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Abstract

The paper deals with mathematical modelling of steady forced bladed disk vibrations and with dynamic stress
calculation of the blades. The blades are considered as 1D kontinuum elastic coupled with three-dimensional elastic
disk centrally clamped into rotor rotating with constant angular speed. The steady forced vibrations are generated
by the aerodynamic forces acting along the blade length. By using modal synthesis method the mathematical model
of the rotating bladed disk is condensed to calculate steady vibrations. Dynamic stress analysis of the blades is
based on calculation of the time dependent reduced stress in blade cross-sections by using Hubert-Misses-Hencky
stress hypothesis. The presented method is applied to real turbomachinery rotor with blades connected on the top
with shroud.
c©2007 University of West Bohemia. All rights reserved.
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1. Introduction

The rotating systems are often modelled as one-dimensional rotating bodies with rigid disks
attached to them [3], [7], [8]. Previously created model of the rotating bladed disk [9] has
been applied for bladed disk forced vibration [2]. Using real disk properties and excitation by
aerodynamic forces [4] there is determined dynamic behaviour of individual blades as well as
of the disk. For blade dynamic stress analysis and successive high-cyclic fatigue failures there
is the need to transform the forced vibration into stress response. The aim of this article is to
develop an original method for stress analysis in different locations of the arbitrary blade using
3D modelling of the disk [5], 1D modelling of the blades [1] and reduction of number of bladed
disk DOF by modal synthesis method.

2. Mathematical model of the rotating bladed disk

The rotating bladed disk can be generally decomposed into disk (subsystem D) and sepa-
rated blade packets (subsystems Ps, s = 1, 2, . . . , p), where p is their count (fig. 1). We assume
that the disk is centrally clamped into turbomachine rotor rotating with constant angular speed
ω. The disk nodes on the inner radius are fixed in all directions. The blades (Bj) in packets
(Ps) are connected on the top with shrouds (S). The blades elastic seating to disk is replaced
with elastic supports in outer contact points of two dog bolts between disk and every one blade
foot. The blade packets are mutually connected by elastic linkages characterized by diagonal
stiffness matrix KL = diag(ku, kv, kw, kϕ, kϑ, kψ).
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Fig. 1. Scheme of the bladed disk with detail of one blade packet.

The mathematical model of the undamped subsystems incorporated in the rotating bladed
disk can be written in matrix form [5], [9]

MDq̈D(t) + ωGDq̇D(t) +
(

KsD − ω2KdD

)

qD(t) = ω2fD + fC
D , (1)

MP q̈P,s(t)+ωGP q̇P,s(t)+
(

KsP − ω2KdP + ω2KωP

)

qP,s(t) = ω2fP +fC
P,s+fP,s(t), (2)

s = 1, 2, . . . , p, where mass matrices MD, MP , static stiffness matrices KsD,KsP and dy-
namic stiffness matrices KdD, KdP of the disk (subscript D) and blade packets (subscript P )
are symmetrical. Symmetric matrix KωP expresses a centrifugal blade stiffening [1]. Skew-
symmetric matrices ωGD and ωGP express gyroscopic effects. Centrifugal load vectors ω2fD
and ω2fP are constant in time. Vectors fP,s(t) express the excitation of the blade packets by
aerodynamic forces. All presented matrices in models (1) and (2) correspond to mutually un-
coupled subsystems and are created by means of finite element method (for more details see
contributions [1], [9], [5]). Vectors fC

D and fC
P,s (s = 1, 2, . . . , p) represent the coupling forces

in general coordinates of subsystems

qD =
[

. . . u
(D)
i v

(D)
i w

(D)
i . . .

]T

∈ RnD , (3)

qP,s =
[

qTS1
qTB,1q

T
S2

qTB,2q
T
S3

qTB,3q
T
S4

]T

P,s
∈ RnP , (4)

where u(D)
i , v

(D)
i , w

(D)
i in (3) are disk nodal displacements in direction of disk rotating axis

x, y, z (fig. 2). Coordinates of subvectors qB,j (j = 1, 2, 3) express the blade displacements of
the node i (fig. 1) in direction of rotating axis xj, yj, zj and small turn angles of the blade cross
section (subscript j corresponds to blade in packet)

qB,j = [. . . ui vi wi ϕi ϑi ψi . . .]
T

B,j , i = 1, 2, . . . , N, j = 1, 2, 3. (5)
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Fig. 2. Scheme of the disk.

