
Emulating an Offline Renderer
by 3D Graphics Hardware

Jörn Loviscach
Hochschule Bremen
Flughafenallee 10

28199 Bremen, Germany

jlovisca@informatik.hs-bremen.de

ABSTRACT
3D design software has since long employed graphics chips for low-quality real-time previewing. But their
dramatically increased computing power now paves the way to accelerate the final high-quality rendering, too.
While as yet only one major 3D software package offers a dedicated “hardware renderer” for final output, a small
number of design applications can leverage the graphics card to support game creation: They display vertex and
pixel shader effects in the same way as they appear on the game’s screen. We present an approach unifying the use
of graphics cards for game design and for final rendering. It is implemented as a plug-in for Maxon Cinema 4D,
a standard commercial software package for modelling, animation, and rendering. We examine which factors
determine the performance of this solution and discuss corresponding improvements.

Keywords
vertex shader, pixel shader, Cg high level shader language, .fx shader files, shadow maps

1 INTRODUCTION
Most 3D software solutions for constructional or

graphics design contain two renderers: one hardware-
accelerated renderer delivering a rough but interactive
preview and another renderer that only works offline,
but produces high-quality images with complex light-
ing, shading, and texturing effects, usually including
shadows, reflections, and refractions. The main draw-
backs of this approach are:

• Much guesswork is involved as only the slow off-
line renderer shows the actual result.

• The high-quality renderer does not make any use
of the computing power of the graphics card.

In some of the major 3D packages, the first problem
is addressed by an interactive preview renderer: In a

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee, provided that no copies are made or distributed for profit
or commercial advantage and that all copies bear this notice
and the full citation on the first page. To otherwise copy or
republish, to post on servers or to redistribute to lists, a prior
specific permission and/or a fee are required.

Journal of WSCG, Vol. 12, No. 1–3, ISSN 1213-6972
WSCG ’2004, February 2–6, 2004, Plzen, Czech Republic.
Copyright UNION Agency — Science Press

first pass, the usual final renderer is started, but for
each pixel the material, the texture coordinates, and
the lighting situation are stored. After this first pass,
changes in materials can be quickly rendered with help
of the intermediate data. Such an interactive preview
renderer fails, however, if the geometry of the scene is
changed. Furthermore, typically it does neither lever-
age the computing power of the graphics card nor offer
a speedup for the final rendering.

Modern graphics cards possess a much-improved
functionality that may allow a unified approach to ren-
dering, offering high speed and high quality at the
same time. The main new building blocks intro-
duced to graphic cards in the recent years are vertex
shaders [Lin01] and pixel shaders. Through them, 3D
graphics chips have evolved from configurable to pro-
grammable processing units. Vertex shaders are small
programs run for each vertex on the graphics card,
pixel shaders are run for each pixel (or pixel fragment).
Besides being programmable, modern graphics cards
apply many different textures in one pass; they offer
more than hundred megabytes of on-board memory for
very detailed textures and for off-screen buffers up to
2048× 2048 pixels, such as needed for depth maps.
Full-scene antialiasing adds to the cleanliness of the
result.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace at University of West Bohemia

https://core.ac.uk/display/295549178?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Vertex shaders and especially pixel shaders allow to
render complex-looking materials in real time. Even
for simple materials they easily surpass the quality
of the typical interactive presentation used in 3D de-
sign software: In the usual previews, the colors them-
selves are interpolated across the faces of a mesh
(Gouraud interpolation), which results in faceted high-
lights. Pixel shaders, however, allow to interpolate the
normal vectors (Phong interpolation), thus producing
specular highlights of the same quality as most offline
renderers.

The objective of this work is to implement a hardware-
based renderer which works at near-interactive speed
and emulates the offline renderer of a standard com-
mercial 3D graphics design software. Furthermore,
we want to study the limits to such an approach, as
imposed by the graphics hardware and the structure
of the host 3D software. The presented solution is
implemented as a plug-in for the software package
Maxon Cinema 4D [Max03]. This software features
one of the fastest commercial raytracing renderers; it
has much code in common with Cebas finalRender for
discreet(R) 3ds maxTM . This is interesting for compar-
isons. In addition, no “official” real-time shader plug-
in has been published for Cinema 4D up to now.

