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Abstract

A trigonometric shear deformation theory for flexure of thick or deep beams, taking into account transverse shear

deformation effects, is developed. The number of variables in the present theory is same as that in the first order

shear deformation theory. The sinusoidal function is used in displacement field in terms of thickness coordinate to

represent the shear deformation effects. The noteworthy feature of this theory is that the transverse shear stresses

can be obtained directly from the use of constitutive relations with excellent accuracy, satisfying the shear stress

free conditions on the top and bottom surfaces of the beam. Hence, the theory obviates the need of shear correction

factor. Governing differential equations and boundary conditions are obtained by using the principle of virtual

work. The thick isotropic beams are considered for the numerical studies to demonstrate the efficiency of the

theory. It has been shown that the theory is capable of predicting the local effect of stress concentration due to

fixity of support. The fixed isotropic beams subjected to parabolic loads are examined using the present theory.

Results obtained are discussed critically with those of other theories.
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1. Introduction

It is well-known that elementary theory of bending of beam based on Euler-Bernoulli hypothesis

disregards the effects of the shear deformation and stress concentration. The theory is suitable

for slender beams and is not suitable for thick or deep beams since it is based on the assumption

that the sections normal to neutral axis before bending remain so during bending and after

bending, implying that the transverse shear strain is zero. Since theory neglects the transverse

shear deformation, it underestimates deflections in case of thick beams where shear deformation

effects are significant.

Bresse [5], Rayleigh [16] and Timoshenko [20] were the pioneer investigators to include

refined effects such as rotatory inertia and shear deformation in the beam theory. Timoshenko

showed that the effect of transverse shear is much greater than that of rotatory inertia on the

response of transverse vibration of prismatic bars. This theory is now widely referred to as Tim-

oshenko beam theory or first order shear deformation theory (FSDT) in the literature. In this

theory transverse shear strain distribution is assumed to be constant through the beam thickness

and thus requires shear correction factor to appropriately represent the strain energy of defor-

mation. Cowper [6] has given refined expression for the shear correction factor for different
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cross-sections of beam. The accuracy of Timoshenko beam theory for transverse vibrations of

simply supported beam in respect of the fundamental frequency is verified by Cowper [7] with

a plane stress exact elasticity solution. To remove the discrepancies in classical and first order

shear deformation theories, higher order or refined shear deformation theories were developed

and are available in the open literature for static and vibration analysis of beam.

Levinson [15], Bickford [4], Rehfield and Murty [18], Krishna Murty [14], Baluch et al. [2],

Bhimaraddi and Chandrashekhara [3] presented parabolic shear deformation theories assuming

a higher variation of axial displacement in terms of thickness coordinate. These theories satisfy

shear stress free boundary conditions on top and bottom surfaces of beam and thus obviate the

need of shear correction factor. Irretier [12] studied the refined dynamical effects in linear,

homogenous beam according to theories, which exceed the limits of the Euler-Bernoulli beam

theory. These effects are rotary inertia, shear deformation, axial pre-stress, twist and coupling

between bending and torsion.

Hilderbrand and Reissner [11] have given the distribution of stress in built-in beam of nar-

row rectangular cross section using Airy’s stress function and the principle of least work. Tim-

oshenko and Goodier [21] presented the elasticity solutions for simply supported and cantilever

beams using Airy’s stress polynomial functions and using stress functions in the form of a

Fourier series.

Kant and Gupta [13], Heyliger and Reddy [10] presented finite element models based on

higher order shear deformation uniform rectangular beams. However, these displacement based

finite element models are not free from phenomenon of shear locking (Averill and Reddy [1];

Reddy [17]).

There is another class of refined theories, which includes trigonometric functions to repre-

sent the shear deformation effects through the thickness. Vlasov and Leont’ev [22], Stein [19]

developed refined shear deformation theories for thick beams including sinusoidal function in

terms of thickness coordinate in displacement field. However, with these theories shear stress

free boundary conditions are not satisfied at top and bottom surfaces of the beam. A study of

literature by Ghugal and Shimpi [8] indicates that the research work dealing with flexural anal-

ysis of thick beams using refined trigonometric and hyperbolic shear deformation theories is

very scarce and is still in infancy.

In this paper development of theory and its application to thick fixed beams is presented.

2. Development of theory

The beam under consideration as shown in Fig. 1 occupies in 0−x−y−z Cartesian coordinate

system the region:

0 ≤ x ≤ L, 0 ≤ y ≤ b, −
h

2
≤ z ≤

h

2
,

where x, y, z are Cartesian coordinates, L and b are the length and width of beam in the x and y
directions respectively, and h is the thickness of the beam in the z-direction. The beam is made

up of homogeneous, linearly elastic isotropic material.