Coordinates of subvectors qS1
,qS2,... express the shroud’s displacements in nodes S1, S2, . . .

qx = [ux vx wx ϕx ϑx ψx]
T

P,s , x = S1, S2, . . . (6)

Vector fC
D represents the forces in all blade’s seating to disk acting on the disk. Vector fC

P,s

expresses the coupling forces in blade’s seating of packet s and in shroud linkages between
blade packets acting on single packet s.

The global coupling force vector in global configuration space of all general coordinates

q =
[

qTD qP,1 qP,2 . . . qP,p
]T

(7)

can be calculated from the potential (strain) energy as

fC =











fC
D

fC
P,1
...

fC
P,p











= −∂E
C
p

∂q
. (8)

This energy can be expressed in the additive form

EC
p =

p
∑

s=1

b
∑

j=1

EC
s,j + EC

P , (9)

where EC
s,j is coupling strain energy between blade j in blade packet s and the disk and the EC

P

is strain energy of all shroud linkages between blade packets. The linearized global coupling
force vector can be written in the form

fC = −
p
∑

s=1

b
∑

j=1

KC
s,jq − KC

P q . (10)

The coupling stiffness matrices result from equations conform the conditions

∂EC
s,j

∂q
= KC

s,jq ,
∂EC

P

∂q
= KC

P q . (11)

The mathematical models (1), (2) using (8) and (10) after completion of a damping in couplings
can be rewritten in the global matrix form

[

MD 0

0 MR

] [

q̈D(t)
q̈R(t)

]

+

(

BC
P +

p
∑

s=1

b
∑

j=1

BC
s,j + ω

[

GD 0

0 GR

]

)

[

q̇D(t)
q̇R(t)

]

+

+

(

[

KD(ω) 0

0 KR(ω)

]

+
p
∑

s=1

b
∑

j=1

KC
s,j

)

[

qD(t)
qR(t)

]

= ω2

[

fD
fC

]

+

[

0

fR(t)

]

, (12)
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where
qR =

[

qTP,1 qTP,2 . . . qTP,p
]T ∈ RnR , nR = p nP (13)

is the general coordinate vector of a blading with shroud creating the blade rim (subscript R).
The global stiffness matrix of the rotating disk has the form

KD(ω) = KsD − ω2KdD ∈ RnD,nD . (14)

The matrices of the blade rim are compiled from the blade packet matrices

XR = diag (XP , XP , . . .XP , ) ∈ RnR,nR , X = M ,G,Ks,Kd,Kω. (15)

The global stiffness blade rim matrix is

KR(ω) = KsR + ω2 (KωR −KdR) + KC
PP ∈ RnR,nR , (16)

where KC
PP is nonzero submatrix of the coupling stiffness matrix KC

P corresponding to subsys-
tem R.

The centrifugal load vector of the blade rim is

fC =
[

fT
P fT

P . . . fT
P

]T ∈ RnR (17)

and vector of the aerodynamic forces has the general form

fR(t) =
[

fT
P,1(t), fT

P,2(t), . . . , fT
P,p(t)

]T ∈ RnR . (18)

It is advantageous to assemble condensed mathematical model of the rotating bladed disk
with reduced degrees of freedom (DOF) number, because mainly the three-dimensional elastic
disk could have large DOF number nD and blade rim DOF number is nR = p nP .

The modal transformations

qD(t) = mVDxD(t) , qR(t) = mVRxR(t) (19)

are introduced for this purpose. Matrices mVD ∈ RnD,mD and mVR ∈ RnR,mR are ”master”
modal submatrices of subsystems D (disk) and R (blade rim) obtained from modal analysis
of the mutually uncoupled (KC

s,j = 0 for all s, j) and non-rotating subsystems represented by
models

MDq̈D(t) + KsDqD(t) = 0 , MRq̈R(t) +
(

KsR + KC
PP

)

qR(t) = 0 . (20)

A condensation (reduction in DOF number) of both systems is attached by selection of a set of
mD and mR subsystem master mode shapes (mD < nD, mR < nR). The new configuration
space of dimension m = mD + mR is defined by coordinate vector

x(t) =
[

xTD(t) xTR(t)
]T ∈ Rm . (21)

After the transformations (19) with considerations of the orthonormality conditions
mV T