Our plug-in called C4Dfx combines real-time shader
effects given as industry-standard .fx (“effects”) files
with an emulation of standard lighting, shading, tex-
turing, and shadowing features of the host 3-D soft-
ware, all rendered with help of the graphics card ei-
ther offline or concurrently at near-interactive speed
in a separate window or on an additional display, see
Fig. 1.

Section 2 introduces related methods and solutions de-
veloped for high-quality rendering accelerated by stan-
dard 3D graphics hardware. Our implementation is de-
scribed in section 3. Section 4 investigates the factors
determining speed and quality. Design issues follow-
ing from these observations are discussed in section 5.
In section 6 we summarize the results and outline fu-
ture developments.

2 RELATED WORK
Up to now, among the major 3D design software pack-
ages only Alias(R) Maya(R) 5.0 [Ali03] offers a dedi-
cated “hardware renderer” that makes use of the com-
puting power of the graphics card. This hardware ren-
derer requires a workstation-class graphics accelera-
tor; but according to our experiments, even with some
of such expensive graphics cards it does not support
features such as shadows. Furthermore, this hardware
renderer is not intended to be used interactively, but
acts only as a speedy replacement of the usual soft-

Figure 1. The hardware-accelerated renderer can
work at near-interactive speed, continuously
displaying its result in an own window (upper

right). The usual Cinema 4D preview is visible in
the top left view port; the lower window shows the

result of its built-in offline raytracer.

ware renderer.

The absence of a hardware renderer does not mean that
typical 3D design software does not support vertex and
pixel shaders. Rather, in several such software pack-
ages, real-time shaders can be used in theinteractive
rendering. This is intended as a preview to assist game
designers, who thus are able to build models and ma-
terials with perfect visual feedback.

To describe a material including pixel shaders, vertex
shaders, texture file references, and adjustable parame-
ters, Microsoft(R) and NVIDIA(R) have established the
.fx file format [Aro03]. 3D design software and game
engines can share such files in order to offer identi-
cal materials. Microsoft(R)’s programming interface
DirectX(R) allows to load such files; NVIDIA(R) of-
fers the CgFX toolkit to use .fx materials with both
DirectX(R) and OpenGL(R).

To extend Alias(R) Maya(R) 4.5/5.0 [Ali03] and
discreet(R) 3ds maxTM 5.1 [dis03] by a real-time
shader display based on .fx files, NVIDIA(R) has pub-
lished corresponding plug-ins. Softimage(R) offers an
own .fx support for its package XSI(R) 3.5.



While .fx files may contain shaders written as as-
sembler code for the 3D chip, the trend is to use
a high level shading language such as Microsoft(R)’s
HLSL (High Level Shading Language, a part of
DirectX(R) 9.0), or NVIDIA(R)’s Cg (“C for Graph-
ics”) [Mar02]. Both languages are virtually identical.
An OpenGL(R) Shading Language has been introduced
recently as an extension of OpenGL(R) 1.5. Currently,
it is not certain if this shading language may in future
be used in .fx files, too.

NVIDIA (R) offers a set of scripts along with the plug-
in for Maya(R). Among them is “Conv”, which at-
tempts to generate .fx and texture files to emulate the
standard materials of a 3D scene. This approach al-
lows, for instance, to reuse the generated files in a
game engine. However, neither does it work fully
transparently as a substitute for the final renderer, nor
does it, for instance, produce shadows.

Today’s commercial applications mainly use graph-
ics hardware to accelerate classic lighting and shading
models such as Phong’s. Current research, however,
is concerned with using consumer-class 3D graphics
cards to render complex shading (such as character-
ized by bidirectional reflection distribution functions,
BRDFs) and global illumination effects in real time.
For an overview, see [Kau03].

Another approach to harness the computing power of
modern graphics chips for high-quality rendering is to
use the 3D chip for raytracing. Though it has not been
designed for this task, the chip can compute ray-object
intersections by clever use of textures and shaders
[Pur02].