2.1. The displacement field

The displacement field of the present beam theory is of the form:

u(x, z) = −z
dw

dx
+

h

π
sin

πz

h
φ(x), (1)

w(x, z) = w(x),
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Fig. 1. Beam under bending in x–z plane

where u is the axial displacement in x direction and w is the transverse displacement in z direc-

tion of the beam. The sinusoidal function is assigned according to the shear stress distribution

through the thickness of the beam. The function φ represents rotation of the beam at neutral

axis, which is an unknown function to be determined. The normal and shear strains obtained

within the framework of linear theory of elasticity using displacement field given by Eq. (1) are

as follows:

Normal strain: εx =
∂u

∂x
= −z

d2w

dx2
+

h

π
sin

πz

h

dφ

dx
, (2)

Shear strain: γzx =
∂u

∂z
+

dw

dx
= cos

πz

h
φ. (3)

The stress-strain relationships used are as follows:

σx = Eεx, τzx = Gγzx. (4)

2.2. Governing equations and boundary conditions

Using the expressions for strains and stresses (2) through (4) and using the principle of virtual

work, variationally consistent governing differential equations and boundary conditions for the

beam under consideration can be obtained. The principle of virtual work when applied to the

beam leads to:

b

∫ x=L

x=0

∫ z=+h/2

z=−h/2

(σxδεx + τzxδγzx)dx dz −

∫ x=L

x=0

q(x)δw dx = 0, (5)

where the symbol δ denotes the variational operator. Employing Green’s theorem in Eq. (4)

successively, we obtain the coupled Euler-Lagrange equations which are the governing differ-

ential equations and associated boundary conditions of the beam. The governing differential

equations obtained are as follows:

EI
d4w

dx4
−

24

π3
EI

d3φ

dx3
= q(x), (6)

24

π3
EI

d3w

dx3
−

6

π2
EI

d2φ

dx2
+

GA

2
φ = 0. (7)

The associated consistent natural boundary conditions obtained are of following form:
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At the ends x = 0 and x = L

Vx = EI
d3w

dx3
−

24

π3
EI

d2φ

dx2
= 0 or w is prescribed, (8)

Mx = EI
d2w

dx2
−

24

π3
EI

dφ

dx
= 0 or

dw

dx
is prescribed, (9)

Ma = EI
24

π3

d2w

dx2
−

6

π2
EI

dφ

dx
= 0 or φ is prescribed. (10)

Thus the boundary value problem of the beam bending is given by the above variationally

consistent governing differential equations and boundary conditions.

2.3. The general solution of governing equilibrium equations of the beam

The general solution for transverse displacement w(x) and warping function φ(x) is obtained

using Eqs. (6) and (7) using method of solution of linear differential equations with constant

coefficients. Integrating and rearranging the first governing Eq. (6), we obtain the following

equation
d3w

dx3
=

24

π3

d2φ

dx2
+

Q(x)

EI
, (11)

where Q(x) is the generalized shear force for beam and it is given by Q(x) =
∫ x

0
q dx + C1.

Now the second governing Eq. (7) is rearranged in the following form:

d3w

dx3
=

π

4

d2φ

dx2
− βφ. (12)

A single equation in terms of φ is now obtained using Eqs. (11) and (12) as

d2φ

dx2
− λ2φ =

Q(x)

αEI
, (13)

where constants α, β and λ in Eqs. (12) and (13) are as follows

α =

(

π

4
−

24

π3

)

, β =

(

π3

48

GA

EI

)

and λ2 =
β

α
.

The general solution of Eq. (13) is as follows:

φ(x) = C2 cosh λx + C3 sinh λx −
Q(x)

βEI
. (14)

The equation of transverse displacement w(x) is obtained by substituting the expression of

φ(x) in Eq. (12) and then integrating it thrice with respect to x. The general solution for w(x)
is obtained as follows:

EIw(x) =

∫ ∫ ∫ ∫

q dx dx dx dx +
C1x

3

6
+ (15)

(π

4
λ2 − β

) EI

λ3
(C2 sinh λx + C3 cosh λx) + C4

x2

2
+ C5x + C6,

where C1, C2, C3, C4, C5 and C6 are arbitrary constants and can be obtained by imposing bound-

ary conditions of beam.
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3. Illustrative example

In order to prove the efficacy of the present theory, the following numerical example is consid-

ered. The material properties for beam used are: E = 210 GPa, µ = 0.3 and ρ = 7 800 kg/m3,

where E is the Young’s modulus, ρ is the density, and µ is the Poisson’s ratio of beam material.