D MD
mVD = ED and mV T

R MR
mVR = ER the model (12) can be rewritten in the

condensed form

ẍ(t) +
(

B̃ + ωG̃
)

ẋ(t)+

+

(

Λ + ω2
(

K̃ω − K̃d

)

+ V T

(

p
∑

s=1

b
∑

j=1

KC
s,j

)

V

)

x(t) = V T (ω2f0 + f(t)) , (22)
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where

B̃ = V T

(

BC
P +

p
∑

s=1

b
∑

j=1

BC
s,j

)

V ,

X̃ = diag
(

mV T
D XD

mVD ,
mV T

R XR
mVR

)

∈ Rm,m

for X = G, Kd, Kω (with KωD = 0). Matrices

Λ = diag (mΛD ,
m
ΛR) , V = diag (mVD ,

mVR) (23)

are composed from spectral and modal submatrices of the subsystems satisfying the conditions

mV T
D KsD

mVD = m
ΛD ,

mV T
R

(

KsR + KC
PP

)m
VR = m

ΛR . (24)

The vector f0 =
[

fT
D , fT

C

]T
expresses the influence of the centrifugal forces. The global vec-

tor of the aerodynamic forces in complex form is f(t) = feiωkt, where f =
[

0
T fT

R

]T
. We

assume the harmonic blade excitation in axial (outspread to turbomachine rotor) and circumfer-
ential (tangential) direction concentrated in blade nodes i (fig. 1) in the complex form

fB,j(t) = [. . . ;Fiy cosϕj,s + iFiy sinϕj,s;Fiz cosψj,s + iFiz sinψj,s; . . .] e
iωkt , (25)

where ωk is dominant excitation frequency corresponding to number of stator nozzles multiply
angular velocity of the rotating disk. The angle ϕj,s is the phase angle of the aerodynamic
forces acting on j-th blade in s-th blade packet in the axial direction and ψj,s is the phase angle
in tangential direction on the same blade. These phase angles can be expressed in the form

ϕj,s = [j − 1 + (s− 1)3] 2π
pSB
pMB

, ψj,s = ϕj,s − ϕ , (26)

where ϕ is the relative phase shift between aerodynamic forces applied in axial and circumfer-
ential direction [4] and pSB (pMB) is stator (rotor) blade number.

3. Forced vibration and stress analysis

For high-cycle fatigue we consider only aerodynamic forces acting on the moving blades,
that’s why we don’t use below the constant centrifugal force f0 presented in (22). The steady
dynamic response of the rotating bladed disk calculated at the condensed model (22) is of the
form x(t) = xeiωkt with complex amplitude vector

x = Z−1V Tf , (27)

where

Z = −ω2
kE + iωk

(

B̃ + ωG̃
)

+

(

Λ + ω2
(

K̃ω − K̃d

)

+ V T

(

p
∑

s=1

b
∑

j=1

KC
s,j

)

V

)

(28)

is the dynamic stiffness matrix of the condensed model and f is vector of the complex ampli-
tudes of the aerodynamic excitation. Damping matrices BC

P and BC
s,j are considered as propor-

tional to stiffness matrices of the corresponding couplings. By using modal transformation we
obtain the steady state solution in global configuration space

qeiωkt = V xeiωkt . (29)
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This solution has the complex form and the real displacements of the excited rotating bladed
disk is the real part of the complex generalized coordinate vector

q(t) = Re{qeiωkt} . (30)

Stress intensity in any point on the blade profil in distance ξ from beginning of actual blade ele-
ment e (see fig. 3) and determined by coordinates η, ζ from gravity center of profile is expressed
by stress vector

σ(e)(ξ, η, ζ, t) =
[

σ
(e)
ξ σ(e)

η σ
(e)
ζ τ

(e)
ηζ τ

(e)
ζξ τ

(e)
ξη

]T

. (31)

Fig. 3. Scheme of blade element.