3 IMPLEMENTATION
The current .fx shader plug-ins for 3D design soft-
ware (see section 2) typically use the interactive view
ports of the software for display. For our plug-in for
Maxon Cinema 4D under Microsoft(R) Windows(R),
we elected to open a new, dedicated window to dis-
play the results. This is due to the following reasons:

• The plug-in has full control over the window.
This is indispensable for instance to let the user
switch on the fly between different levels of full-
scene antialiasing, an option not available in other
solutions.

• The window is operated by a dedicated process-
ing thread. The hardware-accelerated renderer
works concurrently to Cinema 4D itself, so that
the user needs not wait for the renderer to finish.
This means however, that the renderer must re-
ceive a cloned copy of the 3D scene, because the

user might edit the scene inside Cinema 4D be-
fore the rendering is completed.

• The separate window may be dragged to a sec-
ondary display unit, maybe enlarged to full-
screen.

In addition to watching this near-interactive rendering,
the user may start a hardware-accelerated offline ren-
derer. It uses the same routines, but works in an off-
screen buffer, does not process a single frame but an
animation sequence and writes its result into an .avi
file. This offline renderer works concurrently to both
Cinema 4D itself and the hardware-accelerated near-
interactive rendering window. For feedback to the
user, the offline renderer opens a window in which it
displays a thumbnail version of every frame it writes
to disk.

The plug-in uses OpenGL(R) as programming inter-
face for the graphics card. To parse and compile .fx
files and set the graphics card accordingly, it employs
NVIDIA (R)’s CgFX toolkit.

The plug-in processes two different kinds of material
definitions: standard Cinema 4D surface materials and
shaders loaded from .fx files. The user-accessible pa-
rameters defined in an external .fx file are made ac-
cessible via usual GUI elements of Cinema 4D, see
Fig. 2. Standard surface materials, on the other hand,
are transparently converted to internal .fx shaders em-
ulating Cinema 4D’s offline raytracer. The .fx shaders,
internal or file-based, are handed to the CgFX toolkit
before rendering.

The design objective for shadows was: All objects
can cast shadows; the objects carrying the Cinema 4D
standard material can also receive shadows. For ob-
jects with an external .fx material, however, it would
not be feasible to receive shadows, because the light-
ing model used in the .fx shader is not known: A matte
surface should be influenced by a shadow, a mirror-
like surface should not.

We elected not to add the contribution of each light
source as another rendering pass (as done by the Conv
script for the Maya(R) plug-in) for the following rea-
sons: First, to start an additional pass causes a fixed
overhead and demands to repeat basic computations
such as the normalization of the normal vectors. Sec-
ond, the passes are composed in 24 bit RGB frame
memory, thus accumulating roundoff errors. (The cur-
rent graphics cards optionally offer floating point pre-
cision buffers, but then the functionality is strongly
limited.)

However, the pixel shader of each rendering pass can
access only a certain number of textures and parame-



Figure 2. Shaders loaded from .fx files (on the left
torus) and the emulated standard materials (other
objects) are displayed in the same scene. For the
parameters defined in .fx files, a graphical user

interface is built on the fly. (Example .fx file from
NVIDIA (R))

ters. Current graphics cards are limited to 16 simulta-
neous textures; each shadow-generating light source
occupies one of them as a depth map. An even
more stringent restriction is due to the current version
0.0.0.4 of the CgFX toolkit: It does not allow to use
more than eight textures inside a pixel shader. To-
gether with speed considerations, this lead to the de-
cision to let the user optionally add a tag to each light
source specifying whether or not it generates illumi-
nation and shadows in the hardware-accelerated ren-
derer.

The plug-in collects the information about the light
sources and builds for each standard Cinema 4D ma-
terial a corresponding .fx shader in memory. Each
of these internal shaders and each external .fx file
is loaded into an own FXEffect object of the CgFX
toolkit. When rendering an .avi file, this step happens
only at the start, to save time. But because nearly ev-
ery parameter in Cinema 4D can be animated, all of
the steps described in the following are executed once
per frame. In particular, each parameter of every FX-
Effect object is set according to its current value in the

current frame of the Cinema 4D animation.