A fixed-fixed beam has its origin at left hand side support and is fixed at x = 0 and L.

The beam is subjected to parabolic load q(x) = q0

(

x
L

)2
on surface z = −h/2 acting in the

downward z direction with maximum intensity of load q0 as shown in Fig. 2. The boundary

conditions associated with this beam at fixed ends are: dw
dx

= φ = w = 0 at x = 0 and L.

Fig. 2. Fixed beam with parabolic load

General expressions obtained for w(x) and φ(x) are as follows:

w(x) =
q0L

4

120EI

[

1

3

x6

L6
+

x2

L2
−

4

3

x3

L3
−

12

π2

E

G

h2

L2

(

5

6

x4

L4
−

5

3

x2

L2

)

− (16)

4

5

E

G

h2

L2

(

−
x

L
+

1

2

x2

L2
+

sinh λx − cosh λx + 1

λL

)]

,

φ(x) =
1

15

q0L

βEI

(

1 + 5
x3

L3
+ sinh λx − cosh λx

)

. (17)

The expression for axial displacement u is obtained by substituting Eqs. (16) and (17) into the

first equation in (1) and it is as follows:

u =
q0h

Eb

[

−
1

10

z

h

L3

h3

(

2
x5

L5
+ 2

x

L
− 4

x2

L2
−

40

π2

E

G

h2

L2

(

x3

L3
−

x

L

)

−

4

5

E

G

h2

L2

(

−1 +
x

L
+ cosh λx − sinh λx

)

)

− (18)

16

5π4
sin

πz

h

E

G

L

h

(

−1 + 5
x3

L3
+ cosh λx − sinh λx

)]

.
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The expression for axial stress is obtained using Eqs. (2), (4), (16) and (17) as follows:

σx =
q0

b

{

−
1

10

z

h

L2

h2

[

10
x4

L4
+ 2 − 4

x

L
−

120

π2

E

G

h2

L2

(

x2

L2
−

1

3

)

−

4

5

E

G

h2

L2

(

1 + λL(sinh λx − cosh λx)
)

]

− (19)

16

5π4
sin

πz

h

E

G

(

15
x2

L2
+ λL(sinh λx − cosh λx)

)}

.

The expressions for transverse shear stress is obtained using constitutive relation (4) and using

Eq. (17) as follows:

τCR
zx =

16

5π3

q0

b

L

h
cos

πz

h

(

1 − 5
x3

L3
+ sinh λx − cosh λx

)

. (20)

Expression for transverse shear stress τEE
zx obtained from equilibrium equation

The alternate approach to determine the transverse shear stress is the use of equilibrium

equations. The first stress equilibrium equation of two dimensional theory of elasticity is as

follows:
∂σx

∂x
+

∂τzx

∂z
= 0. (21)

Substituting expression for σx into Eq. (21) and integrating it with respect to the thickness

coordinate zand imposing the boundary condition τzx = 0 at the bounding surfaces z = ±h/2
of the beam one can obtain the final expression of transverse shear stress, which is follows:

τEE
zx =

q0L

80bh

(

4
z2

h2
− 1

) [

40
x3

L3
− 4 −

240

π2

x

L
−

4

5

E

G

h2

L2
λ2L2(cosh λx − sinh λx)

]

− (22)

16

5π5
cos

πz

h

E

G

q0h

bL

(

30
x

L
+ λ2L2(cosh λx − sinh λx)

)

.

Results are obtained using expressions (16) through (22) for displacements and stresses. The

numerical results are presented in Table 1 and graphically presented in Figs. 3 – 11.