Using extension ε it can be expressed in form

σ(e)(ξ, η, ζ, t) = Dε(e) (ξ, η, ζ, t) , (32)

where

D = E
(1+ν)(1−2ν)

















1− ν ν ν 0 0 0
ν 1− ν ν 0 0 0
ν ν 1− ν 0 0 0
0 0 0 1

2
(1− 2ν) 0 0

0 0 0 0 1
2
(1− 2ν) 0

0 0 0 0 0 1
2
(1− 2ν)

















(33)

and ε(e) =
[

ε
(e)
ξ ε

(e)
η ε

(e)
ζ γ

(e)
ηζ γ

(e)
ζξ γ

(e)
ξη

]T

. From Cauchy geometrical equations [6] we can obtain

the forms for components of the strain vector ε(e) (superscript (e) is hereafter let out):

εξ =
∂uξ

∂ξ
, εη = ∂uη

∂η
, εζ =

∂uζ

∂ζ
,

γξη =
∂uξ

∂η
+ ∂uη

∂ξ
, γηζ = ∂uη

∂ζ
+

∂uζ

∂η
, γζξ =

∂uζ

∂ξ
+

∂uξ

∂ζ
,

(34)

where due to [1] is known that

uξ = u− ηψ + ζϑ, uη = v − ζϕ, uζ = w + ηϕ, ψ = v′, ϑ = −w′ (35)

J. Kellner et. al  / Applied and Computational Mechanics 1 (2007) 77 - 86

82



J. Kellner et al. / Applied and Computational Mechanics XX (YYYY) XXX - YYY

which leads to expressions

εξ = u′(ξ)− ηv′′(ξ)− ζw′′(ξ) = Ψ
′S−1

3 q3 − ηΦ′′S−1
1 q1 − ζΦ′′S−1

2 q2,
εη = v′(ξ)− ζϕ′(ξ) = Φ

′S−1
1 q1 − ζΨ′S−1

3 q4,
εζ = w′(ξ) + ηϕ′(ξ) = Φ

′S−1
2 q2 + ηΨ′S−1

3 q4,
γξη = −v′(ξ) + v′(ξ)− ζϕ′(ξ) = −ζΨ′S−1

3 q4,
γηζ = −ϕ(ξ) + ϕ(ξ) = 0,
γζξ = w′ + ηϕ′(ξ)− w′ = ηΨ′S−1

3 q4.

(36)

The displacements of internal points of the blade element were approximated by neglecting
shear deformations in the form

u(ξ) = ΦS−1
3 q3, v(ξ) = ΦS−1

1 q1, w(ξ) = ΦS−1
2 q2,

ϕ(ξ) = ΨS−1
3 q4, ϑ(ξ) = −Φ

′S−1
2 q2, ψ(ξ) = Φ

′S−1
1 q1, (37)

where Φ = [1 ξ ξ2 ξ3], Ψ = [1 ξ] and vector of node displacements of the blade elements of
length A0 B0 = l was decomponated to subvectors

q1 = [v(0) ψ(0) v(l) ψ(l)]T , q2 = [w(0) ϑ(0) w(l) ϑ(l)]T ,

q3 = [u(0) u(l)]T , q4 = [ϕ(0) ϕ(l)]T . (38)

The form of matrices Si, i = 1, 2, 3 is presented in [1].
Using relations (36) the strain vector can be rewritten into the matrix form

ε(e)(ξ, η, ζ, t) = A(e)(ξ, η, ζ)q(e)(t)

















εξ
εη
εζ
γηζ
γζξ
γξη

















=

















−ηΦ′′S−1
1 −ζΦ′′S−1

2 Ψ
′S−1

3 0

Φ
′S−1

1 0 0 −ζΨ′S−1
3

0 Φ
′S−1

2 0 ηΨ′S−1
3

0 0 0 0

0 0 0 ηΨ′S−1
3

0 0 0 −ζΨ′S−1
3

























q1

q2

q3

q4









.
(39)

The equation (32) applied for concrete blade element in the complex form is

σ
(e)
s,j (ξ, η, ζ)e

iωkt = DA(e)(ξ, η, ζ)T q̃
(e)
s,j e

iωkt, (40)

where s is index of packet and j index of blade in packet s, T is transformation matrix between
global and local coordinate system [1], q̃

(e)
s,j is vector of complex displacement amplitudes of

the blade element in global system. That’s why the real stress vector is

σ
(e)
s,j (ξ, η, ζ, t) = Re

{

σ
(e)
s,j (ξ, η, ζ)e

iωkt
}

= Re
{(

σ̄
(e)
s,j + i ¯̄σ

(e)
s,j

)

(cosωkt + i sinωkt)
}

,

(41)
σ

(e)
s,j (ξ, η, ζ, t) = σ̄

(e)
s,j cosωkt− ¯̄σ

(e)
s,j sinωkt, (42)

where quantities marked by bar (x̄) are real parts and quantities with two bars ( ¯̄x) are imaginary
parts of complex vector components. Using Hubert-Misses-Hencky stress hypothesis [6] we
obtain reduced stress