Next, depth maps are rendered into off-screen buffers
for all light sources that cast shadows. In the plug-in,
this is currently limited to round spot lights. In ad-
dition, displacement maps in the standard Cinema 4D
material as well as vertex shader deformation are ig-
nored for the shadow maps. These may be available
in a later version of the plug-in. With shadow maps
[Eve02b] this can be achieved quite easily. To im-
plement this dynamic displacement with shadow vol-
umes [Eve02a], however, would require to determine
shadow silhouettes on the fly. This is rather difficult
for objects already carrying vertex shaders from .fx
files. The most promising way to compute shadow sil-
houettes in such a situation would be to render the ver-
tex positions encoded as color values and read those
back from the graphics card [Bra03].

Image files or 2D procedural shaders applied as diffuse
color map, bump map, and environment map are read
into memory arrays. To reduce artifacts due to insuf-
ficient resolution, Cinema 4D’s spherical environment
map is converted to a cube map. The bump map (con-
taining height values) is converted to a normal map
(containing normal vectors), which is the usual form
to generate bump mapping on graphics hardware. Fi-
nally, the texture maps are handed on to OpenGL(R).

To render the final image frame, the plug-in invokes
the corresponding FXEffect for each 3D object of the
scene. The positions and texture coordinates of each
object are sent to OpenGL(R) as an indexed vertex ar-
ray. Already by itself, Cinema 4D tessellates all scene
geometry such as parametric objects and spline sur-
faces ready to let them be used in vertex arrays.

Typical .fx shaders also require the values of the com-
ponents of an orthogonal coordinate frame at each ver-
tex: normal, tangent, and binormal vector. Per ver-
tex, the bump map computation for internal .fx shaders
needs the normal vector and vectors pointing in theu
andv directions of the texture. To compute these data,
the plug-in employs the adjacency data provided by
Cinema 4D to first determine normal vectors per face
and then, from those, normal vectors per vertex. From
a linear approximation of the surrounding vertices, the
u andv directions of the texture are determined. Theu
direction is used as tangent vector, too. The binormal
vector is formed as the vector product of normal and
tangent.

In total, the plug-in requires a graphics card
capable of vertex shaders and pixel shaders
of version “2.0 Extended” and the following
OpenGL(R) extensions: WGLARB pixel format,
WGL ARB pbuffer, GL ARB multisample,
GL ARB depthtexture, WGLARB rendertexture,



and WGLNV renderdepthtexture.

4 PERFORMANCE
To evaluate the speed and the quality of the solu-
tion, we measured the scaling behavior with differ-
ent output resolutions, different amounts of geome-
try, etc. As a reference for an industry-standard of-
fline renderer, we invoked the Cinema 4D raytracer
for the same test scenes with the same settings. For
brevity, we report here only the timing figures for
the one test scene shown in Fig. 1. It comprises
approximately 17.000 polygons, mostly quadrangles,
and four spot light sources with shadows. The scene
contains four materials with specular highlights and
mixed use of diffuse color textures, bump maps, and
environment maps. The benchmark system was an
PC with a 2.5 GHz Intel(R) Pentium(R) 4 processor and
an NVIDIA(R) GeForceTM FX 5900 graphics card run-
ning under Microsoft(R) Windows(R) XP.

Because Maxon released a code snippet illustrating the
computation of specular highlights in Cinema 4D, we
were able to emulate the lighting computations per-
fectly. In addition, 2D procedural shaders used for in-
stance as diffuse textures or as bump map are repro-
duced nearly exactly: These are converted to bitmap
textures, the precision of the emulation only being lim-
ited by the bitmap’s resolution.

The plug-in uses shadow maps as offered by current
graphics cards. This simple interpolation cannot fully
reproduce the virtually aliasing-free shadows of Cin-
ema 4D’s own depth map algorithm. Other slightly
visible differences occur with bump mapping: The ex-
act computation that Cinema 4D uses here is not pub-
licly accessible up to now.

Concerning rendering speed, the hardware-based so-
lution may outperform Cinema 4D’s fast software ray-
tracer only when rendering a sequence of frames. As
the leftmost data point of Fig. 3 shows, the initial ex-
pense to build shaders and off-screen buffers is quite
high. While the raytracer needs 5.5 seconds per frame
without a noticeable startup time, the plug-in com-
pletes each frame in 2.4 seconds—but only after a
2.8 seconds startup phase. A major part of this is used
to generate and compile the program code of the .fx
shaders. According to our measurements, this takes
approximately 0.4 seconds per shader.