Table 1. Non-dimensional axial displacement (ū) at (x = 0.75L, z = h/2), transverse deflection (w̄) at

(x = 0.75L, z = 0.0), axial stress (σ̄x) at (x = 0, z = h/2), maximum transverse shear stresses τ̄CR
zx

and τ̄EE
zx (x = 0.01L, z = 0.0) of the beam for slenderness ratio (S) 4 and 10

Source S ū w̄ σ̄x τ̄CR
zx τ̄EE

zx

Present 0.293 2 0.251 3 3.227 3 0.196 9 −0.442 1
Ghugal and Sharma [9] 0.295 5 0.251 1 3.527 7 0.232 5 −0.455 4
Krishna Murthy [14] 4 0.297 9 0.251 4 3.270 2 0.205 3 −0.283 4
Timoshenko [20] −0.881 2 0.110 7 1.600 0 0.048 2 0.399 9
Bernoulli-Euler −0.881 2 0.059 3 1.600 0 — 0.399 9
Present −10.833 1 0.090 2 13.433 9 0.827 8 −0.087 3
Ghugal and Sharma [9] −10.827 5 0.090 2 14.189 1 0.885 1 0.425 1
Krishna Murthy [14] 10 −10.821 5 0.090 2 13.542 2 0.834 7 0.419 7
Timoshenko [20] −13.769 5 0.067 5 10.000 0 0.753 8 0.999 9
Bernoulli-Euler −13.769 5 0.059 3 10.000 0 — 0.999 9
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Fig. 3. Variation of axial displacement (ū) through

the thickness of fixed-fixed beam at (x = 0.75L, z)

for slenderness ratio 4

Fig. 4. Variation of axial displacement (ū) through

the thickness of fixed-fixed beam at (x = 0.75L, z)

for slenderness ratio 10

Fig. 5. Variation of maximum transverse displace-

ment (w̄) of fixed-fixed beam at (x = 0.75L,

z = 0) with slenderness ratio S

Fig. 6. Variation of axial stress (σ̄x) through the

thickness of fixed-fixed beam at (x = 0, z) for slen-

derness ratio 4

Fig. 7. Variation of axial stress (σ̄x) through the

thickness of fixed-fixed beam at (x = 0, z) for slen-

derness ratio 10

Fig. 8. Variation of transverse shear stress (τ̄zx)

through the thickness of fixed-fixed beam at (x =

0.01L, z) obtained using constitutive relation for

slenderness ratio 4
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Fig. 9. Variation of transverse shear stress (τ̄zx) through the thickness of fixed-fixed beam at (x = 0.01L,

z) obtained using constitutive relation for slenderness ratio 4

Fig. 10. Variation of transverse shear stress (τ̄zx) through the thickness of fixed-fixed beam at (x =

0.01L, z) obtained using equilibrium equation for slenderness ratio 4

Fig. 11. Variation of transverse shear stress (τ̄zx) through the thickness of fixed-fixed beam at (x =

0.01L, z) obtained using equilibrium equation for slenderness ratio 10
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4. Results

The results for inplane displacement, transverse displacement, axial and transverse stresses are

presented in the following non dimensional form for the purpose of presenting the results in this

paper:

ū =
Ebu

q0h
, w̄ =

10Ebh3w

q0L4
, σ̄x =

bσx

q0

, τ̄zx =
bτzx

q0

, S =
L

h
.

The numerical results for displacements and stresses are obtained using FORTRAN programs

developed based on the non-dimensional expressions for these quantities.

5. Discussion and conclusion

The variationally consistent theoretical formulation of the theory with general solution tech-

nique of governing differential equations is presented. The general solutions for beam with

parabolic load is obtained in case of thick fixed beams. The displacements and stresses ob-

tained by present theory are in excellent agreement with those of other equivalent refined and

higher order theories. The present theory yields the realistic variation of axial displacement and

stresses through the thickness of beam. The theory is shown to be capable of predicting the

effects of stress concentration on the axial and transverse stresses in the vicinity of the built-in

end of the beam which is the region of heavy stress concentration. Thus the validity of the

present theory is established.
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Nomenclature

A Cross sectional area of beam = bh
b Width of beam in y-direction

E, G, µ Elastic constants of the beam material

h Thickness of beam

I Moment of inertia of cross-section of beam

L Span of the beam

q0 Intensity of parabolic transverse load

S Slenderness ratio of the beam = L/h
w Transverse displacement in z-direction

w̄ Non-dimensional transverse displacement

ū Non-dimensional axial displacement

x, y, z Rectangular Cartesian coordinates

σ̄x Non-dimensional axial stress in x-direction

τ̄CR
zx Non-dimensional transverse shear stress via constitutive relation

τ̄EE
zx Non-dimensional transverse shear stress via equilibrium equation

φ(x) Unknown function associated with the shear slope

List of abbreviations

CR Constitutive Relations

EE Equilibrium Equations

TSDT Trigonometric Shear Deformation Theory

HPSDT Hyperbolic Shear Deformation Theory

HSDT Third Order Shear Deformation Theory

FSDT First Order Shear Deformation Theory

ETB Elementary Theory of Beam
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