σ
(e)
red(ξ, η, ζ, t) =

1√
2

√

(σξ − ση)2 + (ση − σζ)2 + (σξ − σζ)2 + 6(τ 2
ζη + τ 2

ξη + τ 2
ξζ), (43)

where σξ = σ̄ξ cosωkt− ¯̄σξ sinωkt, etc.
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4. Application

On the basis of the presented method the original software in MATLAB code was created.
The matrices of the disk were obtained by three-dimensional finite element method as is shown
in [5]. The matrices of the blade rim were derived by one-dimensional finite element method
applied to blades with shroud [9]. The aerodynamic forces applied in axial and tangential di-
rection on each moving blade were assumed from [4]. The software and the proposed approach
was applied to the centrally clamped steel bladed disk characterized by following basic param-
eters:

disk inner/outer radius 0.335/05754 m
disk thickness 0.155 m
length of blades 0.253 m
width/thickness of shroud with rectangular profil 0.1005/0.014 m
number of blades in packets b 3
number of blade packets p 18
DOF number of the discretized disk nD 3240
DOF number of the discretized blade ring nR 3672
Young’s modulus of the disk, blade and shroud materials E 2e11 Pa
Poisson’s ratio ν 0.3
mass density % 7800 kg.m−3

amplitude of global axial force Fy acting on one blade 700 N
amplitude of global tangential force Fz acting on one blade 1600 N
relative phase shift between Fy and Fz 25

translation stiffnesses of the flexible blade seating in disk (fig.1)
kxj

= kzj
= 2, 8.109; kyj

= 4, 88.109 Nm−1

torsional/flexural stiffnesses of the flexible blade seating in disk (fig.1)
kxjxj

= 1, 05.108; kyjyj
= 1, 5.107 kzjzj

= 3.107 Nm.rad−1

stiffnesses linkages between blade packets (fig.1)
ku = kv = kw = 109 Nm−1; kϕ = kψ = 107; kϑ = 106 Nm.rad−1

The time dependent normal stress σζ for excitation frequency corresponding to 3000 revo-
lutions per minute of the disk and 32 number of stator nozzles in the blade cross-section of the
third element (the location of the blade profile for s = j, j = 1 in distance ξ = 0 and in gravity
center) is drawn in fig. 4 because it has the greatest value of stress vector components. Also
there is possibility to display components of vector σ

(e)
s,j on the whole chosen blade profile for

arbitrary instant of time. For illustration the normal stress σζ (resp. ση) on the concrete chosen
profile in time t = 0.4ms is shown in fig. 5 (resp. fig. 6).This cross-section stress can be drawn
as a movie dependent upon time. The shear stress are low order that’s why they are not here
presented.

5. Conclusion

The stress analysis of blades on rotating bladed disk excited by aerodynamic forces was
introduced. Compare to stress conditions of High-Smith diagram it can be said that the analysed
blade satisfies criterion for turbine blades in meaning of high-cycle fatigue. Presented results are
obtained from model which has a cyclic symmetric structure. The introduced method and deve-
loped software will make possible to dynamic stress modelling of imperfect bladed disk caused
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Fig. 4. Time dependent normal stress σζ(0, 0, 0, t) on the third blade element s = 1, j = 1.
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Fig. 5. Normal stress σζ(0, η, ζ, 4e− 4) on the third blade element s = 1, j = 1.

by manufacture inaccuracy. Mathematical model of rotating bladed disk in parametric form
will be put to use for parameter correction on the basis of experimental data and for subsequent
optimization in term of dynamic stress.
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[7] T. Yamamoto, Y. Ishida, Linear and nonlinear rotordynamics, a modern treatment with applica-

tions, John Wiley & Sons, New York, 2001.
[8] V. Zeman, Z. Hlav, Balancing machine vibration and identification of oil-film bearing parame-

teres, Proceedings of the Engineering Mechanics 2006, Svratka, 2006, pp. 133-144.
[9] V. Zeman, J. Kellner, Mathematical modelling of bladed disk vibration. Proceedings of the 22nd

Computational Mechanics, Nectiny, University of West Bohemia in Pilsen, 2006, pp. 713-720.

J. Kellner et. al  / Applied and Computational Mechanics 1 (2007) 77 - 86

86