To test the behavior with varying scene complexity,
we rendered a scene with the same setup but contain-
ing only one single quadrangle, one scene where the
geometry was duplicated and slightly translated, and
one scene with quadruplicated geometry, see Fig. 4.
This benchmark revealed that Cinema 4D uses strong

0 5 10 15 20 25
0

30

60

90

120

150 time/s

frames

Cinema 4D Raytracer

Hardware-Based Renderer

Figure 3. In contrast to the hardware-based
renderer the standard Cinema 4D raytracer does

not need a fixed startup time for a frame sequence.
(No antialiasing, output: 640×480pixels, texture

and depth map resolution:256×256texels)

optimization techniques to better cope with complex
scenes. (The curve reminds one of theO(logN) be-
havior of typical optimized raytracers.) Thus, for
the settings used here, a scene of approximately
70.000 polygons yields a tie between the raytracer and
the hardware-based solution.

The relationship between the dimensions of the result-
ing images and the rendering time is again linear for
both solutions, but contains an initial constant cost for
the hardware shaders, see Fig. 5. While the Cinema 4D
raytracer delivers approximately 54.000 pixels per sec-
ond, the graphics card achieves about 560.000 pixels
per second—once the first pixel has been drawn. This
also leads to a low impact of multisampling for the
hardware-based solution.

Note that the timing figures in Fig. 5 are for 22 frames,
so that the constant cost of 41 seconds for the hard-
ware solution does not so much represent the setup of
the shaders at the beginning, but (in decreasing order
of importance) the filling of textures maps, the tessel-
lation of the scene and construction of vertex arrays,
the setting of parameters in the FXEffect objects and
the validation of the shaders through CgFX.

Another contribution to the constant cost stems from
the computation of the four shadow maps used in
the scene. Both Cinema 4D’s own renderer and the
hardware-based solution take approximately 0.1 sec-
onds to compute one shadow map for one frame. So
in our context, the cost of preparing a shadow map is
nearly negligible for both systems, at least for a map
resolution of 256×256 pixels.



time/s

x 1000 polygons

Cinema 4D
Raytracer

Hardware-Based Renderer

0 10 20 30 40 50 60 70 80
0

30

60

90

120

150

Figure 4. The standard Cinema 4D raytracer
achieves a sub-linear dependency of the rendering
time on the complexity of the scene. (22 frames, no
antialiasing, output: 640×480pixels, texture and

depth map resolution: 256×256texels)

A design decision was not to use a single rendering
pass for each light source. To estimate the cost of a
multi-pass solution, we measured the rendering speed
with those parts of vertex shader and pixel shader code
left out that would have to repeated in each pass. This
lead to a speedup of 0.43 seconds per frame. Thus,
one can safely estimate that each additional pass would
require more than 0.4 seconds render time, because
the setup needed for each pass would even add to that
number.

Cinema 4D’s computation of specular highlights in-
cludes several transcendental functions:

a
(

1−clamp(bacos(v · r)−c)d
)e

,

wherea to e are parameters determined from user in-
put, and the unit vectorsv and r point to the viewer
and along the reflected light ray, respectively. To
check which impact the large quantity of transcenden-
tal functions involved here has on rendering speed, we
left out the arc cosine. This resulted in a speedup of
0.07 seconds per frame and light source. In fact, the
arc cosine is the most expensive function here: To
cancel the whole computation yielded 0.18 seconds
speedup per frame and light source.

5 DISCUSSION
The plug-in can use Cinema 4D scene “as is”, with-
out any specific changes. External .fx files can seam-
lessly be used as materials, too. In rendering quality,
the hardware-accelerated solution can largely keep up
with the software raytracer, at least when no real re-
flections (but only environment maps) and no trans-

time/s

x 1000 pixels

Cinema 4D Raytracer

Hardware-Based
Renderer

0 100 200 300 400 000 600 700 800
0

50

100

150

200

250

300

350

AA

AA

Figure 5. Once the textures and objects are set up,
the hardware solution delivers high speed.

