lot of desirable improvements. First of
all a more accurate sensor system is inevitable. First
attempts into that direction have already been per
formed. Further, the up to now semi automatic stage
for selecting assumingly promising candidates for the
segmentation must be improved and extended to an
automatic stage, where no user guidance is needed.
This can be achieved by analysing and interpreting
the range data close to a potentially relevant feature
detected in the preceeding edge detection procedure.
Since the presented approach is a very open and basic
improvement, extensions into a variety of directions
are possible.
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Figure 3: Segmentation results