(22 frames, texture and depth map resolution:
256×256texels, AA: four-sample multisampling

for hardware, setting “antialiasing: geometry” for
the raytracer)

parency or even refraction effects are asked for. These
are missing up to now in the plug-in, because they
would not only require extreme programming effort
but also lead to poor rendering times.

As it turned out, hardware acceleration does not guar-
antee shorter render times. Our solution excels when
producing movies in large, antialiased frame formats,
When used as an interactive display, it has to handle,
however, single frames of relatively small dimensions.

There is hope for faster pixel shaders in the next gen-
eration of graphics cards. Also, a later version of
the CgFX toolkit may not only support 32 bit floating
point computations but also NVIDIA(R)’s faster 16 bit
floating point types as well as compiler profiles to fully
employ the current generation of graphics cards. In
the meantime, a feasible way to speed up computa-
tions involving transcendental functions (such as Cin-
ema 4D’s routine for specular highlights) would be to
cast them into textures used as look-up tables.

However, what is needed more than raw computational
power is clever optimization. This becomes obvious in
the benchmarks of the hardware-accelerated solution
against Cinema 4D’s built-in raytracer. Clearly, the
O(N) behavior of a brute-force z-buffer renderer can-
not beat an optimized raytracer. A natural idea is to
use the occlusion culling offered by current graphics
cards. A further improvement would be not to build
.fx shaders (including textures etc.) for materials only
used on completely occluded objects—or even never
used.



Much could be achieved with a little more information
delivered by the host application. In particular, tex-
tures that did not change since the last frame do not
need to be rebuilt. The application could quite easily
track which materials and which bitmaps and/or proce-
dural textures used in materials change and which do
not. Such a change can happen both through anima-
tion and through user input; it could be signaled to the
plug-in via some kind of “dirty” flag. Another helpful
addition to the host software would be to grant access
not only to the vertex coordinates but also to normal
vector, tangent vector, etc, as is the case in Maya(R).

Up to now, all .fx shaders are built with full—
and costly—lighting and shading functionality (bump
mapping, environment mapping, etc.). This happens
to cope with the problem that most of the parameters
can be animated: A material that starts pitch black in
frame 0 may turn into a dented mirror at frame 10.
Here, only an elaborate method to track animations
and user input could help. It would have to balance
whether it takes more time to build a new, specialized
.fx shader in the middle of an animation or to use a
more general and therefore slow shader throughout.
One could even prepare a pool of shaders (with and
without bump mapping etc.) on startup.

To build textures maps by evaluating Cinema 4D’s
bitmap textures or procedural textures allows to treat
a broad range of materials with minimum program-
ming effort. For the bitmap textures, this results in a
resampling. This is nearly unavoidable because the
usual graphics chips need bitmaps with dimensions
that are an integer power of two; otherwise the chips
will refuse to employ MIP-mapping.

If many polygons of the scene share the same material,
the sampling into a bitmap can reduce rendering time
because it saves expensive recomputations of procedu-
ral textures. Usually, however, materials are not reused
that often. Hence it would be useful to deliver pixel
shaders emulating at least a standard set of procedural
textures. This would also allow to treat procedural 3D
textures like wood or marble. These could in principle
be turned into 3D bitmaps on the graphics card, even
at reasonable resolution thanks to texture compression.
But the computational expense to fill these 3D bitmaps
would be prohibitively large.

In the current version of the plug-in, the user can—and
has to—control at which resolution the textures of Cin-
ema 4D are (re-)sampled for the hardware-accelerated
rendering. For this task an automatic solution may be
devised. One could even think of spatial adaptivity so
that some parts of a texture map contain more detail
than others.

The decision to use a single-pass shader is justified

Feature Implementation
complex highlights pixel shader
environment mapping cube map, pixel shader
bump mapping normal map, pixel shader
shadows depth maps
anti-aliasing multisampling
reflections —
transparency —
refractions —
soft shadows —

Table 1. Implemented features and possible
extensions.

from the benchmarks. Although the number of param-
eters and simultaneous textures is limited, the plug-in
can still render five light sources with shadows. With
a future version of CgFX this may increase to the limit
imposed by the number of 16 simultaneously usable
texture maps.

Like virtually all solutions employing current graph-
ics chips, also this one suffers from several drawbacks
as a matter of principle: First, the choice of operating
systems is narrowed down to two or even one. Sec-
ond, incompatibilities between graphics cards as well
as software bugs in drivers and toolkits make it diffi-
cult to produce a reliable solution. Third, the steady
introduction of new hardware features lets any exist-
ing solution quickly become outdated. A toolkit like
CgFX which accepts high-level code and compiles it
for the installed graphics card seems to be an ideal
way to cope with most of these problems. However,
its final version still has to be released.

6 RESULTS AND OUTLOOK
We have demonstrated a plug-in for a major 3D design
software that emulates the offline raytracing engine
of this package with help of graphics hardware. The
solution allows a reliable preview and/or accelerated
movie rendering at high quality including shadows
but not reflections or refractions, see Table 1. Espe-
cially for movie rendering of not-too-complex scenes
at large frame sizes, possibly with full-scene antialias-
ing, the hardware-accelerated renderer can outperform
the built-in raytracer of Cinema 4D.

Several worthwhile approaches to speed improvement
result from the benchmarks of section 5:

• The initial setup time for a frame sequence and
for each frame may be shortened by checking
which materials with which features are needed
at which time, and to act intelligently on this in-
formation.



• To offer better performance than the built-in ray-
tracer also for complex scenes, the hardware so-
lution needs strong optimization methods, maybe
occlusion culling and similar techniques.

• Cinema 4D’s standard set of procedural 3D tex-
tures may be implemented as pixel shaders.

After that, one may think of implementing a better
shadow algorithm [Wei93, Has03], rendering environ-
ment maps on the fly to simulate reflections, allowing
transparency [Eve2001], and even emulating global
illumination [Kau03] as computed by Cinema 4D’s
built-in engine.

7 REFERENCES
[Ali03] Alias (R) Maya(R) 5.0. www.alias.com, 2003.
[Aro03] Aronson, D., Gray, K. Using the Effects Frame-

work. Published online at www.microsoft.com/msdn,
2003

[Bra03] Brabec, S., Seidel, H.-P. Shadow Volumes on Pro-
grammable Graphics Hardware. Computer Graphics
Forum 22(3), pp. 433–440, 2003

[dis03] discreet(R) 3ds maxTM . www.discreet.com.
[Eve01] Everitt, C. Interactive Order-Independent Trans-

parency, published online at developer.nvidia.com,
2001.

[Eve02a] Everitt, C., Kilgard, M. J. Practical and Robust
Stenciled Shadow Volumes for Hardware-Accelerated
Rendering. Published online at developer.nvidia.com,
2002.

[Eve02b] Everitt, C., Rege, A., Cebenoyan, C. Hard-
ware Shadow Mapping. Published online at devel-
oper.nvidia.com, 2002.

[Has03] Hasenfratz, J.-M., Lapierre, M., Holzschuch, N.,
Sillion, F. X. A Survey of Real-time Soft Shadow Al-
gorithms. EUROGRAPHICS 2003 State of the Art Re-
ports, pp. 1–20, 2003.

[Kau03] Kautz, J., Hardware Lighting and Shading. EURO-
GRAPHICS 2003 State of the Art Reports, pp. 33–57,
2003

[Lin01] Lindholm, E., Kilgard, M. J., Moreton, H. A User-
Programmable Vertex Engine. Proc. of SIGGRAPH
2001, pp. 149–158, 2001.

[Mar03] Mark, B., Glanville, S., Akeley, K., Kilgard, M. J.
Cg: A System for Programming Graphics Hardware
in a C-like Language. ACM Transactions on Graphics
22(3), Proc. SIGGRAPH 2003, pp. 896–907, 2003.

[Max03] Maxon Cinema 4D. www.maxon.net.
[Pur02] Purcell, T. J., Buck, I., Mark, W. R., Hanrahan, P.

Ray Tracing on Programmable Graphics Hardware.
ACM Transactions on Graphics 21(3), Proc. SIG-
GRAPH 2002, pp. 703–712, 2002.

[Sof03] Softimage(R) XSI(R). www.softimage.com.
[Wei93] Weiskopf, D., Ertl, T. Shadow Mapping Based

on Dual Depth Layers. EUROGRAPHICS 2003 Short
Presentations, pp. 53–60, 2003.


